首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term continuous gravity observations, recorded at five superconducting gravimeter (SG) stations in the Global Geodynamic Project (GGP) network, as well as data on orientation variations in the Earths rotation axis (i.e. polar motion), have been used to investigate the characteristics of gravity variations on the Earths surface caused by polar motion. All the SG gravity data sets were pre-processed using identical techniques to remove the luni-solar gravity tides, the long-term trends of the instrumental drift, and the effects of atmospheric pressure. The analysis indicates that the spectral peaks, related to the Chandler and annual wobbles, were identified in both the power and product spectral density estimates. The magnitude of gravity variations, as well as the gravimetric amplitude factor associated with the Chandler wobble, changed significantly at different SG stations and during different observation periods. However, when all the SG observations at these five sites were combined, the gravimetric parameters of the Chandler wobble were retrieved accurately: 1.1613 ± 0.0737 for the amplitude factor and –1°.30 ± 1°.33 for the phase difference. The value of the estimated amplitude factor is in agreement with that predicted theoretically for the zonal tides of an elastic Earth model.  相似文献   

2.
Summary We have developed an absolute gravimeter with a rotating vacuum pipe. The rotating vacuum pipe has an angular velocity high enough to keep a falling object to the end of it, where the falling object begins to drop by stopping the pipe vertical. We put a Michelson interferometer with a stabilized He-Ne laser under the vacuum pipe to measure the position of the falling object at every 1 ms synchronized with a rubidium frequency standard. This absolute gravimeter has succeeded in the measurements with a drop-to-drop scatter of 1.9 × 10–7ms–2 (19µGal) at the Esashi Gravity Station in the end of 1989 and also has succeeded in the continuous measurements for a week at the same place in December 1991. During the three-year experiments, the measured gravity values have gradually increased until the end of 1991 and then gained in the rate of increase, although we cannot deny the possibility of instrumental origin. The comparisons with other types of absolute gravimeters showed that the values obtained by the absolute gravimeter with a rotating vacuum pipe are close to those obtained by the absolute gravimeters ILOM#1 and NAOM#2 and are lower than those obtained by JILA#4, though the times of comparisons are different.  相似文献   

3.
 Three long series of tidal gravity observations, totalizing approximately 24 years and recorded with three superconducting gravimeters, T004, T008, and T009, at stations Wuhan (China) and Kyoto (Japan), are studied. The tidal amplitude factors and phase differences are determined precisely using Eterna and Nsv techniques. The precision of the main tidal amplitudes is at the same level of 0.01 μGal. The atmospheric gravity signals are corrected using the coefficients determined with a regression method between tidal gravity residual and station air pressure. The oceanic gravity signals are modeled based on five global oceanic models. It is found that the oceanic models developed by the analysis of measurements from Topex/Poseidon altimeters have the best fit to the superconducting gravimeter measurements, since the observed residuals and the discrepancies between the amplitude factors and the theoretical tidal models are reduced more significantly. The long-period gravity variations are dominated by the non-linear drift phenomena of the instruments, and the short-term variations in gravity are due to the background noise at the stations. Received: 20 January 2000 / Accepted: 15 September 2000  相似文献   

4.
The superconducting gravimeter (SG) TT70 has been continuously recording gravity data at the GeoForschungsZentrum (GFZ) Potsdam absolute gravity site since July 1992. The recorded data are edited and preprocessed by spike and step detection and elimination and gap filling. An atmospheric pressure correction is carried out on gravity data in the time domain with a complex admittance before tidal fitting. The atmospheric pressure admittance is calculated from tide free output of SG data and local atmospheric pressure using the cross spectral method. The ground water level admittance is determined by a single coefficient. Improvements with these corrections are shown in analysis results. New tidal parameters for Potsdam site are determined and compared with recordings of an Askania spring gravimeter at a nearby site. Deviations against the Wahr-Dehant-model are shown. Polar motion data of the IERS (International Earth Rotation Service, Paris) are used to calculate variations of centrifugal acceleration caused by polar motion (pole tide). These are compared with the corrected tide free output of SG series. For drift determination the polar motion correction is applied on SG data. The nutation period equivalent to the Earth's Nearly Diurnal Free Wobble is calculated from the SG data with a value of TFCN = (437.4 ± 1.5) sidereal days. This result is compared with those obtained from other SG stations. Received 19 December 1995; Accepted 13 September 1996  相似文献   

