首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
混凝土防渗墙是深厚覆盖层地基上修建土石坝的主要坝基防渗结构,是保证大坝安全的关键防线,因此,精细模拟防渗墙的受力状态,对于合理评价深厚覆盖层上土石坝工程具有重要意义。联合增量迭代法和有限元-比例边界有限元耦合方法,实现了土石坝应力变形的跨尺度精细化分析,克服了中点增量法求解局部强非线性问题时精度低的缺陷;发现了防渗墙-心墙接头附近和防渗墙底部土体剪切带的局部大应变特性,阐明了传统方法无法描述土体局部大应变而高估防渗墙应力的机制;提出了设置薄层单元来模拟应变局部效应的高效计算方法,实现了超深覆盖层上高沥青心墙坝防渗墙受力状态的三维精细化分析。本研究发展的有限元-比例边界元-增量迭代法-预设薄层单元的跨尺度非线性分析方法可为深厚覆盖层上土石坝防渗墙的安全评价和设计优化提供理论和技术支持。  相似文献   

2.
我国西南、西北地区常存在强弱互层的深厚覆盖层坝基,弱透水层在深厚覆盖层坝基中对渗流影响较大,其影响规律需要深入研究。试验中将弱透水层设置在坝基的不同位置,变化垂直防渗墙的深度。试验结果表明,弱透水层处在中间位置处,其与防渗墙形成半封闭式联合防渗体系能有效降低坝基渗流量与出逸坡降;上江坝工程实例中,经半封闭式联合防渗体系降低后的渗流量及出逸坡降皆在允许范围内;从理论层面上考虑,该弱透水层若能加以利用,可大大减小防渗墙深度。此外,研究还发现,当防渗墙位置越深,其与防渗墙形成的半封闭式防渗体系越能有效减小渗流量及出逸坡降。研究成果能为类似工程提供一定的理论参考及建议,从而降低工程造价。  相似文献   

3.
王保申  孟凡会 《地下水》2012,(3):177-178
混凝土防渗墙是近年来应用广泛的一种地下连续式防渗措施,以山东省莒县小仕阳水库为实例,对混凝土防渗墙在水库除险加固工程中的应用进行分析讨论。通过对坝基除险加固前的渗漏情况和采用混凝土防渗墙成墙后的渗透系数进行对比,并采用高密度电法对成墙的连续性进行无损检测,通过渗透系数对比和高密度电法电阻率色谱图分析得出,混凝土防渗墙的使用能有效的解决水库坝基的渗漏问题。同时对混凝土防渗墙的更好应用进行了展望。  相似文献   

4.
深厚覆盖层坝基防渗墙深度研究   总被引:4,自引:0,他引:4  
谢兴华  王国庆 《岩土力学》2009,30(9):2708-2712
在西部山区深厚覆盖层上建设高坝,坝基防渗是关系到工程成败的关键。塑性混凝土防渗墙加灌浆帷幕防渗体系已经在多座大坝工程中应用,实践证明是成功的。由于坝基防渗墙建设控制工期,并且工期较长,在满足防渗要求的条件下应尽量减少工程量。研究防渗墙的合理深度,能够在一定程度上减少工程量,优化施工工期。基于改进阻力系数法求得防渗墙底部坡降随防渗墙深度变化的解析解,并且通过数值模拟方法详细研究了深覆盖层内防渗墙深度变化时防渗墙底部水头、坡降的变化规律。认为深厚覆盖层内设置防渗墙的深度并非越深越好,而是存在一个最优深度。最优深度的取值取决于覆盖层的深度。一般情况下,相对深度比(防渗墙最优深度与覆盖层深度之比)在0.7左右为防渗的最优取值。  相似文献   

