首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Many aquatic contaminants, because of low water solubility (hydrophobicity) or association with floatable particles, concentrate at the sea surface. Thirty-six samples of the sea-surface microlayer (SMIC), the upper 50 μm, were collected from sites in Puget Sound, Washington State. Sites included three urban bays, central Puget Sound, and a rural reference site. Exposure of floating fish eggs to approximately half of these samples resulted in sublethal and lethal toxic effects (Hardy et al., 1987c).Chemical analyses revealed high concentrations of contaminants in many of the samples. Major temporal and spatial differences in sea-surface chemistry occurred, but maximum (for all) and mean (for 1985) concentrations were aromatic hydrocarbons, 8030 (mean 132) μg liter−1: saturate hydrocarbons, 2060 μg liter−1: pesticides, 43·8 (mean 0·46) ng liter−1; PCBs, 3890 (mean 631) ng liter−1; and total metals, 4750 (mean 626) μg liter−1. Stepwise multivariate regression indicated that the percentage of fish eggs developing to normal live larvae decreased with increasing concentrations of a complex mixture of contaminants. Principal component analysis demonstrated that the major types of contaminants did not differ greatly in their statistical contribution to the toxicity, i.e. no single chemical was responsible for the observed toxicity.The chemical composition of the SMIC samples suggested that contamination originated from a variety of sources including atmospheric deposition, terrestrial runoff of fossil fuel combustion products, and sewage disposal.  相似文献   

2.
Laboratory exposures of the urchin Lytechinus pictus to sediment dosed with varying concentrations of hydrogen sulfide (H2S), but without elevated organic material, were conducted. Changes in mortality, behavior, growth and gonad production were measured during 49 days' flow through exposures. Hydrogen sulfide concentrations of 165·8 μ liter−1 in pore water caused significant changes in all parameters measured. Concentrations as low as 32·9 μ liter−1 caused significant decreases in wet weight and male gonad production. A concentration of 91·8 μ liter−1 caused the mortality rate to increase 100-fold over control exposures (0·63 μ liter−1). Sublethal effects on growth and gonad production could have been caused by either direct biochemical inhibition by H2S or secondarily through behavioral modifications. Hydrogen sulfide concentrations above 165·8 μ liter−1 are common near sewage outfalls and could contribute to changes in species composition and sediment toxicity that occur there.  相似文献   

3.
The sea surface is an important habitat for the developmental stages (eggs and larvae) of many fish and invertebrates; it is also a concentration point for anthropogenic contaminants entering the sea. Studies were conducted to determine the extent to which the sea surface of Puget Sound was toxic to the early life history stages of fish. Three urban bays with suspected contamination, a rural reference bay, and a Central Sound site were compared. Surface-dwelling eggs and organisms (zooneuston) were collected with a surface-skimming neuston net and their densities enumerated. Sand sole (Psettichthys melanostictus) embryos were exposed in the field and laboratory to the sea-surface microlayer. To develop a useful year-round approach to monitoring sea-surface toxicity, larval development of anchovies, kelp bass, and sea urchins was also evaluated as an indication of sea-surface microlayer toxicity.During the spawning season (February and March), urban boys in Puget Sound had lower concentrations of sand sole eggs and neustonic organisms on the sea surface than did the rural bayor Central Sound reference sites. Compared to the reference sites, laboratory exposure to surface microlayer samples collected from urban bay sites generally resulted in more chromsomal aberrations in developing sole embryos, reduced hatching success of sole larvae, and reduced growth in trout cell cultures. In situ hatching success of sole eggs was reduced by half or more in urban bays compared to reference sites.Toxicity was associated with visible surface slicks and, in urban bays, increased with increasing surface pressure (dynes cm−1). Results to be reported separately (Part II) indicate that toxicity is strongly correlated with the presence of high concentrations of polycyclic aromatic hydrocarbons and metals in the sea-surface microlayer. The toxicity of SMIC samples was similar when evaluated by sole, anchovy, kelp bass, or sea urchin tests. A sea-surface monitoring program could use sea urchin embryos to evaluate site-specific sea-surface toxicity throughout the year.  相似文献   