5.
设计静态测量实验和升降台实验对GT-2A航空重力仪的零漂率、分辨力和尺度因子进行分析。利用GT-2A定点静态连续观测数据、相对重力仪同步观测数据和固体潮模型计算的重力固体潮数据,计算了GT-2A的零漂率。固体潮改正之前和之后的计算结果表明,采用GT-2A连续静态观测数据计算的零漂率差值最大可达7.4 μGal/h;采用施测前后校准测量数据计算零漂率引入的代表误差最大为13.7 μGal/h。以上结果表明固体潮对零漂率的确定具有较大影响。测试GT-2A观测重力固体潮的能力,通过频域分析发现幅值超过30 μGal的分潮波会对GT-2A测量结果的幅-频特征产生影响,认为GT-2A的分辨力约为30 μGal。升降台实验中利用GT-2A测定重力垂直梯度,与相对重力仪测得的重力垂直梯度比较,计算出GT-2A实验量程内观测数据的尺度因子为-0.003 4 ±0.011 6。  相似文献   

6.
Due to the super rotation of the Earth's inner core, the tilted figure axis of the inner core would progress with respect to the mantle and thus cause the variation of the Earth's external gravity field. This paper improves the present model of the gravity field variation caused by the inner core super rotation. Under the assumption that the inner core is a stratifying ellipsoid whose density function is fitted out from PREM and the super rotation rate is 0.27-0.53°/yr, calculations show that the global temporal variations on the Earth's surface have a maximum value of about 0.79-1.54×10^3 pGal and a global average intensity of about 0.45-0.89×10^ 3 μGal in the whole year of 2007, which is beyond the accuracy of the present gravimetry and even the super conducting gravimeter data. However, both the gravity variations at Beijing and Wuhan vary like sine variables with maximal variations around 0.33 pGal and 0.29 pGal, respectively, in one cycle. Thus, continuous gravity measurements for one or two decades might be able to detect the differential motion of the inner core.  相似文献   

7.
Gravity recovery and climate experiment (GRACE)-derived temporal gravity variations can be resolved within the μgal (10?8 m/s 2) range, if we restrict the spatial resolution to a half-wavelength of about 1,500 km and the temporal resolution to 1 month. For independent validations, a comparison with ground gravity measurements is of fundamental interest. For this purpose, data from selected superconducting gravimeter (SG) stations forming the Global Geodynamics Project (GGP) network are used. For comparison, GRACE and SG data sets are reduced for the same known gravity effects due to Earth and ocean tides, pole tide and atmosphere. In contrast to GRACE, the SG also measures gravity changes due to load-induced height variations, whereas the satellite-derived models do not contain this effect. For a solid spherical harmonic decomposition of the gravity field, this load effect can be modelled using degree-dependent load Love numbers, and this effect is added to the satellite-derived models. After reduction of the known gravity effects from both data sets, the remaining part can mainly be assumed to represent mass changes in terrestrial water storage. Therefore, gravity variations derived from global hydrological models are applied to verify the SG and GRACE results. Conversely, the hydrology models can be checked by gravity variations determined from GRACE and SG observations. Such a comparison shows quite a good agreement between gravity variation derived from SG, GRACE and hydrology models, which lie within their estimated error limits for most of the studied SG locations. It is shown that the SG gravity variations (point measurements) are representative for a large area within the accuracy, if local gravity effects are removed. The individual discrepancies between SG, GRACE and hydrology models may give hints for further investigations of each data series.  相似文献   

8.
9.
CG-5相对重力仪野外实验精度分析   总被引:1,自引:0,他引:1  
针对CG-5相对重力仪零点漂移规律对测量精度的影响及仪器系统阐述欠缺等问题,通过静态、动态和布设相对重力网实验对CG-5相对重力仪进行测试,研究CG-5型相对重力仪的漂移规律、性能及精度。结果表明,仪器的静态零点漂移线性度很好,6d的零漂率变化不大,总体呈下降的趋势。经过零点漂移改正后的动态零漂率很小,仅为5μGal/h,动态实验的动态误差为2.207μGal,在限差10μGal之内。相对重力网平差精度较高,均在限差5μGal之内。CG-5相对重力仪在测试中表现出了较稳定的状态,测得数据精度较高,符合厂商提供的标称精度。  相似文献   

10.
2013-04-20发生在四川芦山的地震,是一个震级为Mw 6.6的高角度逆冲型地震,在2.3~5.3 mHz频段激发了微弱的球型简正模信号。芦山地震的自由振荡信号为人们提供了检验中国大陆超导重力仪高频特性的机会。分析了中国大陆现有的5台超导重力仪和部分宽频带地震仪在芦山地震后的观测数据,结果表明,超导重力仪SG057(拉萨)、SG053(武汉)和流动超导重力仪iGrav(武汉)在2~5 mHz频段具有较低的噪音水平,超导重力仪SG065(武汉)、SG066(丽江)具有较高的噪音水平。  相似文献   

