首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
三次非超级单体龙卷风暴多普勒雷达特征对比分析   总被引:1,自引:0,他引:1  
利用济南和烟台多普勒天气雷达资料,结合环境物理量和天气实况,对发生在山东境内的3次非超级单体龙卷风暴进行了分析。结果表明,三次龙卷过程发生在利于雷暴产生的环境形势下。低层湿度大,低层明显的垂直风切变和有利的地形是三次非超级单体龙卷发生的有利条件。三次龙卷都发生在风暴单体发展阶段,风暴顶高和强中心高度在1个体扫时间内迅速增高。上升气流的加强和复杂的地形是诱发小尺度强切变的主因。风暴单体的迅速发展,需要强的上升气流配合,上升气流将水平方向的旋转切变抬升为垂直方向,在复杂地形作用下可产生局部小尺度涡旋运动,诱发小尺度范围的强切变,从而导致龙卷发生。  相似文献   

2.
利用济南和烟台多普勒天气雷达资料,结合环境物理量和天气实况,对发生在山东境内的3次非超级单体龙卷风暴进行了分析。结果表明,三次龙卷过程发生在利于雷暴产生的环境形势下。低层湿度大,低层明显的垂直风切变和有利的地形是三次非超级单体龙卷发生的有利条件。三次龙卷都发生在风暴单体发展阶段,风暴顶高和强中心高度在1个体扫时间内迅速增高。上升气流的加强和复杂的地形是诱发小尺度强切变的主因。风暴单体的迅速发展,需要强的上升气流配合,上升气流将水平方向的旋转切变抬升为垂直方向,在复杂地形作用下可产生局部小尺度涡旋运动,诱发小尺度范围的强切变,从而导致龙卷发生。  相似文献   

3.
一次雷暴单体相互作用与中气旋的演变过程分析   总被引:2,自引:1,他引:1  
陶岚  戴建华  孙敏 《气象》2016,42(1):14-25
2013年8月1日,上海位于副热带高压边缘弱垂直风切变的不稳定层结下,午后开始,不断有雷暴新生。在此次强雷暴过程中,生成了三个中气旋;特别是在第二个中气旋生成过程中,雷暴合并后呈现出钩状回波、回波悬垂、中气旋等超级单体的雷达回波特征,还具有标志大冰雹的三体散射长钉特征回波。本文通过分析常规天气观测、双多普勒天气雷达、自动气象站和风廓线雷达等资料发现,前两个中气旋的生成机制为:(1)前期雷暴出流的交汇形成了气旋性环流,加强了低层水平辐合,阵风锋类似锋面的作用促使低层的暖湿空气抬升;(2)在弱垂直风切变的天气背景下,由出流阵风锋导致环境垂直风切变有所增大,改变了雷暴发展的环境,形成了经典中气旋生成的有利环境。此外,超级单体中气旋(第二个)形成过程中,雷暴的合并使得上升运动加强,对流不断发展,增强了雷暴内的旋转程度,从而有利于中气旋的形成。在第三个中气旋形成过程中,由于雷暴中的弱出流被相邻雷暴爆发的下沉气流抬升,在中低层形成出流和人流间的旋转,因而被雷达探测为中气旋。  相似文献   

4.
利用ERA5逐小时再分析资料、常规观测资料、FY-2G卫星资料、闪电定位资料及雷达资料对2019年11月2—3日发生在山东的强雷暴过程进行诊断分析。结果表明:(1)此次强雷暴过程是高空槽东移,中高层干冷空气入侵和地面辐合线抬升触发低层不稳定能量释放造成的,这种上干下湿的大气层结特征,有利于雷暴发生发展。(2)850 hPa和500 hPa温差是秋季强雷暴生成的一个重要条件,当T_(850)-T_(500)≥26℃时,对雷暴发生十分有利;θse水平分布中高能舌的位置跟强雷暴发生的区域对应较好。(3)秋季强对流发生时对流云团高度较夏季偏低,TBB值较夏季偏高,此次雷暴过程发生时云顶温度TBB在-22~-32℃,强雷暴主要位于冷云盖前方TBB梯度大值区域内。(4)雷达回波中心反射率因子在45 dBz以上,1.5~5 km存在非常强的垂直风切变,对秋季雷暴预报有很好的指示作用。  相似文献   