4.
Field and laboratory work was carried out during the summers of 1990 and 1991 on bivalves Scrobicularia plana from sites moderately-affected and relatively-unaffected by tributyltin (TBT) contamination (i.e. a mean concentration in clam tissues of 0.4 and 0.02 μg Sn g−1 dry wt, respectively). Standard cultures after artificial fertilizations with broodstock of either site did not result in dissimilar survival of embryos nor in larvae of different quality at the time of hatching. Static 48 h toxicity tests on S. plana embryos showed that an EC50 of less than the nominal 250 ng Sn litre−1 (a range of 178–198 ng Sn litre−1, as analysed) can be set for TBT independently of the origin of broodstock. The results are discussed in relation to the reported disappearance of S. plana throughout northern Europe and the simultaneous presence of toxic levels of butyltin. It is concluded that TBT has probably reduced the recruitment into some UK clam populations by preventing the successful development of a significant proportion of their embryos.  相似文献   

5.
To investigate the reliability of analytical data for tributyltin (TBT) in sea water, split water samples were distributed to ten laboratories in six countries. The sub-surface samples comprised: (i) an offshore (0·5 km) water sample, (ii) the same sample but spiked with an undisclosed quantity of TBT standard compound (175 ng TBT+ liter−1), and (iii) a sample taken from a yacht marina. The seven acceptable data sets were in good agreement for the spiked sample (178 ± 26 ng TBT+ liter−1) but showed a greater variation in concentrations reported for the yacht marina sample (366 ± 93 ng TBT+ liter−1). Atomic absorption and gas chromatographic-flame photometric detection techniques produced results of similar accuracy and precision. Samples acidified with 1 ml of 10% (v/v) acetic acid appeared stable for more than 2 weeks when stored refrigerated and in darkness. Analyses of the offshore seawater sample revealed TBT contamination (9 ± 7 ng TBT+ liter−1) indicating dispersion of the compound to the shelf waters off Monaco. The spread in values reported by the laboratories demonstrates inherent difficulties in obtaining good precision below approximately 20 ng TBT+ liter−1. This observation is discussed with respect to the setting and enforcing of water quality standards.  相似文献   

6.
Neanthes arenaceodentata were exposed to 292, 146, 92 and 56 μg litre−1 Cu (measured) and control seawater after a 27-day pre-exposure to a sublethal concentration of Cu (10, 16 and 28 μg litre−1 and control) to determine if the worms increased their tolerance to Cu after the pre-treatment. The worms pre-exposed to 28 μg litre−1 Cu were significantly more resistant to Cu toxicity than control and 10 and 16 μg litre−1 Cu pre-exposed worms. For example, the time to 50 % mortality at 92 μg litre−1 Cu was 18 and 11 days for worms pre-exposed to 28 μg litre−1 Cu and control conditions, respectively. The net rate of Cu uptake during the toxicity test was lower for worms pre-exposed to 28 μg litre−1 Cu than for the control and 10 and 16 μg litre−1 Cu pre-exposed worms. For example, the net rate of Cu uptake at 292 μg litre−1 Cu by worms pre-exposed to 28 μg litre−1 Cu and control conditions was 42 and 102 μg g−1 day −1, respectively.  相似文献   

7.
Recent studies increasingly point to the interface between the world's atmosphere and hydrosphere (the sea-surface microlayer) as an important biological habitat and a collection point for anthropogenic materials. Newly developed sampling techniques collect different qualitative and quantitative fractions of the upper sea surface from depths of less than one micron to several centimeters.The microlayer provides a habitat for a biota, including the larvae of many commercial fishery species, which are often highly enriched in density compared to subsurface water only a few cm below. Common enrichments for bacterioneuston, phytoneuston, and zooneuston are 102−104, 1−102, and 1−10, respectively. The trophic relationships or integrated functioning of these neustonic communities have not been examined.Surface tension forces provide a physically stable microlayer, but one which is subjected to greater environmental and climatic variation than the water column. A number of poorly understood physical processes control the movement and flux of materials within and through the microlayer. The microlayer is generally coated with a natural organic film of lipid and fatty acid material overlying a polysaccharide protein complex.The microlayer serves as both a source and a sink for materials in the atmosphere and the water column. Among these materials are large quantities of anthropogenic substances which frequently occur at concentrations 102−104 greater than these in the water column. These include plastics, tar lumps, polyaromatic hydrocarbons, chlorrinated hydrocarbons, and potentially toxic metals, such as, lead, copper, zinc, and nickel. How the unique processes occurring in the microlayer affect the fate of anthropogenic substances is not yet clear. Many important questions remain to be examined.  相似文献   