11.
Abstract The cross-coupling corrections for the LaCoste & Romberg airborne gravimeter are computed as a linear combination of 5 so-called cross-coupling monitors. The weight factors (coefficients) determined from marine gravity data by the factory are obviously not optimal for airborne application. These coefficients are recalibrated by minimizing the difference between airborne data and upward continued surface data (external calibration) and by minimizing the errors at line crossings (internal calibration) respectively. An integrating method to recalibrate the above-mentioned coefficients and the beam scale factor simultaneously is also presented. Experimental results show that the systemic errors in the airborne gravity anomalies can be greatly reduced by using any of the recalibrated coefficients. For example, the systemic error is reduced from 4.8 mGal to 1.8 mGal in Datong test.  相似文献   

12.
Due to the super rotation of the Earth’s inner core, the tilted figure axis of the inner core would progress with respect to the mantle and thus cause the variation of the Earth’s external gravity field. This paper improves the present model of the gravity field variation caused by the inner core super rotation. Under the assumption that the inner core is a stratifying ellipsoid whose density function is fitted out from PREM and the super rotation rate is 0.27~0.53°/yr, calculations show that the global temporal variations on the Earth’s surface have a maximum value of about 0.79~1.54×10?3 μGal and a global average intensity of about 0.45~0.89×10?3 μGal in the whole year of 2007, which is beyond the accuracy of the present gravimetry and even the super conducting gravimeter data. However, both the gravity variations at Beijing and Wuhan vary like sine variables with maximal variations around 0.33 μGal and 0.29 μGal, respectively, in one cycle. Thus, continuous gravity measurements for one or two decades might be able to detect the differential motion of the inner core.  相似文献   

13.
Observations of gravity and atmospheric pressure variations during the total solar eclipse of 11 July 1991 in Mexico City are presented. An LCR-G402 gravimeter equipped with a feedback system and a digital data acquisition system scanned gravity and pressure every second around the totality. On the pressure record an oscillation, starting at the totality, with a peak to peak amplitude of 0.5 hPa and a periodicity of 40 to 50 min, can clearly be seen. This oscillation results from the thermal shock wave produced by the Moon shadow travelling at supersonic speed. At the 0.1 μGal (1 nm · s−2) level all gravity perturbations are explained by the atmospheric pressure effect. Received: 10 February 1995 / Accepted: 7 June 1996  相似文献   

14.
The superconducting gravimeter (SG) has a long-period instrumental noise called the parasitic mode at periods around 100 s, whose precise mechanism has not yet been identified. In this paper, another instrumental noise is detected at much higher frequencies by analyzing the high-rate gravity channel of two SGs in Japan. This is also a parasitic oscillation, characterized by frequencies on the order of 1 Hz and very high Q values. Detailed spectra indicate that the noise actually consists of two modes with small frequency separations. Based on a simple theory on the rotational motions of the superconducting sphere in the gravity sensor, the observed modes are tentatively identified as rotational oscillations of the sphere about two orthogonal axes in the horizontal plane. Interactions between the parasitic modes are investigated using the spectra acquired on an earthquake, to conclude that the low-frequency parasitic mode is likely to be a rotational motion of the sphere about the vertical axis.  相似文献   

15.
D. Gambis 《Journal of Geodesy》2004,78(4-5):295-303
Earth orientation parameters (EOPs) provide the transformation between the International Terrestrial Reference Frame (ITRF) and the International Celestial Reference Frame (ICRF). The different EOP series computed at the Earth Orientation Centre at the Paris Observatory are obtained from the combination of individual EOP series derived from the various space-geodetic techniques. These individual EOP series contain systematic errors, generally limited to biases and drifts, which introduce inconsistencies between EOPs and the terrestrial and celestial frames. The objectives of this paper are first to present the various combined EOP solutions made available at the EOP Centre for the different users, and second to present analyses concerning the long-term consistency of the EOP system with respect to both terrestrial and celestial reference frames. It appears that the present accuracy in the EOP combined IERS C04 series, which is at the level of 200 as for pole components and 20 s for UT1, does not match its internal precision, respectively 100 as and 5 s, because of propagation errors in the realization of the two reference frames. Rigorous combination methods based on a simultaneous estimation of station coordinates and EOPs, which are now being implemented within the International Earth Rotation Service (IERS), are likely to solve this problem in the future.  相似文献   

16.
One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. To use these gravity gradients for application in Earth scienes and gravity field analysis, additional preprocessing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and nontidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection, the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low-degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10−3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10−2 level with this method.  相似文献   