5.
潘迎  何蕴龙  周小溪  曹学兴 《岩土力学》2013,34(7):2023-2030
为研究河谷地形对深厚覆盖层中防渗墙应力、变形的影响,以某沥青混凝土心墙堆石坝为工程背景,模拟了狭窄河谷和宽深河谷并分别建立有限元模型,坝体材料及覆盖层采用邓肯-张E-B模型,防渗墙与覆盖层、基岩之间的接触关系采用无厚度接触面模拟,进行三维非线性有限元计算,对比分析两种河谷情况下防渗墙的应力、变形情况。计算结果表明:狭窄河谷中,防渗墙沉降和水平向位移及防渗墙与覆盖层的不均匀变形均比宽深河谷小,其中不均匀变形最大减小了24.8%;宽深河谷中,防渗墙受河谷地形约束作用较弱,竖直向压应力较狭窄河谷更大,最大增加了40.3%;防渗墙的竖直向压应力最大值位置受中性点位置和河谷地形的共同影响,其中竖直向压应力最大值约30%来自墙顶坝体土压力,70%来自与覆盖层之间的负摩擦力。其研究结果可为不同地形条件下坝基防渗墙的设计提供参考。  相似文献   

6.
温立峰  柴军瑞  王晓 《岩土力学》2015,36(8):2386-2394
结合实测资料和有限元方法分析建于深覆盖层地基上面板堆石坝的应力、变形特性。数值计算中采用邓肯-张E-B模型模拟覆盖层地基和坝体的应力、变形行为,同时采用无厚度接触面模拟面板和坝体以及防渗墙和地基之间的相互作用。整理和分析工程实测资料并与数值计算结果进行对比分析,重点分析坝体和防渗结构的力学行为以及面板堆石坝和地基之间的相互作用。比较分析表明,大坝最大沉降和压应力分别发生在坝体底部和覆盖层中,覆盖层对坝体及防渗结构的应力、变形特性具有显著影响,应力、变形实测值与数值计算结果吻合较好,说明数值计算结果的有效性。在此基础上,分析了覆盖层上面板堆石坝分期填筑和筑坝速度对坝体和防渗结构应力变形的影响。结果表明,分期填筑引起坝体较大不均匀沉降和复杂的应力状态,但一定程度上可以改善防渗墙的应力变形特性;较快的坝体填筑速度容易引起坝体较大的前期应力和后期沉降,不利坝体的施工和运行。  相似文献   

7.
深厚覆盖层上混凝土防渗墙的应力变形特性   总被引:3,自引:0,他引:3  
建造在深厚覆盖层上的心墙坝,通常由土质心墙和其下部的防渗墙构成完整的防渗体系,防渗墙将受到水荷载和上覆坝体荷载的双重作用.本文采用三维非线性有限元分析了某心墙坝工程软弱覆盖层上两道混凝土防渗墙(第一道为嵌岩式,第二道为悬挂式)的应力变形特性并对其安全度评价方法进行了介绍.计算结果表明:①嵌岩式防渗墙和悬挂式防渗墙表现了不同的应力应变特性;②两道防渗墙的拉压应力均已超出混凝土的允许范围,建议采用高强低弹的混凝土配方.  相似文献   

8.
确定堤坝工程地基渗透系数的敏感分析法   总被引:1,自引:0,他引:1  
堤坝工程中地基渗透系数的选取具较大随机性, 为了解决这个问题, 采用敏感性分析理论建立了求解渗透系数敏感性因子的数学模型, 该模型在河南省燕山水库水利工程中的应用表明: 覆盖层渗透系数的敏感性最大(> 10-2), 设计应取试验值的大值; 其他部分渗透系数的敏感性相对较小(10-6~10-3), 设计中可取试验值的均值; 对于防渗设施, 只要达到一定密实度, 再降低其渗透系数, 防渗效果不会再有明显改善   相似文献   

9.
赵剑明  常亚屏  陈宁 《岩土力学》2006,27(Z2):441-446
针对强震区深厚覆盖层上土石坝工程的特点,基于土石料三维粘弹塑性动力本构模型,考虑孔隙水压力消散和扩散,建立了深厚覆盖层上土石坝地震反应分析的三维真非线性有效应力动力分析方法及抗震安全评价方法。利用土石料动力特性的大型三轴试验成果,对一深厚覆盖层上的土石坝进行了地震反应分析,给出了坝体及覆盖层地基的加速度反应、应力反应,并结合单元抗震安全系数、防渗墙动应力、地震残余变形、坝坡动力稳定性等进行了抗震评价,为大坝的抗震设计提供了有力的技术依据。  相似文献   