8.
Polycyclic aromatic hydrocarbon (PAH) bioaccumulation by the polychaete worm Streblospio benedicti (Webster) was measured under exposure to PAH-contaminated sediments in the field and for 28 d in the laboratory. Streblospio benedicti collected from field sediments contaminated at 2.94, 1.07, and l.52 μg g−1 fluoranthene (FLU), benz[a]anthracene (BAA), and benzo[a]pyrene (BAP), bioaccumulated those PAHs at 1.53, 0.215, and 0.332 μg g−1, while worms isolated from less contaminated field sediments (0.399, 0.228, 0.288 μg g−1 FLU, BAA, and BAP) had FLU, BAA, and BAP body burdens of 0.543, 0.236, and 0.083 μg g−1. Worms incubated for 28 d in PAH-spiked sediments (1.52, 0.991, 0.504 μg g−1 FLU, BAA, and BAP) bioaccumulated those PAHs at 0.382, 0.966, and 0.602 μg g−1, respectively. Data normalization to organism lipid and sediment organic carbon (biota-sediment accumulation factors [BSAFs] strongly suggest that Streblospio PAH bioaccumulation was directly related to percent sediment organic carbon, but BSAFs were substantially lower than predicted by equilibrium partitioning theory. BSAFs decreased with increasing PAH log Kow, in worms collected from field sediments, but in spiked sediments BSAFs increased with increasing PAH hydrophobicity. This disparity may have been caused by insufficient spiked-sediment equilibration time (1.5h) in the case of the laboratory test sediments.  相似文献   

9.
DNA adducts in cod embryos and larvae were analysed by 32P-postlabeling to test the hypothesis that anthropogenic substances, which could form reactive intermediates, are involved in the reproductive failure of cod (Gadus morhua) from the Baltic Sea. A comparison with cod from the Barents Sea was performed. The mean value of DNA adducts in cod embryos/larvae from the Baltic Sea was 2.3 nmol of adducts/mol nucleotides, compared to 0.12 nmol of adducts/mol nucleotides in the embryos/larvae from the Barents Sea.  相似文献   

10.
Two toxic polypeptides BTTX I and BTTX II were isolated from the sea anemone Bolocera tuediae. Toxin isolation was achieved by alcoholic extraction of the homogenized tentacles and filaments, batchwise adsorption onto ion-exchangers (QAE-Sephadex A25, CM-Cellulose, Se-Cellulose, Sp-Sephadex C25), gel filtration on Sephadex G50 and G25 and ion-exchange chromatography on SP-Sephadex C25 and QAE-Sephadex A25. The toxins were tested on the shore crab Carcinus maenas by intramuscular injection. LD100 for BTTX I is 500 μg kg−1 C. maenas, whereas the BTTX II it is 40 μg kg−1. The molecular weights of both toxins are estimated to be 5000 Dalton.  相似文献   

11.
The purpose of the study is to analyze the state of the Barents Sea euphausiids populations in the warm period (2000–2005) based on the study of their structure dynamics and distribution under the influence of abiotic and biotic factors. For estimation of their aggregations in the bottom layer, the traditional method was used with the help of the modified egg net (0.2 m2 opening area, 564 μm mesh size). The net is used for collecting euphausiids in the autumn–winter period when their activity is reduced, which results in high-catch efficiency. The findings confirmed the major formation patterns of the euphausiids species composition associated with climate change in the Arctic basin. As before, in the warm years, one can see a clear-cut differentiation of space distribution of the dominant euphausiids Thysanoessa genus with localization of the more thermophilic Thysanoessa inermis in the north-west Barents Sea and Thysanoessa raschii in the east. The major euphausiids aggregations are formed of these species. In 2004, the first data of euphausiids distribution in the northern Barents Sea (77–79°N) were obtained, and demonstrated extremely high concentrations of T. inermis in this area, with the biomass as high as 1.7–2.4 g m−2 in terms of dry weight. These data have improved our knowledge of the distribution and euphausiids abundance during periods of elevated sea-water temperatures in the Barents Sea. The oceanic Atlantic species were found to increase in abundance due to elevated advection to the Barents Sea during the study period. Thus, after nearly a 30-year-long absence of the moderate subtropical Nematoscelis megalops in the Barents Sea, they were found again in 2003–2005. However in comparison with 1960, the north-east border of its distribution considerably shifted to 73°50′N 50°22′E. The portion of Meganyctiphanes norvegica also varied considerably—from 10% to 20% of the total euphausiids population in the warm 1950s–1960s almost to complete disappearing in 1970–1990s. The peak of this species’ occurrence (18–26%) took place in the beginning of warm period (1999–2000) after a succession of cold years. The subsequent reduction of the relative abundance of M. norvegica to 7% might have been mostly caused by fish predation during a period of low population densities of capelin. This high predation pressure may therefore have been mediated both by other pelagic fishes (i.e. herring, blue whiting, polar cod) but also by demersal fishes such as cod and haddock. Similar sharp fluctuations in the capelin stock (the major consumer of euphausiids) created marked perturbations in the food web in the Barents Sea in the middle 1980s and the early 1990s.  相似文献   