5.
江苏近10 a高架雷暴特征分析   总被引:2,自引:2,他引:0  
曹舒娅  张静  施丹平  李杨 《气象科学》2018,38(5):681-691
对2007—2016年发生在江苏地区的冬半年雷暴进行特征分析,筛选出12次典型的高架雷暴天气过程,揭示江苏发生高架雷暴的时空分布特征和典型的环流形势,发现逆温层顶之上的不稳定浅层和上下层强垂直风切变分别为高架雷暴的发生提供弱热力不稳定和强动力不稳定条件。强垂直风切变、850 hPa附近强烈的锋生导致的锋面次级环流,高空槽前正涡度平流随高度增加以及高层辐散、低层辐合造成的抽吸作用,为高架雷暴的发生和维持提供逆温层之上的动力抬升条件。高架雷暴发生时高仰角反射率因子呈现出类似零度层亮带的环形特征,对流单体不断生成在圆环附近。初步归纳了江苏高架雷暴的预报着眼点:500 hPa先后高空槽东移,700 hPa有16 m·s~(-1)以上的西南急流,850 hPa切变线东伸,存在逆温层顶高于1. 5 km,逆温强度大于5℃的较强逆温,0~6 km垂直风切变超过18 m·s~(-1),700 hPa与500 hPa温度差在15℃以上以及700hPa的相对湿度高于80%,且比湿在5~6 g·kg~(-1)。  相似文献   

6.
2016年初冬陕西一次高架雷暴天气过程分析   总被引:3,自引:2,他引:1  
郭大梅  章丽娜  王秀明  胡启元 《气象》2018,44(11):1404-1413
利用常规地面高空观测资料、西安和安康多普勒天气雷达观测资料、欧洲中心细网格模式预报等资料对2016年11月22日发生在陕西地区的一次雷暴过程进行诊断分析,结果表明:陕西中南部雷暴区位于地面冷锋后350~500 km的区域内,雷暴区3 km以下是深厚的冷垫,同时中低层存在明显的逆温层,低层是绝对稳定的大气层结,这说明此次雷暴天气为高架雷暴。通过诊断饱和假相当位温、假相当位温、湿位涡和绝对涡度表明不同地区不稳定机制是不同的。西安地区不稳定机制为条件性对称不稳定,安康地区不稳定机制为条件性不稳定。在条件性对称不稳定区域,降雪回波呈现出数个平行带状回波,与0~6 km风切变矢量(西西南风)平行;在条件性不稳定区域,降水回波为小尺度的块状回波。强垂直风切变表明大气斜压性强,中高层暖湿气流增强了大气的湿斜压性,从而使中高层形成条件性对称不稳定,产生倾斜对流;中低层偏南气流输送暖平流和水汽,使得大气较为暖湿,中高层温度平流较弱,大气较干,形成位势不稳定,锋面抬升中低层暖湿大气使其饱和,位势不稳定转化为条件性不稳定,产生垂直对流。不稳定与上升运动及回波高度有着较好的对应关系。  相似文献   

7.
应用常规资料、海南省乡镇自动站资料和海口多普勒雷达资料,对2013年3月20日海南岛罕见大范围强冰雹过程进行综合分析。结果表明:中层干冷气流叠加在低层暖湿气流上形成对流不稳定层结以及低层逆温为不稳定能量积聚提供了有利条件;中等到强的垂直风切变有利于强对流有组织发展和维持;海陆风辐合和地形抬升是海南低槽类冰雹发生的主要触发机制。该过程先后有4个超级单体产生,其中两个单体由一母体回波分裂后持续发展成为左移超级单体和右移超级单体,左移超级单体出现中反气旋,低层弱回波区位于其移动方向左后侧,右移超级单体出现中气旋,低层弱回波区位于其移动方向右后侧;在适宜的0℃层和-20℃层高度下,发现三体散射或中(反)气旋时立即发布冰雹警报,预报时效最长可提前20~30 min;冰雹发生前55 dBz回波顶在-20℃层高度之上,同时垂直积分液态水含量(VIL)均有跃增过程且其普遍达65kg·m-2时,地面开始测得冰雹,当VIL跃增到60kg·m-2时发布冰雹警报,预报时效最长则可提前1~3个体扫时间(约5~15min),当VIL降至40kg·m-2以下时冰雹过程结束。  相似文献   

