首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Results from an investigation aimed at assessing seismic behavior of transfer story connections for high‐rise building consisting of steel‐reinforced concrete (SRC) frame and reinforced concrete (RC) core tube are presented. Two types of transfer story connections were experimentally evaluated for adequate strength, ductility and energy dissipation. For each type of connection, two large‐scale subassembly tests were carried out under monotonic and cyclic lateral displacement, respectively. Detailed observations and behavior responses were obtained to contrast the differences between monotonic and cyclic performance of the connections. Test results showed that the SRC column failed before connection collapse and that loading types have little effect on the strength but greatly affect the failure modes and the ductility of the connections. All specimens exhibited good properties for earthquake resistance since they all kept a stable inelastic behavior up to the interstory drift demand suggested by the AISC Seismic Provisions. Based on test observations, support stiffeners with appropriate width‐to‐thickness ratio and mechanical connectors connecting bars with the steel plate are recommended for design purposes in order to achieve more ductile and reliable seismic behavior of transfer story connections. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Triangular-plate added damping and stiffness(TADAS) devices are reliable metallic energy dissipaters for seismic upgrading used in design and retrofitting of civil structures. Conventional TADAS devices are designed with closedended slots. In this study, a modified form of the TADAS device is proposed with open-ended slots in order to reduce the manufacture cost, facilitate the assembling and avoid abrupt stiffness increase. Cyclic and monotonic loading tests are then conducted to investigate the mechanical characteristics of the modified TADAS devices with regular Q345 steel and lowyield point LY160 steel triangular plates. The test results show that although the hysteresis performances are stable, the cyclic hardening behavior is different between the TADAS specimens with different grades of steel. The TADAS specimen with LY160 triangular plates exhibits more significant overstrength behavior than the one with Q345 triangular plates in cyclic loading, which is unsuitable to be described by the classic Bouc-Wen model. Therefore, a modified Bouc-Wen model is proposed to describe such overstrength behavior. It is shown that the modified model is able to simulate different extent of overstrength behavior in cyclic loading, based on which the cyclic hardening behavior of the TADAS specimen with LY160 triangular plates can be well described.  相似文献   

3.
An experimental investigation on the seismic behavior of a type of outrigger truss-reinforced concrete wall shear connection using multiple steel angles is presented. Six large-scale shear connection models, which involved a portion of reinforced concrete wall and a shear tab welded onto a steel endplate with three steel angles, were constructed and tested under combined actions of cyclic axial load and eccentric shear. The effects of embedment lengths of steel angles, wall boundary elements, types of anchor plates, and thicknesses of endplates were investigated. The test results indicate that properly detailed connections exhibit desirable seismic behavior and fail due to the ductile fracture of steel angles. Wall boundary elements provide beneficial confinement to the concrete surrounding steel angles and thus increase the strength and stiffness of connections. Connections using whole anchor plates are prone to suffer concrete pry-out failure while connections with thin endplates have a relatively low strength and fail due to large inelastic deformations of the endplates. The current design equations proposed by Chinese Standard 04G362 and Code GB50011 significantly underestimate the capacities of the connection models. A revised design method to account for the influence of previously mentioned test parameters was developed.  相似文献   

4.
This paper reports findings of an experimental study conducted on replaceable links for steel eccentrically braced frames (EBFs). A replaceable link detail which is based on splicing the directly connected braces and the beam outside the link is proposed. This detail eliminates the need to use hydraulic jacks and flame cutting operations for replacement purposes. Performance of this proposed replaceable link was studied by conducting eight nearly full‐scale EBF tests under quasi‐static cyclic loading. The link length ratio, stiffening of the link, loading protocol, connection type, bolt pretension, gap size of splice connections, and demand‐to‐capacity ratios of members were considered as the prime variables. The specimens primarily showed two types of failure modes: link web fracture and fracture of the flange at the link‐to‐brace connection. No failures were observed at the splice connections indicating that the proposed replaceable link detail provides an excellent response. The inelastic rotation capacity provided by the replaceable links satisfied the requirements of the AISC Seismic Provisions for Structural Steel Buildings (AISC341–10). The overstrength factor of the links exceeded 2.0, which is larger than the value assumed for EBF links by design provisions. The high level of overstrength resulted in brace buckling in one of the specimens demonstrating the importance of overstrength factor used for EBF links. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
采用非线性有限元软件Msc.Marc对高层钢管混凝土组合框架-钢板剪力墙结构底部四层两跨未加劲薄钢板墙模型进行了推覆分析与滞回分析。计算结果表明,组合钢板剪力墙结构具有良好的延性及稳定的滞回性能,结构进入弹塑性阶段后钢板墙的拉力带方向与CAN/CSA S16—01(2001)推荐公式吻合良好。根据分析结果,比较了不同分析类型及不同钢板墙厚度的影响。研究发现,考虑钢材强化及包辛格效应后,结构滞回分析的极限承载力将小于推覆分析的极限承载力;随着钢板墙厚度的增大,结构的弹塑性屈曲模态由局部屈曲向整体屈曲过渡;在罕遇地震作用下,钢板墙结构的底层边缘约束柱将产生较大的轴拉力,甚至被拉断而导致结构整体破坏。  相似文献   

