首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The simulation of groundwater flow and solute transport at contaminated sites often neglects the important influence that aquifer heterogeneity can have on the sub-surface distribution of contaminants. In this paper, the method of transition probability for geological statistics (T-PROGS) included in the Groundwater Model System (GMS) was applied to a chlor-alkali-contaminated site that was sampled with 68 soil borings and 15 groundwater monitoring wells. A 3-D groundwater numerical model and solute transport model was developed that was constrained by soil and groundwater data from the site. The spatial distribution of chloroethylene concentrations was simulated for a number of times using the levels measured in the field as a baseline. The results of these simulations showed that shapes and distribution of contaminant plumes are irregular both vertically and horizontally. The solute-transport simulations indicated that much of the contamination will preferentially move in groundwater through silt and fine-sands whereas flow is largely blocked in clays. Consequently, fine sand and silts become the most seriously polluted zones at the site, whereas, areas underlain by clays are largely uncontaminated. Heterogeneous lithologies beneath a site increase the complexity of coupling simulations of soil and groundwater.  相似文献   

2.
山东淄博市大武水源地裂隙岩溶水中污染物运移的数值研究   总被引:11,自引:0,他引:11  
朱学愚  刘建立 《地学前缘》2001,8(1):171-178
在分析研究淄博市大武水源地裂隙岩溶含水层的水力性质和污染物运移特征的基础上 ,对裂隙岩溶水的水头和污染物运移进行数值研究。目前国内外对裂隙岩溶水进行数值计算时 ,通常用等价多孔介质模型 ,但裂隙岩溶介质和多孔介质有很大不同。裂隙岩溶介质的储水和导水空间为裂隙网络 ,导水系数大 ,地下水的实际平均流速比孔隙水大得多 ,但给水度和贮水系数小。当用等价多孔介质模型进行模拟时应考虑这些特点。对于污染物运移的模拟 ,要同时求解水头方程和对流弥散方程 ,可采用MODFLOW和MT3D软件进行模拟。研究区裂隙岩溶水水头的数值计算表明 ,等效多孔介质模型水头的拟合误差能满足国标GB/T144 97- 93的要求。各时段地下水水量均衡计算的精度也满足要求。对流弥散方程的数值计算 ,由于Peclet数高达 95 .6 7,对流占绝对优势 ,可能存在数值弥散和数值振荡 ,因而采用多种方法进行了比较。对于同一问题 ,同时采用上游有限差分法 (UFDM) ,混合的欧拉拉格朗日方法 (特征线法MOC、改进特征线法MMOC和混合特征线法HMOC) ,总变异消减法(TVD)进行计算 ,并比较其结果。结果表明 ,混合特征线法 (HMOC)和总变异消减法 (TVD)比较适合于对流占优势的运移问题计算。由于渗透系数K和有效孔隙度θ对溶质运移结果的影响很大 ,?  相似文献   

3.
Numerical groundwater flow and contaminant transport modeling incorporating three alternative conceptual models was conducted in 2005 to assess remedial actions and predict contaminant concentrations in an unconfined glacial aquifer located in Milford, Michigan, USA. Three alternative conceptual models were constructed and independently calibrated to evaluate uncertainty in the geometry of an aquitard underlying the aquifer and the extent to which infiltration from two manmade surface water bodies influenced the groundwater flow field. Contaminant transport for benzene, cis-DCE, and MTBE was modeled for a 5-year period that included a 2-year history match from July 2003 to May 2005 and predictions for a 3-year period ending in July 2008. A postaudit of model performance indicates that predictions for pumping wells, which integrated the transport signal across multiple model layers, were reliable but unable to differentiate between alternative conceptual model responses. In contrast, predictions for individual monitoring wells with limited screened intervals were less consistent, but held promise for evaluating alternative hydrogeologic models. Results of this study suggest that model conceptualization can have important practical implications for the delineation of contaminant transport pathways using monitoring wells, but may exert less influence on integrated predictions for pumping wells screened over multiple numerical model layers.  相似文献   