17.
Ellipsoidal geoid computation   总被引:1,自引:1,他引:0  
Modern geoid computation uses a global gravity model, such as EGM96, as a third component in a remove–restore process. The classical approach uses only two: the reference ellipsoid and a geometrical model representing the topography. The rationale for all three components is reviewed, drawing attention to the much smaller precision now needed when transforming residual gravity anomalies. It is shown that all ellipsoidal effects needed for geoid computation with millimetric accuracy are automatically included provided that the free air anomaly and geoid are calculated correctly from the global model. Both must be consistent with an ellipsoidal Earth and with the treatment of observed gravity data. Further ellipsoidal corrections are then negligible. Precise formulae are developed for the geoid height and the free air anomaly using a global gravity model, given as spherical harmonic coefficients. Although only linear in the anomalous potential, these formulae are otherwise exact for an ellipsoidal reference Earth—they involve closed analytical functions of the eccentricity (and the Earths spin rate), rather than a truncated power series in e2. They are evaluated using EGM96 and give ellipsoidal corrections to the conventional free air anomaly ranging from –0.84 to +1.14 mGal, both extremes occurring in Tibet. The geoid error corresponding to these differences is dominated by longer wavelengths, so extrema occur elsewhere, rising to +766 mm south of India and falling to –594 mm over New Guinea. At short wavelengths, the difference between ellipsoidal corrections based only on EGM96 and those derived from detailed local gravity data for the North Sea geoid GEONZ97 has a standard deviation of only 3.3 mm. However, the long-wavelength components missed by the local computation reach 300 mm and have a significant slope. In Australia, for example, such a slope would amount to a 600-mm rise from Perth to Cairns.  相似文献   

18.
A new isostatic model of the lithosphere and gravity field   总被引:2,自引:0,他引:2  
Based on the analysis of various factors controlling isostatic gravity anomalies and geoid undulations, it is concluded that it is essential to model the lithospheric density structure as accurately as possible. Otherwise, if computed in the classical way (i.e. based on the surface topography and the simple Airy compensation scheme), isostatic anomalies mostly reflect differences of the real lithosphere structure from the simplified compensation model, and not necessarily the deviations from isostatic equilibrium. Starting with global gravity, topography and crustal density models, isostatic gravity anomalies and geoid undulations have been determined. The initial crust and upper-mantle density structure has been corrected in a least squares adjustment using gravity. To model the long-wavelength (>2000 km) features in the gravity field, the isostatic condition (i.e. equal mass for all columns above the compensation level) is applied in the adjustment to uncover the signals from the deep-Earth interior, including dynamic deformations of the Earths surface. The isostatic gravity anomalies and geoid undulations, rather than the observed fields, then represent the signals from mantle convection and deep density inhomogeneities including remnants of subducted slabs. The long-wavelength non-isostatic (i.e. the dynamic) topography was estimated to range from –0.4 to 0.5 km. For shorter wavelengths (<2000 km), the isostatic condition is not applied in the adjustment in order to obtain the non-isostatic topography due to regional deviations from classical Airy isostasy. The maximum deviations from Airy isostasy (–1.5 to 1 km) occur at currently active plate boundaries. As another result, a new global model of the lithosphere density distribution is generated. The most pronounced negative density anomalies in the upper mantle are found near large plume provinces, such as Iceland and East Africa, and in the vicinity of the mid-ocean ridge axes. Positive density anomalies in the upper mantle under the continents are not correlated with the cold and thick lithosphere of cratons, indicating a compensation mechanism due to thermal and compositional density.  相似文献   

19.
The first North American Comparison of absolute gravimeters (NACAG-2010) was hosted by the National Oceanic and Atmospheric Administration at its newly renovated Table Mountain Geophysical Observatory (TMGO) north of Boulder, Colorado, in October 2010. NACAG-2010 and the renovation of TMGO are part of NGS’s GRAV-D project (Gravity for the Redefinition of the American Vertical Datum). Nine absolute gravimeters from three countries participated in the comparison. Before the comparison, the gravimeter operators agreed to a protocol describing the strategy to measure, calculate, and present the results. Nine sites were used to measure the free-fall acceleration of g. Each gravimeter measured the value of g at a subset of three of the sites, for a total set of 27 g-values for the comparison. The absolute gravimeters agree with one another with a standard deviation of 1.6?μGal (1 Gal ≡ 1?cm s ?2). The minimum and maximum offsets are ?2.8 and 2.7?μGal. This is an excellent agreement and can be attributed to multiple factors, including gravimeters that were in good working order, good operators, a quiet observatory, and a short duration time for the experiment. These results can be used to standardize gravity surveys internationally.  相似文献   

20.
 A mathematical model is proposed for adjustment of differential or relative gravity measurements, involving simultaneously instrumental readings, coefficients of the calibration function, and gravity values of selected base stations. Tests were performed with LaCoste and Romberg model G gravimeter measurements for a set of base stations located along a north–south line with 1750 mGal gravity range. This line was linked to nine control stations, where absolute gravity values had been determined by the free-fall method, with an accuracy better than 10 μGal. The model shows good consistence and stability. Results show the possibility of improving the calibration functions of gravimeters, as well as a better estimation of the gravity values, due to the flexibility admitted to the values of the calibration coefficients. Received: 15 November 1999 / Accepted: 31 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号