6.
7.
为研究评估方法对量化半刚接钢框架内填暗竖缝RC墙结构(简称PSRCW)超强性能的影响,严格按我国现行抗震规范设计了一栋位于设防烈度为8度区的10层PSRCW标准算例。考虑钢材、钢筋、混凝土强度等材料力学性能的随机性,基于Latin超立方抽样方法将其扩展为40个PSRCW样本算例,采用广义乘方及均匀水平荷载分布模式的循环Pushover方法确定了40个PSRCW样本算例的滞回及骨架曲线,基于概率方法按置信水平为95%的单侧置信下限值确定PSRCW结构的超强系数。随后,选取ATC63规范建议的2组22条近场及远场地震波,对10层PSRCW标准算例进行增量动力时程分析(简称IDA),基于概率法确定了10层PSRCW标准算例的超强系数。分析结果表明:评估方法对量化PSRCW结构超强系数影响显著,考虑材料随机性按广义乘方分布循环Pushover方法确定10层PSRCW标准算例的超强系数为1.3,按均匀分布循环Pushover方法确定的10层PSRCW标准算例的超强系数为1.73。考虑近场及远场地震波随机性按IDA方法确定10层PSRCW标准算例的超强系数分别为2.45和2.42。  相似文献   

8.
The energy dissipation capacity of a structure is a very important index that indicates the structural performance in energy‐based seismic design. This index depends greatly on the structural components that form the whole system. Owing to the wide use of the strong‐column weak‐beam strength hierarchy where steel beams dissipate the majority of earthquake input energy to the structures, it is necessary to evaluate the energy dissipation capacity of the beams. Under cyclic loadings such as seismic effects, the damage of the beams accumulates. Therefore, loading history is known to be the most pivotal factor influencing the deformation capacity and energy dissipation capacity of the beams. Seismic loadings with significantly different characteristics are applied to structural beams during different types of earthquakes and there is no unique appropriate loading protocol that can represent all types of seismic loadings. This paper focuses on the effects of various loading histories on the deformation capacity and energy dissipation capacity of the beams. Cyclic loading tests of steel beams were performed. In addition, some experimental results from published tests were also collected to form a database. This database was used to evaluate the energy dissipation capacity of steel beams suffering from ductile fracture under various loading histories. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
This paper describes the results of an experimental and numerical study that focused on multi‐directional behavior of unreinforced masonry walls and established the requisite of the related proposed design equations. The tests were conducted following several sets of multi‐directional loading combinations imposed on the top plane of the wall along with considering monotonic and cyclic quasi‐static loading protocols. Various boundary conditions, representing possible wall–roof connections, were also considered for different walls to investigate the influence of rotation of the top plane of the wall on the failure modes. The results of the tests were recorded with a host of high precision data acquisition systems, showing three‐dimensional displacements of a grid on the surface of the wall. Finite element models of the walls are developed using the commercial software package ABAQUS/Explicit compiled with a FORTRAN subroutine (VUMAT) written by the authors. The experimental results were then used to validate the finite element models and the developed user‐defined material models. With the utility of validated models, a parametric study was performed on a set of parameters with dominant influence on the behavior of the wall system under in‐plane and out‐of‐plane loading combinations. The experimental and numerical results are finally used to investigate the adequacy of ASCE 41 empirical equations, and some insights and recommendations are made. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents the results of a multi‐level pseudo‐dynamic seismic test program that was performed to assess the performance of a full‐scale three‐bay, two‐storey steel–concrete composite moment‐resisting frame built with partially encased composite columns and partial‐strength beam‐to‐column joints. The system was designed to develop a ductile response in the joint components of beam‐to‐column joints including flexural yielding of beam end plates and shear yielding of the column web panel zone. The ground motion producing the damageability limit state interstorey drift caused minor damage while the ultimate limit state ground motion level entailed column web panel yielding, connection yielding and plastic hinging at the column base connections. The earthquake level chosen to approach the collapse limit state induced more damage and was accompanied by further column web panel yielding, connection yielding and inelastic phenomena at column base connections without local buckling. During the final quasi‐static cyclic test with stepwise increasing displacement–amplitudes up to an interstorey drift angle of 4.6%, the behaviour was ductile although cracking of beam‐to‐end‐plate welds was observed. Correlations with numerical simulations taking into account the inelastic cyclic response of beam‐to‐column and column base joints are also presented in the paper together. Inelastic static pushover and time history analysis procedures are used to estimate the structural behaviour and overstrength factors of the structural system under study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
In precast technology, mostly (but not exclusively), frame structures with pinned beam-to-column connections are preferred, especially in low-rise buildings due to the flexibility, lower cost and more favourable behaviour they provide, especially in the case of large spans and pretensioned interconnected members. However the available literature on the behaviour of pinned connections, especially under seismic loading, can be characterized as poor, even though their use in Europe and elsewhere is rather extended. In the terms of the present research a nonlinear 3D numerical model was developed and calibrated against available experimental data to be used as an effective tool for the analytical prediction of the behaviour of pinned connections, under monotonic and cyclic shear loading. The experimental data were derived from the European FP7 project SAFECAST, Grant Agreement Number 218417. The tests were performed at the Laboratory for Earthquake Engineering of the National Technical University of Athens, Greece. From the numerical results useful information was obtained on component level about: (a) the type of the observed failure mechanism; (b) the amount of dissipated energy; (c) the location of the developed plastic hinges along the steel dowel, and (d) the evolution of stresses and strains along the dowel(s) and in the mass of the surrounding grout. However the numerical model can be further utilized to investigate and quantify the effect of several parameters (that were not experimentally investigated in depth, or were not investigated at all) on the response of pinned connections.  相似文献   