8.
2013年3月20日广东东莞罕见龙卷冰雹特征及成因分析   总被引:1,自引:0,他引:1  
利用常规观测、NCEP/NCAR再分析、多普勒天气雷达及自动气象站资料等,对2013年3月20日发生在东莞的一次罕见龙卷、冰雹等致灾性强对流天气过程进行分析。结果表明:1)龙卷过境时的单站气压、温度、风向风速与雷雨大风过境时明显不同,前者具有较典型的龙卷特征。2)华南地区高低空强的风随高度增大的垂直变化、上干下湿的位势不稳定层结以及低层高湿、增温为对流天气发展提供了有利的环境条件,冷空气南压和近地面边界层中小尺度辐合系统为其提供了触发机制。3)中等强度的对流有效位能(CAPE)、强的0-6 km深层垂直风切变以及较强的0-1 km低层垂直风切变为龙卷产生提供了可能性。4)龙卷、冰雹强对流风暴的发展加强与近地面边界层中小尺度辐合系统加强有密切关系。5)同时出现冰雹、大风、龙卷时,最强回波为72 dBz;龙卷出现在超级单体的钩状回波附近,更靠近后侧V形缺口;多时次观测到三体散射(TBSS)回波,与降雹对应;反射率垂直剖面图上可见明显的低层弱回波区、中高层回波悬垂,有界弱回波区(BWER)先于龙卷20多分钟出现。径向速度图上,龙卷出现时超级单体风暴同时具有龙卷涡旋特征(TVS)和中气旋特征。  相似文献   

9.
朱义青  褚涛  刘新磊 《气象科技》2023,51(4):541-550
基于地面和高空观测资料、NCEP 1°×1°再分析资料及多普勒雷达等资料,对发生在山东两次相似环流形势的华北冷涡背景下,造成不同类型的强对流天气进行对比分析。结果表明:(1)2016年6月14日发生的强对流天气(“6·14”过程)以雷暴大风和短时强降水为主,发生在低层弱的垂直风切变环境中,对流层中下层(400~900 hPa)存在较为深厚的暖湿平流,水汽输送充沛,同时造成0℃、-20℃层高度抬升,有利于短时强降水而不利于冰雹产生;2018年6月13日发生的强对流天气(“6·13”过程)以雷暴大风和冰雹为主,发生在较强的条件不稳定层结和强的低层垂直风切变环境中,400~500 hPa冷平流以及低层暖平流的同时增强,有利于对流层中层的温度垂直递减率进一步增大,造成-30~-20℃层进一步下降,促成了大冰雹的发生环境。(2)“6·14”过程是由地面辐合线触发,“6·13”过程是由锋面触发。(3)“6·14”过程强反射率因子高度低,无明显高悬强回波结构,利于出现短时强降水;“6·13”过程具有单体结构密实和明显高悬强回波结构特征,因此,6·13”过程对流强度更强,更容易出现冰雹。  相似文献   

10.
利用常规气象资料、ERA5再分析资料、北京VDRAS资料以及雷达资料,对2021年7月31日发生在河北中南部的一次弓状强飑线过程进行分析。结果表明:(1)此次飑线过程发生在冷涡的背景下,500 hPa涡后的冷空气与850 hPa的暖脊叠加,建立了不稳定层结,在地面辐合线附近触发。(2)雷达回波由分散的对流单体合并加强,强弓形出现时,最大强度值超过55 dBZ,存在径向速度大值区和中层径向辐合等特征,这些都预示地面大风的出现,而回波悬垂预示冰雹出现。(3)雷达反演的风场可以显示飑线的水平和垂直结构,能清楚地指示飑线的出流、入流以及辐合区,对指示飑线不同部位的发展趋势有重要指示意义。(4)地面风场辐合导致雷暴单体触发,雷暴单体在不稳定的大气层结中获得快速发展,发展过程中0~3 km的垂直风切变逐渐增强,低层形成冷池,热力不均匀区域扩大,沿着扰动温度梯度大值区与风场辐合区,新生对流向东向南传播,分散对流单体合并演变为飑线。(5)从飑线发展阶段的热动力结构分析中发现,由倾斜上升气流与下沉气流形成垂直环流,下沉气流增强时,冷池效应增强,低层环境垂直风切变也增强,环境条件的改变是飑线发展的结果,同...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号