10.
开展二元结构库岸渗控措施研究对于灾害区域地下水资源管理和浸没控制工程的布置具有重要意义。文章以赣江新干航电枢纽工程库区左岸为研究对象,基于区域地下水流动态数值模拟与预测技术,构建地下水三维非稳定流有限元渗流模型,开展水库蓄水后库区地下水浸没动态评价和基于工程组合措施(防渗墙、减压井和抬田)的浸没控制效果对比研究。结果表明:无工程控制措施工况下,水库蓄水三年内库区左岸沿江区域和岸内地势低洼地带会发生较严重的渗漏型浸没;通过联合布设防渗墙、减压井和抬田工程等控制措施,能够有效地将浸没范围控制在堤防工程范围以内;在有防渗墙的截渗作用下,减压井排渍水位是地下水浸没控制的最敏感的参数。渗控工程的建议布置参数:防渗墙渗透系数为17.28×10-3 m/d,减压井间距设置为30 m,排渍水位29 m,减压井距防渗墙的距离为30 m,并在堤内低洼地带进行抬田复垦。本次研究结果可为水库蓄水前期渗控方案的布置提供应用技术支持。  相似文献   

11.
新疆下坂地水利枢纽工程的坝基为深厚覆盖层,厚度达147.95m,其结构较为复杂,主要由冰碛层、冲洪积砾石层和砂土层透镜体组成,坝基防渗处理难度很大。为此,针对下坂地深厚覆盖层进行了专门的帷幕灌浆现场试验工艺研究,通过对浆液材料、配比、工艺措施和参数经过深入的分析,找出了一套适合于下坂地复杂地层的灌浆施工工艺,为初步设计提供了可靠依据。  相似文献   

12.
瀑布沟堆石坝防渗体自适应有限元分析   总被引:1,自引:0,他引:1  
傅少君  陈胜宏 《岩土力学》2006,27(3):499-504
在深覆盖层地基上修建高土石坝,其防渗体系的可靠性是一项关键技术问题。针对瀑布沟水电站堆石坝的实际工程特点,应用自适应有限元方法,分析研究了大坝的稳定性和覆盖层中混凝土防渗墙与坝内黏土心墙接头部位的局部应力和变形情况,对比分析了不同接头形式的利弊,为设计部门推荐了合适的接头形式。  相似文献   

13.
坝基深厚覆盖层密度辨识方法   总被引:1,自引:0,他引:1  
提出了坝基深厚覆盖层密度辨识的基本方法,对大渡河双江口水电站河床覆盖层进行了8孔、106点的现场旁压试验,在对其进行统计分析的基础上建立了威布尔分布模型,依据试验数据对模型的参数进行了最小二乘估计,并对威布尔分布进行了拟合优度检验。依据现场勘查所得的级配曲线,通过20组室内模型试验探讨了旁压模量与模型密度和上覆压力的对应关系,得出了旁压模量与模型密度间服从对数关系的规律。在此基础上对深厚覆盖层的密度进行随机模拟,得到了覆盖层各亚层密度的模拟值,通过与勘探结果的对比,证明了该方法的实用性  相似文献   

14.
厚度大且为强-弱-强渗透性组合的覆盖层在我国西南河流中分布较广。为研究此类夹层型水文地质结构覆盖层中坝基渗流场的特征及其影响因素,利用Visual MODFLOW模拟了给定覆盖层厚度下强弱渗透性层组的不同渗透性比值、不同厚度比值,和变覆盖层厚度下不同弱透水层厚度这两种类型16种工况下的渗流场,通过监测坝基渗流场中弱透水层顶底板的水头差和水力坡度,研究弱透水层渗透性和厚度对渗流场的影响。结果表明:强-弱-强夹层型水文地质结构的坝基平面渗流场受上层强透水覆盖层性质控制;给定覆盖层厚度工况中,弱透水层顶底板的水头差与强弱透水层渗透性比值相关,两者先表现出正相关的关系,当强弱透水层渗透性比值大于500时,弱透水层顶底板的水头差变化不再明显;变覆盖层厚度工况中,弱透水层顶底板的水头差也呈现出先增大后趋于稳定的趋势,转折点发生在弱透水层厚度20m的工况条件下;变覆盖层厚度工况中水力坡度则有着随着弱透水层厚度增大而变小的规律。综上所述,在夹层型水文地质结构中,弱透水层厚度与渗透性对渗流场起控制作用。研究结果可为深厚覆盖层河谷区的水电水利工程坝基水害防治提供依据。  相似文献   