12.
本文在确定了往复应力作用下钢管混凝土的钢材和核心混凝土的应力-应变关系的基础上,利用纤维杆元模型,有限元模型对钢管混凝土Y形柱和十字形钢梁连接的节点的荷载-位移滞回关系曲线及其骨架曲线进行了计算,并与试验结果进行了比较。结果表明:由纤维杆元模型与试验所得的低周反复荷载作用下的骨架曲线极为相似,但在峰值荷载后差异较大;由纤维杆元模型和有限元所得的在低周反复荷载作用下滞回曲线也与在反复荷载作用下试验所得的结果相一致。纤维杆元模型能准确地预测节点的弹塑性行为和整体抗震性能,可用于节点滞回性能的非线性参数分析研究。在此基础上研究了方钢管混凝土柱的轴压比,宽厚比及核心混凝土强度对节点受力性能的影响。  相似文献   

13.
方钢管混凝土柱与钢梁半刚性连接节点的恢复力本构模型   总被引:1,自引:0,他引:1  
本文在试验研究和有限元模型修正的基础上,对两类方钢管混凝土柱与钢梁半刚性连接节点——缀板连接节点和穿芯螺栓-端板连接节点进行反复荷载作用下的非线性有限元参数分析,结果表明:影响缀板连接节点转动性能的主要因素是缀板的厚度,影响穿芯螺栓-端板连接节点转动性能的主要困索是端板厚度和螺栓直径等。进而通过回归分析建立了上述两类节点弯矩-转角恢复力模型的简化计算公式,可供工程设计与数值简化计算参考。  相似文献   

14.
本文进行了2种矩形钢管混凝土柱与钢梁连接节点——翼缘全螺栓(BFP)连接节点与外加强环(WFP-BW)连接节点在柱端低周反复荷载作用下的抗震性能试验,分析比较了这2类节点与焊接翼缘板(WFP)连接节点在不同轴压比下的滞回性能、强度与刚度退化、延性比与耗能比、破坏机理与破坏特征,得出了一些有参考价值的结论。  相似文献   

15.
Understanding the impact of prior earthquake damage on residual capacity is important for postearthquake damage assessment of buildings; however, interpretation of such impact is challenging when based on tests using traditional reversed‐cyclic loading protocols. A new loading protocol, consisting of a dynamic earthquake displacement history followed by quasi‐static reversed‐cyclic loading to failure, is presented as an alternative to traditional simulated seismic loading protocols. Data are analyzed from a set of 12 nominally identical ductile reinforced concrete beams that were tested by using variations of this protocol and traditional reversed‐cyclic and monotonic protocols. Differences in the cycle content of the earthquake displacement histories applied to the test specimens allowed for the effects of load history variation below 2.2% drift to be isolated. It is found that such variation had no effect on the beam deformation capacities. The effects of dynamic loading rates are also analyzed and compared against control quasi‐static specimens. Relative strength increases due to dynamic loading are found to be more significant at yield than at ultimate. Dynamic loading rates led to modest reductions in the beam deformation capacities, but the presence of causality between these variables remains uncertain.  相似文献   