4.
Using a three-dimensional finite element model, this study characterizes groundwater flow in a costal plain of the Seto Inland Sea, Japan. The model characterization involved taking field data describing the aquifer system and translating this information into input variables that the model code uses to solve governing equations of flow. Geological geometry and the number of aquifers have been analyzed based on a large amount of geological, hydrogeological and topographical data. Results of study demonstrate a high correlation between the ground surface elevation and the groundwater level in the shallow coastal aquifer. For calibrating the numerical groundwater model, the groundwater flow was simulated in steady state. In addition, the groundwater level and trend in the transient state has also been elucidated. The numerical result provides excellent visual representations of groundwater flow, presenting resource managers and decision makers with a clear understanding of the nature of the types of groundwater flow pathways. Results build a base for further analysis under different future scenarios.  相似文献   

5.
Hydrogeological research was performed to establish the origin of organic-rich water in a Quaternary aquifer (Wielkopolska Buried Valley aquifer, Poland). The spatial distribution of such water was determined by means of multilevel sampling with a packer. The nature, spatial distribution and chemistry of the organic-rich water suggest hydraulic connection between the Quaternary aquifer and the underlying Neogene aquifer. This connection may be enabled by an old abandoned, improperly plugged well, and must therefore be considered as an artificial hydraulic connection between hydrogeologically separated aquifers. For the verification of this hypothesis, a groundwater contaminant transport model was constructed. The results of contaminant transport modeling allow the contaminant transport parameters (transverse and longitudinal dispersivity) to be identified in the field. The numerical groundwater model was used for the prognosis of organic-rich water remediation, and for specification of water-resource management principles in the region where organic-rich water occurs. The results of this research enable the verification of assumptions regarding complex groundwater flow conditions in the boundary zone of a buried valley.  相似文献   

6.
Since the 1980s, high-nitrate concentration in one of the groundwater sampling wells at the Nankou site, northwest of the Beijing Plain, has become a major concern for the local water authority. In a previous study (Sun et?al. in Environ Earth Sci 64(5):1323?C1333, 2011), a hydrogeological structural model was developed based on the borehole logs of this area and the steady, as well as transient groundwater-flow models, were calibrated using the measured hydraulic heads. In this paper, the potential pollution sources in this area are investigated. The chemical analysis of the groundwater is also presented. The results demonstrate that the most likely pollution source is the untreated wastewater discharge from a nearby fertilizer factory. Furthermore, a mass transport model is developed to reproduce the nitrate transport process in the aquifer at the Nankou site under different pollution sources, i.e., a fertilizer factory, river with wastewater and an agriculture field. The combined effects of the river and agriculture fields present a better understanding of the nitrate transport in the local aquifer. In addition, a pumping scenario is designed to clean up the current nitrate concentration. The pumping rate and the well location are first estimated with 2-D analytical solutions of the type curves method. Then a 3-D numerical model is used to calculate the nitrate-concentration changes after the pumping activities start. In the downstream direction of the regional groundwater flow, three pumping wells are set up for the clean-up strategy. The calculated pumping rate in each well is about 1,500 m3/day. After 1?year, the nitrate concentration in the observation well recedes to 68?mg/l from the initial value of 72.9?mg/l, and it will be lower than the limitation value (20?mg/l) after 5,400 days of groundwater extraction. The data assessment and clean-up scenarios reported in this paper are fundamental for the contaminated aquifer management in the future.  相似文献   