12.
Environmental influences (temperature and oxygenation) on cod metabolism and their impact on the ecology of this species were investigated. Limiting oxygen concentration curves (O2 level ranging between 15 and 100% air saturation) were established at 2, 5 and 10°C. The standard metabolic rate (SMR), the maximum metabolic rate and the metabolic scope were then modelled as functions of temperature and/or oxygen saturation. The mean SMR at 2, 5 and 10°C were 19.8±4.9, 30.8±6.1 and 54.3±4.1 mg O2 h−1 kg−1, respectively. Between 2 and 5°C, the active metabolic rate of cod almost doubled from 65 to 120 mg O2 h−1 kg−1, to reach 177 mg O2 h−1 kg−1 at 10°C. In terms of metabolic scope (MS), the temperature rise from 2 to 5°C resulted in a two-fold increase from 45 to 89 mg O2 h−1 kg−1, with MS reaching 123 mg O2 h−1 kg−1 at 10°C. Our proposed model describing the impact of temperature and oxygen level provides new insight into the energetic interactions which govern the relationship between Atlantic cod and its environment. We re-examined published experimental and field studies from the angle of the regulation of metabolic power. We suggest that, when faced with heterogeneous or unstable hydrological conditions, cod tend to behaviourally maximise their metabolic scope. Through this adaptive response, fish reduce energy budgeting conflicts and presumably increase the probability of routinely operating away from lethal boundaries.  相似文献   

13.
Aquatic surface microlayer contamination in chesapeake bay   总被引:1,自引:0,他引:1  
The aquatic surface microlayer (SMIC), 50 μm thick, serves as a concentration point for metal and organic contaminants that have low water solubility or are associated with floatable particles. Also, the eggs and larvae of many fish and shellfish species float on, or come in contact with, the water surface throughout their early development. The objectives of this study were (1) to determine the present degree of aquatic surface microlayer pollution at selected sites in Chesapeake Bay, and (2) to provide a preliminary evaluation of sources contributing to any observed contamination.Twelve stations located in urban bays, major rivers, and the north central bay were sampled three times, each at 5-day intervals during May 1986. Samples of 1.4–4.1 each were collected from the upper 30–60-μm water surface (surface microlayer, SMIC) using a Teflon-coated rotating drum microlayer sampler. One sample of subsurface water was collected in the central bay.At all stations, concentrations of metals, alkanes, and aromatic hydrocarbons in the SMIC were high compared with one bulk-water sample and with typical concentrations in water of Chesapeake Bay and elsewhere. SMIC contamination varied greatly among the three sampling times, but high mean contaminant levels (total polycyclic aromatic hydrocarbons, 1.9–6.2 μg 1−1; Pb, 4.9–24 μg 1−1; Cu, 4–16 μg 1−1; and Zn, 34–59 μg 1−1) were found at the upper Potomac and northern bay sites. Three separate areas were identified on the basis of relative concentrations of different aromatic hydrocarbons in SMIC samples - the northern bay, the Potomac River, and the cleaner southern and eastern portions of the sampling area.Suspected sources of surface contamination include gasoline and diesel fuel combustion, coal combustion, and petroleum product releases. Concentrations of metals and hydrocarbons, at approximately half the stations sampled, are sufficient to pose a threat to the reproductive stages of some fish and shellfish. Sampling and analysis of the surface microlayer provides a sensitive tool for source identification and monitoring of potentially harmful aquatic pollution.  相似文献   