16.
In precast technology, the effective design and construction are related to the behaviour of the connections between the structural members in order to cater for all service, environmental and earthquake load conditions. Therefore, the design and detailing of the connections should be undertaken consistently and with awareness of the desired structural response. In the research presented herein, an analytical expression is proposed for the prediction of the resistance of precast pinned connections under shear monotonic and cyclic loading. The proposed formula addresses the case where the failure of the connection occurs with simultaneous flexural failure of the dowel and compression failure of the concrete around the dowel, expected to occur either when (i) adequate concrete cover of the dowels is provided (d > 6 D) or (ii) adequate confining reinforcement (as defined in the article) is foreseen around the dowels in the case of small concrete covers (d < 6 D). The expression is calibrated against available experimental data and numerical results derived from a nonlinear numerical investigation. Emphasis is given to identifying the effect of several parameters on the horizontal shear resistance of the connection such as: the number and diameter of the dowels; the strength of materials (concrete, grout, steel); the concrete cover of the dowels; the thickness of the elastomeric pad; the type of shear loading (monotonic or cyclic); the pre‐existing axial stress in the dowels; and the rotation of the joint. In addition, recommendations for the design of precast pinned beam‐to‐column connections are given, especially when the connections are utilised in earthquake resistant structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
复杂应力条件下饱和松砂单调与循环剪切特性的比较研究   总被引:4,自引:0,他引:4  
本文利用大连理工大学新引进与开发的“土工静力-动力液压-三轴扭转多功能剪切仪”,针对福建标准砂,在不排水条件下同时进行了单调剪切试验与循环剪切试验,进而对其进行了对比分析。通过比较表明,应力-应变关系的应变软化和硬化特性与流滑变形和循环流动特性密切相关,当循环剪切应力水平高于单调剪切过程中应变软化阶段最小强度时将会发生流滑变形。无论在单调剪切中,还是在循环剪切中,稳定状态时的有效偏应力比随着大主应力方向与竖向之间夹角的增大而减小,在中主应力系数相同的条件下,循环剪切中呈现显著剪胀时的有效偏应力比和最终稳定状态时的有效偏应力比峰值分别与单调剪切中达到相变状态时的有效偏应力比和最终稳定有效偏应力比基本上一致。然而不排水条件下单调与循环剪切过程中孔隙水压力的增长特性却并不相同,循环剪切中的最大孔隙水压力随着初始主应力方向角的增大而减小,单调剪切中的最大孔隙水压力却随着主应力方向角的增大而增大。  相似文献   

18.
钢管高强混凝土压弯构件滞回性能的研究   总被引:4,自引:0,他引:4  
本文根据适用于三向周期受力的钢材本构关系模型,和适用于三向周期受力改进的混凝土本构关系的边界面模型,采用有限元法对钢管高强混凝土压弯构件的荷载-位移滞回曲线进行了理论分析,并进行了6个核心混凝土的强度为77N/mm2的钢管高强混凝土压弯构件滞回性能的试验研究。将理论分析和本试验研究及其他试验研究结果进行了对比,分析了荷载-位移滞回曲线的特点。  相似文献   

19.
Evaluation of shear strength of rock joints subjected to cyclic loading   总被引:7,自引:0,他引:7  
Variation of the shear strength of rock joints due to cyclic loadings is studied in the present paper. Identical joint surfaces were prepared using a developed moulding method with special mortar and shear tests were performed on these samples under both static and cyclic loading conditions. Different levels of shear displacement were applied on the samples to study joint behaviour before and during considerable relative shear displacement. It was found that the shear strength of joints is related to rate of displacement (shearing velocity), number of loading cycles and stress amplitude. Finally, based on the experimental results, mathematical models were developed for evaluation of shear strength in cyclic loading conditions.  相似文献   

20.
Seismic response of unreinforced masonry (URM) buildings is largely influenced by nonlinear behavior of spandrels, which provide coupling between piers under in‐plane lateral actions. Seismic codes do not appropriately address modeling and strength verification of spandrels, adapting procedures originally proposed for piers. Therefore, research on spandrels has received significant attention in some earthquake‐prone countries, such as Italy and New Zealand. In the last years, the authors of this paper have performed both monotonic and cyclic in‐plane lateral loading tests on full‐scale masonry walls with single opening and different spandrel types. Those tests were carried out in a static fashion and with displacement control. In this paper, experimental outcomes for two as‐built specimens are presented and compared with those obtained in the past for another as‐built specimen with a wooden lintel above the opening. In both newly tested specimens, the masonry above the opening was supported by a shallow masonry arch. In one of those specimens, a reinforced concrete (RC) bond beam was realized on top of the spandrel, resulting in a composite URM‐RC spandrel. Then, the influence of spandrel type is analyzed in terms of observed damage, force–drift curves, and their bilinear idealizations, which allowed to compare displacement ductility and overstrength of wall specimens. Furthermore, effects of rocking behavior of piers are identified, highlighting their relationship with hysteretic damping and residual drifts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号