7.
A numerical simulation has been carried out to investigate the effects of below-sea-level (b.s.l.) excavation on the raw material quality of a cement quarry in Turkey. The model simulates variations in the hydrodynamic and hydrogeochemical mechanisms in the coastal aquifer upon BSL excavation. In this context, behavior of the seawater intrusion zone, changes in water levels, and salt concentrations have been simulated. In the development of the model, previous geological and hydrogeological reports of the quarry site and the near vicinity have been considered. Eleven new wells (BH-1,...BH-11) have been drilled to reveal hydrogeological features of the area and also for periodical observations of the water levels and hydrogeochemical monitoring. These wells were utilized to develop and calibrate the model to the field conditions. Physical and hydrogeochemical parameters used in the model have been evaluated using available hydrogeological data, the field test results and the related literature. The model has been verified using the field observations. It is based on the virgin conditions of the aquifer as well as on the data for years 1990 and 2001. An average raw material production rate for the cement factory was considered during development of the model, and for making future predictions. Two alternative production scenarios have been considered and probable effects of above-sea-level (a.s.l.) and b.s.l. excavations on seawater intrusion into the aquifer have been studied. Future prediction studies are based on these two production scenarios that assume 43 years of total production (30 years of a.s.l. and 13 years of b.s.l. production) in the quarry. The first scenario, Scenario I, assumes that starting from 2001, the next 30 years would be devoted only to ASL and then the remaining 13 years would be used for b.s.l. production. Scenario II, on the other hand, assumes simultaneous operations both at a.s.l. and b.s.l. levels for the next 43 years after 2001. Effects of b.s.l. production in the quarry site have been simulated accordingly, and seawater intrusion into the aquifer as well as water discharge rates have been predicted for –10, –20 and –30 m production levels.  相似文献   

8.
Three aquifer systems as deep, middle, and shallow were identified in the Kazan trona ore deposit area. The flow conditions and the interaction between various layers were conceptualized into a site hydrogeological model. Each aquifer system was hydraulically and chemically characterized and represented in a numerical groundwater model. The resulting model has been calibrated under steady-state and transient conditions using available data. The flow model was used in conjunction with a three-dimensional solute transport model to assess the impacts of the pilot well solution mining of the trona deposit on groundwater resources during operation and post-operation periods. The results of operation period indicate that, even under the worse conditions (50 times increase in vertical hydraulic conductivity due to subsidence), ion contribution from the mine area with 118,000 mg/l maximum concentration would be about 58 mg/l into the deep aquifer system. This contribution is about 1.45% of the existing concentration (4,000 mg/l) in the deep aquifer. After 1,000 years of post-operation period, ion contribution from the mine area with maximum 119,000 mg/l concentration would be about 205 mg/l into the deep aquifer under extremely worse conditions. This contribution is about 5–20% of present concentrations in the deep aquifer. Retardation factors, which were not considered during model simulations would decrease the predicted concentrations. It is concluded that pilot well solution mining of the trona deposit would not have significant impact on the quality of groundwater resources in the overlying aquifers.  相似文献   

9.
Numerical investigations and a thermohydraulic evaluation are presented for two-well models of an aquifer thermal energy storage (ATES) system operating under a continuous flow regime. A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the thermal energy storage in the aquifer. This study emphasizes the influence of regional groundwater flow on the heat transfer and storage of the system under various operation scenarios. For different parameters of the system, performances were compared in terms of the temperature of recovered water and the temperature field in the aquifer. The calculated temperature at the producing well varies within a certain range throughout the year, reflecting the seasonal (quarterly) temperature variation of the injected water. The pressure gradient across the system, which determines the direction and velocity of regional groundwater flow, has a substantial influence on the convective heat transport and performance of aquifer thermal storage. Injection/production rate and geometrical size of the aquifer used in the model also impact the predicted temperature distribution at each stage and the recovery water temperature. The hydrogeological-thermal simulation is shown to play an integral part in the prediction of performance of processes as complicated as those in ATES systems.  相似文献   

10.
山西柳林泉域地下水流数值模拟   总被引:6,自引:1,他引:6  
柳林泉为裂隙-岩溶泉,整个泉域面积约2727km2,且在柳林泉西部及西北部含水岩层组中赋存有大面积的咸水,微咸水,本文建立了平面二维区域地下水渗流模型,用于描述柳林泉域的地下水渗流,模拟效果良好,模型拟合阶段和检验阶段水头的计算值与观测值误差绝对值的平均值分别为0.46m,0.51m,所有结果显示两者基本一致,说明所建模型可以用于实际,据此模型预报了柳林电厂水源地投入使用后对区域地下水流场的影响,以及对柳林泉的影响。  相似文献   