14.
In 1984, on a transect covering the whole Baltic Sea and parts of the adjacent North Sea, 160 water samples were taken and analysed for their concentrations of particulate and dissolved metals. In addition, the suspended materials were investigated for their elemental bulk composition.The particulate fractions represented from about 5% (Cd, Cu and Ni) to 50% (Fe and Pb) of the total (particulate plus dissolved) concentrations. For some elements (Ba, Cd, Cu, Pb and Zn), the particulate matter from the surface microlayer was enriched with respect to those suspended materials taken from 0.2 m depth. This could reflect the atmospheric input of metal-rich aerosols. In anoxic deep waters, maximum contents of Zn (6400 μg g−1), Cu (1330 μg g−1) and Cd (12 μg g−1) were observed in the particulate matter, indicating sulphidic forms. On the other hand, under oxic conditions the distribution coefficients (Kd) decreased with the water depth (Cd, Fe and Pb).Relative to global background levels, the particulate matter contained metal “excesses” amounting to more than 90% of the total contents (Cd, Mn, Pb and Zn). Automated electron probe X-ray microanalysis (EPXMA) revealed that the elemental composition of sediments is mainly governed by post-depositional processes of early diagenesis and is only weakly related to the composition of suspended matter in the overlying water body. For instance, in relation to surface mud sediments of the central Baltic net-sedimentation basins, Zn, Cd, Cu and Mn had 30–100% higher levels in the suspended materials. The general pattern of metal contents of particulate matter taken from 10 m depth on a transect between the Bothnian Bay and the North Sea were—possibly as a result of anthropogenic inputs—rather similar for Pb, Zn and Cu. For Fe and Mn, the distribution patterns along the transect were probably governed by the natural loading characteristics and by the biogeochemistry of those elements.  相似文献   

15.
Inorganic phosphorus dynamics were investigated with the use of 32P in the hypertrophic Comacchio lagoons (NE Adriatic) during an extremely dense, quasi-permanent bloom of picocyanobacteria. Concentrations of dissolved inorganic phosphate (DIP) in waters of the blooming lagoons were usually near the detection limit (0.01 μmoles·dm−3). DIP uptake rates by microplankton at near-ambient concentrations (0.01 to 0.1 μmoles·dm−3) were in the range of 9.6 to 16.1 nmoles P·dm−3·min−1, and turnover times were 1.5 to 3 min. The turnover time was >40 h in the eutrophic coastal waters of the adjacent Adriatic Sea. The uptake rate of DIP depended on its initial concentration. In water samples artificially enriched with DIP, the uptake rate rose to its maximum of 0.10 to 0.13 μmoles P·dm−3·min−1 (or 6 to 7 μmoles·dm−3·h−1) when the initial concentration of DIP was elevated to 10 to 20 μmoles·dm−3. The potential capacity of microplankton in the water samples to consume and retain DIP was estimated at 25 μmoles·dm−3. Specific features are discussed of phosphorus metabolism in the anthropogenically transformed lagoon ecosystem with an anomalous food web with few animals.  相似文献   

16.
The sublittoral decapod crustacean Pandalus montagui Leach in artificial seawater at 10°C regulates the total body zinc concentration to a constant level in dissolved zinc concentrations up to ca. 22 μg Zn l−1, beyond which there is net accumulation of body zinc. This threshold of zinc regulation breakdown is lower than that in the littoral decapods Palaemon elegans (ca. 93 μg Zn l−1) and Palaemonetes varians (ca. 190 μg Zn l−1) under the same physico-chemical conditions. Correspondingly, zinc uptake rates of the three species of decapods decrease in the order P. montagui > P. elegans > P. varians. It is concluded that regulation of total body zinc concentration is more efficient in decapods adapted to the fluctuating environments of littoral habitats, possibly as a result of changes in permeability of uptake surfaces in combination with improved zinc excretion systems. The moult cycle is important in determining the ability of an individual prawn to regulate zinc. Body zinc in Pandalus montagui consists of at least two pools of zinc exchanging at different rates which the environment. Zinc and copper are not evenly distributed in the tissues of P. montagui.  相似文献   