15.
余挺  邵磊 《岩土力学》2020,41(1):267-277
在强震区、含软弱土层的500 m级特厚覆盖层上建坝,超出了现行设计规范的控制范围。开展了覆盖层厚度、输入地震波峰值、覆盖层中的软弱土层厚度等指标的敏感性分析,揭示了深厚覆盖层地震反应的主要特征及坝基建基面加速度放大倍数分布的规律性。研究认为:覆盖层厚度、输入加速度峰值、软弱土层厚度等指标与建基面放大倍数的衰减在变化规律上成正相关;当输入地震波峰值加速度为0.5g作用下,含软弱土层的500 m级特厚覆盖层坝基中地震波总体以衰减为主,建基面放大倍数小于1;覆盖层加速度放大倍数随高程变化的基本规律为先衰减后放大。当存在软弱土层时,由于其滤波隔震作用会在土层内发生动力反应的二次衰减。基于上述分析,进一步提出了覆盖层下部区域地震效应衰减、中部区域软弱土层二次衰减、顶部区域放大的加速度放大倍数分布模型,编制了覆盖层加速度放大倍数建议值表,研究成果可为含软弱土层的深厚河床覆盖层坝基工程设计提供重要参考。  相似文献   

16.
西南山区河谷广泛分布有深厚覆盖层,它们不但制约水电坝址的选择,同时也给水工建筑的设计和基础处理带来困难,传统沉井方法在深厚覆盖层地基处理中的问题日渐突出.本文从地下连续墙结构构成、受力、施工技术等角度对地下连续墙方案进行了综合研究,在地基岩土体工程地质条件清楚认识的基础上,充分考虑了地下连续墙受力特征,采用三维有限元方法,分析了坝体整体结构及地下连续墙复合挡土墙体系在各种工况下的受力变形特点.结果表明,地下连续墙结构充分调动了墙体和土体的相互作用效应,连续墙体的受力状况可满足建筑物的安全要求,是深厚覆盖层中地基处理的一种有效方法.地下连续墙的变形和内力受到剪力墙的接头形式和接触面强度的控制,在施工过程必须进行有效的控制.  相似文献   

17.
高压喷射灌浆进行地基防渗回固,取得了显著的成就,超过50m的深地基是该顶在构筑地下防渗墙时难以跨越的技术难题,近年来该项技术在设备、工艺和材料上进行了改进,取得了突破性进展,岭澳水库坝防渗加固工程是一个典型的实例,成功地建造了深达66.1的地下连续墙。  相似文献   

18.
罗长军  胡峰  张磊奇  王会午 《岩土力学》2006,27(8):1305-1311
陡坡水库存在大坝质量差、坝体发育大量裂缝、背水坡出现散浸现象、坝后沼泽化并形成一上升泉以及排水渠和鱼池有絮状析出物、渗漏量增大等问题,这些异常现象都是由坝体及坝基渗流引起的。在阐述坝体和坝基地质、水文地质条件情况下,分析了大坝渗漏成因及大坝的渗透稳定性,指出坝体实际浸润线及坝体渗漏量是不正常的,特别是1987年后当库水位高于194 m,同一库水位呈上升趋势,这是反常的。坝基实际渗漏量异常,存在管涌和接触冲刷问题,尤其库水位低至 193.84 m,坝后上升泉仍有沙沸现象。上述现象表明大坝渗流是危险的,并分析了散浸、析出物、上升泉及沼泽化、坝肩及绕坝渗漏等现象的成因。  相似文献   

19.
二滩高拱坝坝基渗流场的反演分析   总被引:2,自引:0,他引:2  
崔皓东  朱岳明 《岩土力学》2009,30(10):3194-3199
研究运行期高坝坝基渗流特性时,渗流场参数的获取是难点之一。针对二滩工程,利用三维渗流场有限元精细求解技术以及遗传算法等方法和理论,建立坝基渗流场反演模型;选择坝基典型渗压计测点作为实测点,通过特定时刻库水位对应渗流场的反演获得坝基渗透系数,再利用不同时刻点库水位对应的渗流场进行验证。分析结果表明,渗流场的反演结果是合理的,可作为研究运行期高拱坝坝基渗流场真实工作性态的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号