11.
Sedimentological processes often result in complex three-dimensional subsurface heterogeneity of hydrogeological parameter values. Variogram-based stochastic approaches are often not able to describe heterogeneity in such complex geological environments. This work shows how multiple-point geostatistics can be applied in a realistic hydrogeological application to determine the impact of complex geological heterogeneity on groundwater flow and transport. The approach is applied to a real aquifer in Belgium that exhibits a complex sedimentary heterogeneity and anisotropy. A training image is constructed based on geological and hydrogeological field data. Multiple-point statistics are borrowed from this training image to simulate hydrofacies occurrence, while intrafacies permeability variability is simulated using conventional variogram-based geostatistical methods. The simulated hydraulic conductivity realizations are used as input to a groundwater flow and transport model to investigate the effect of small-scale sedimentary heterogeneity on contaminant plume migration. Results show that small-scale sedimentary heterogeneity has a significant effect on contaminant transport in the studied aquifer. The uncertainty on the spatial facies distribution and intrafacies hydraulic conductivity distribution results in a significant uncertainty on the calculated concentration distribution. Comparison with standard variogram-based techniques shows that multiple-point geostatistics allow better reproduction of irregularly shaped low-permeability clay drapes that influence solute transport.  相似文献   

12.
通过对昆明地热田深层基岩地下热水系统的地质、水文地质条件和开采现状的分析,建立了考虑温压变化和越流条件的岩溶热储层中地下热水的水流和溶质(污染物)运移的准三维非稳定流数学模型。对开采条件下地热田Ⅱ 块段地下热水系统中水位及F- 、Cl- 、NH+4 、SO2-4 浓度的模拟结果表明,所建立的模型合理、可靠,具有较高的仿真性。模型可预测不同条件下地热田地下热水的流场和溶质浓度的动态变化趋势,为防治地下热水环境的进一步恶化提供参考。   相似文献   

13.

Numerical modelling is increasingly used as a tool for improving management strategies in aquifers and to support the design of comprehensive projects considering natural and anthropogenic processes. Overall, numerical simulation in karstic aquifers poses a major scientific challenge due to the non-Darcian groundwater flow dynamics. In specific cases, the equivalent porous medium approach has shown acceptable results, particularly in poorly karstified aquifers with regional/subregional scales such as this case. The Yucatan coastal karstic aquifer (Mexico) has been defined as a complex regional heterogeneous system, partially confined, thus allowing the discussion of multiple conceptual models. In this research, a two-dimensional numerical model of flow and transport was implemented using SEAWAT for the NW Yucatan aquifer. Four likely conceptual models were audited, calibrated and verified using hydrogeological field data, to select the best one, considering their fit and complexity. The numerical model accuracy was evaluated using the root-mean-square error, Nash Sutcliffe efficiency and the Pearson coefficient. The Akaike information criterion and Bayesian information criterion were included for evaluating the complexity of the numerical models. In addition, the signal of tide propagation into the aquifer was assessed as a proxy to improve the numerical calibration process. Results show that the most complex numerical model has a better calibration than the simpler models, but the model accuracy is worse when compared to less complex numerical models in the verification exercise. This research offers enhancement in the knowledge of numerical modelling in heterogeneous coastal aquifers within a conceptual-model uncertainty setting.