17.
During 1983 and 1985 several batches of laboratory reared veliger larvae of Mytilus edulis and Pecten maximum here subjected to a rank of concentrations of added copper (CuCl2) over a 15-day period. M. edulis larvae were less sensitive, measured both as mortality (15-day LC50) of 400 μglitre−1) and reduced growth, than P. maximus larvae (15-day LC50 of 85μg litre−1). Both species appeared less sensitive to Cu than other bivallve larvae previously studied. Veliger larvae of M. edulis are from 7 to 10 times more tolerant of Cu than juveniles or adults and this unexpected finding is discussed in relation to the recent literatures on Cu toxicity and accumulation in mussels.  相似文献   

18.
Concentrations of total recoverable inorganic tin (TRISn), monomethyltin (MeSn3+), dimethyltin (Me2Sn2+), trimethyltin (Me3Sn+) and (3-dimethylsulphonio)propionate (DMSP) were determined in leaves of Spartina alterniflora from three sites in the Great Bay estuary (NH) from 8 May to 15 September 1989. Total methyltin concentration increased from 8·9 ng g−1 (fresh weight) on 8 May to 472 ng g−1 on 23 May, decreased to 52 ng g−1 on 7 June and 16ng g−1 on 20 June, and remained low until the last sample on 18 September. Statistical calculations showed that methyltin concentrations varied significantly with sampling week, but not with site. DMSP concentrations showed very different behaviour. During the same sampling period DMSP concentrations varied only from 7·5 to 26 μmol g−1 (fresh weight). DMSP concentrations varied significantly for site, but not sampling week.  相似文献   

19.
In the oyster Ostrea chilensis the adult female broods the young for almost the entire developmental period, releasing a large pediveliger larva (450 μm shell length) with an extremely short pelagic phase. In this study of the larval physiology, the dry weight of the embryo or larva remained constant during the early developmental stages (as far as, and including, the trochophore), but the veliger grew steadily to reach 8 μg at 450 μm shell length, the stage at which it was ready for release. During this growth period the veliger consumed metabolic reserves (62% protein and 38% lipid). Carbohydrate levels were negligible. Chilean oyster veligers larger than 275 μm shell length were able to remove particles from suspension, but clearance rate (2 μl h 1 larva 1 at 450 μm shell length) was much lower than published values for planktotrophic veligers. Low clearance rate in the veliger of O. chilensis is probably attributable to the absence of the postoral ciliary band. Oxygen uptake increased from 19 – 22 nl O2 h 1 ind 1 for pre-veliger stages to 32 nl O2 h 1 ind 1 for a veliger 450 μm long, which is consistent with published values for veligers in general when corrected for body weight. Excretion rate was low, increasing from 0.04 ng NH4-N h 1 larva 1 in the trochophore to 0.13 ng NH4-N h 1 larva 1 in a pediveliger of shell length 450 μm. Biochemical energy reserves were insufficient to meet the metabolic demands of the developing larva, suggesting that uptake of particles and/or dissolved organic matter from the mantle cavity of the female is necessary for successful development.  相似文献   

20.
Bathymetric distribution, abundance, substrate choice and gametogenesis have been investigated in two species of deep-sea actiniarians found in the northeast Atlantic Ocean. Phelliactis hertwigi occurs at 719–1448m in the Porcupine Seabight, usually encloses a bolus of sediment within its highly concave pedal disc (79.7%), and has abundances of up to 14.5 individuals 1000m−2. Phelliactis robusta occurs at 1600–2173m in the Porcupine Seabight, but extends deeper in the Bay of Biscay. In areas of soft sediment it is associated strongly with clinker (92.7%) and attains densities of 2.9 individuals 1000m−2.Both species are dioecious. Their sperm appear similar to those of the related intertidal Calliactis spp. Previtellogenesis and vitellogenesis of the oocytes have been defined by ultrastructural and histochemical studies. In P. hertwigi mature oocytes measure up to 180μm, and to 210μm in P. robusta. In P. hertwigi oogenesis takes 8–9 months, with spawning in October/November, whereas in the deeper-living P. robusta oogenesis occupies 15 to 19 months and spawning occurs in April/ May. Evidence is produced to suggest that these two contrasting cycles are related to the rate and seasonality of deposition of organic matter to the deep-sea floor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号