  相似文献   

14.
This paper presents a two-dimensional finite volume model to predict multi-species reactive transport processes in the saturated zone of a simulated semi-confined aquifer. A multipurpose commercial software called PHOENICS was used to solve model equations numerically. Capability of the present model was first confirmed using experimental data and the results obtained by a published one-dimensional finite element reactive transport model by other researchers taking different scenarios into consideration. The model was then expanded to a two-dimensional case to simulate reactive transport of BTX compounds with discontinuous source in the saturated zone of the groundwater flow system. In addition to the physical transport processes, the two-dimensional model also incorporates linear and nonlinear adsorption isotherms, first order and Monod kinetics. The two-dimensional model considers both static and dynamics modes into account. The results show that considering chemical reactions during reactive transport of contaminants could successfully predict the contaminated zone. The results of such studies can be used for monitoring of contaminated areas, designing methods to control pollution transport, and minimize its harmful effects on aquifer systems.  相似文献   

15.
The subsurface migration of methyl tertiary butyl ether (MTBE) and benzene towards a drinking-water production site in Belgium was monitored for 9 years. A large gasoline spill at a nearby fuel station had caused a 500-m long and 50-m-wide pollution plume of MTBE (10?30 mg/L) and benzene (2?10 mg/L). In order to prevent any intrusion of pollutants into the drinking-water supply, a conceptual model was used to design a pump-and-treat system that intercepted the gasoline-contaminated groundwater emanating from the spill. The contaminated soil in the spill zone was excavated. A numerical mass transport model was developed to evaluate the ongoing plume containment. The model describes the subsurface MTBE migration and was regularly updated, based on groundwater monitoring data and the measured mass of MTBE extracted with the pump-and-treat system. With continued interception pumping, the MTBE plume can be remediated in 14 years. Without it, MTBE and benzene concentrations up to 600 μg/L could have reached the drinking-water production site and the plume would persist for 9 years longer. Source zone treatment combined with plume interception pumping is a suitable risk-based remediation strategy for the containment of MTBE and benzene groundwater pollution.  相似文献   

16.
Prediction of groundwater inflow into mining excavations is very important in order to design an effective dewatering system to keep the mine workings dry and create prolonged cone of depression. The effects of anisotropy ratio and bedding on the hydraulic head and drawdown curves of a dewatering test carried out in a fully penetrating well in a confined aquifer have been investigated. An existing numerical finite element model has been used to perform the simulations. The results of the numerical model are compared to those from analytical Jacob and Lohman solution for estimating hydraulic heads and drawdown curves. It was found that the anisotropy ratio and bedding should not have a significant effect on drawdown and the quantity of inflow into a confined aquifer. It was further found that taking the simultaneous effects of anisotropy and bedding into account reduces the differences in the results of analytical and numerical methods. Comparison of the field data and model predictions showed that, the modelling results for a three layer anisotropic aquifer fit well to the field data than those results obtained for a single layer aquifer and the relative error decreased from 4.81 % to 2.98 %.  相似文献   

17.
李霞  文章  梁杏  马腾  陈晨 《地球科学》2017,42(5):743-750
含水层的水文地质参数是进行地下水资源计算、地下水污染防控等所必需的基础数据,结合数值模拟技术进行含水层参数反演很有必要.按照1:5万水文地质调查规范在江汉平原仙桃市杨林尾镇复兴水厂不同含水层位开展抽水试验,包括深层含水层单孔抽水试验以及浅层含水层中群孔(2孔)抽水试验.对于单孔抽水试验,应用第1类越流系统井流理论进行参数反演;对于群孔抽水试验,推导了特定综合井函数,并利用特定标准曲线匹配法和直线图解法求解了含水层参数.随后利用FEFLOW软件建立了相应数值模型,拟合了含水层参数.结果表明:浅层含水层的渗透系数变化范围为21.66~54.00 m/d,贮水率变化范围为1.28×10-5~8.00×10-4 m-1;深层含水层渗透系数变化范围为1.27~7.00 m/d,贮水率变化范围为3.90×10-6~5.00×10-6 m-1.对于深层承压含水层而言,越流补给量较大.采用数值模拟方法结合抽水试验数据求参,综合考虑了含水层结构,拟合效果好,所得结果更加可靠.   相似文献   

18.
Combining groundwater flow models with solute transport models represents a common challenge in groundwater resources assessments and contaminant transport modeling. Groundwater flow models are usually constructed at somewhat larger scales (involving a coarser discretization) to include natural boundary conditions. They are commonly calibrated using observed groundwater levels and flows (if available). The groundwater solute transport models may be constructed at a smaller scale with finer discretization than the flow models in order to accurately delineate the solute source and the modeled target, to capture any heterogeneity that may affect contaminant migration, and to minimize numerical dispersion while still maintaining a reasonable computing time. The solution that is explored here is based on defining a finer grid subdomain within a larger coarser domain. The local-grid refinement (LGR) implemented in the Modular 3D finite-difference ground-water flow model (MODFLOW) code has such a provision to simulate groundwater flow in two nested grids: a higher-resolution sub-grid within a coarse grid. Under the premise that the interface between both models was well defined, a comprehensive sensitivity and uncertainty analysis was performed whereby the effect of a parameter perturbation in a coarser-grid model on transport predictions using a higher-resolution grid was quantified. This approach was tested for a groundwater flow and solute transport analysis in support of a safety evaluation of the future Belgian near-surface radioactive waste disposal facility. Our reference coarse-grid groundwater flow model was coupled with a smaller fine sub-grid model in two different ways. While the reference flow model was calibrated using observed groundwater levels at a scale commensurate with that of the coarse-grid model, the fine sub-grid model was used to run a solute transport simulation quantifying concentrations in a hypothetical well nearby the disposal facility. When LGR coupling was compared to a one-way coupling, LGR was found to provide a smoother flow solution resulting in a more CPU-efficient transport solution. Parameter sensitivities performed with the groundwater flow model resulted in sensitivities at the head observation locations. These sensitivities identified the recharge as the most sensitive parameter, with the hydraulic conductivity of the upper aquifer as the second most sensitive parameter in regard to calculated groundwater heads. Based on one-percent sensitivity maps, the spatial distribution of the observations with the highest sensitivities is slightly different for the upper aquifer hydraulic conductivity than for recharge. Sensitivity analyses were further performed to assess the prediction scaled sensitivities for hypothetical contaminant concentrations using the combined groundwater flow and solute transport models. Including all pertinent parameters into the sensitivity analysis identified the hydraulic conductivity of the upper aquifer as the most sensitive parameter with regard to the prediction of contaminant concentrations.  相似文献   

19.
Models are the only tools capable of predicting the evolution of groundwater systems at a regional scale, by taking into account a large amount of information. This study presents the association of a water balance model (WetSpass) with a groundwater flow and solute transport model (SUFT3D, saturated and unsaturated flow and transport in 3D) in order to simulate the present and future groundwater quality in terms of nitrate in the Upper Dyle basin (439 km2) Belgium. The HFEMC (hybrid finite element mixing cell) method implemented in the SUFT3D code is used to model groundwater flow and nitrate transport. Spatially distributed recharge, modelled with WetSpass, is considered for prescribing the recharge to the groundwater flow model. The feasibility of linking the WetSpass model with the finite-elements SUFT3D code is demonstrated. Time evolution and distribution of nitrate concentration are then simulated using the calibrated model. Nitrate inputs are spatially distributed according to land use. The spatial simulations and temporal trends are compared with previously published data on this aquifer and show good results.  相似文献   

20.
A three-dimensional (3D) mass transport numerical model is presented. The code is based on a particle tracking technique: the random-walk method, which is based on the analogy between the advection–dispersion equation and the Fokker–Planck equation. The velocity field is calculated by the mixed hybrid finite element formulation of the flow equation. A new efficient method is developed to handle the dissimilarity between Fokker–Planck equation and advection–dispersion equation to avoid accumulation of particles in low dispersive regions. A comparison made on a layered aquifer example between this method and other algorithms commonly used, shows the efficiency of the new method. The code is validated by a simulation of a 3D tracer transport experiment performed on a laboratory model. It represents a heterogeneous aquifer of about 6-m length, 1-m width, and 1-m depth. The porous medium is made of three different sorts of sand. Sodium chloride is used as a tracer. Comparisons between simulated and measured values, with and without the presented method, also proves the accuracy of the new algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号