首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conceptions encompassing climate change are irreversible rise of atmospheric carbon dioxide (CO2) concentration, increased temperature, and changes in rainfall both in spatial- and temporal-scales worldwide. This will have a major impact on wheat production, particularly if crops are frequently exposed to a sequence, frequency, and intensity of specific weather events like high temperature during growth period. However, the process of wheat response to climate change is complex and compounded by interactions among atmospheric CO2 concentration, climate variables, soil, nutrition, and agronomic management. In this study, we use the Agricultural Production Systems sIMulator (APSIM)-wheat model, driven by statistically downscaled climate projections of 18 global circulation models (GCMs) under the 2007 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 CO2 emission scenario to examine impact on future wheat yields across key wheat growing regions considering different soil types in New South Wales (NSW) of Australia. The response of wheat yield, yield components, and phenology vary across sites and soil types, but yield is closely related to plant available water capacity (PAWC). Results show a decreasing yield trend during the period of 2021–2040 compared to the baseline period of 1961–1990. Across different wheat-growing regions in NSW, grain yield difference in the future period (2021–2040) over the baseline (1961–1990) varies from +3.4 to ?14.7 %, and in most sites, grain number is decreased, while grain size is increased in future climate. Reduction of wheat yield is mainly due to shorter growth duration, where average flowering and maturing time are advanced by an average of 11 and 12 days, respectively. In general, larger negative impacts of climate change are exhibited in those sites with higher PAWC. Current wheat cultivars with shorter growing season properties are viable in the future climate, but breading for early sowing wheat varieties with longer growing duration will be a desirable adaptation strategy for mitigating the impact of changing climate on wheat yield.  相似文献   

2.
A simulation study was carried out to assess the potential sensitivity of wheat growth and water balance components to likely climate change scenarios at Wagga Wagga, NSW, Australia. Specific processes considered include crop development, growth rate, grain yield, water use efficiency, evapotranspiration, runoff and deep drainage. Individual impacts of changes in temperature, rainfall and CO2 concentration ([CO2]) and the combined impacts of these three variables were analysed for 2050 ([CO2] = 570 ppm, T +2.3°C, P ?7%) and 2070 ([CO2] = 720 ppm, T +3.8°C, P ?10%) conditions. Two different rainfall change scenarios (changes in rainfall intensity or rainfall frequency) were used to modify historical rainfall data. The Agricultural Production Systems Simulator (APSIM) was used to simulate the growth and water balance processes for a 117 year period of baseline, 2050 and 2070 climatic conditions. The results showed that wheat yield reduction caused by 1°C increase in temperature and 10% decrease in rainfall could be compensated by a 266 ppm increase in [CO2] assuming no interactions between the individual effects. Temperature increase had little impact on long-term average water balance, while [CO2] increase reduced evapotranspiration and increased deep drainage. Length of the growing season of wheat decreased 22 days in 2050 and 35 days in 2070 conditions as a consequence of 2.3°C and 3.8°C increase in temperature respectively. Yield in 2050 was approximately 1% higher than the simulated baseline yield of 4,462 kg ha???1, but it was 6% lower in 2070. An early maturing cultivar (Hartog) was more sensitive in terms of yield response to temperature increase, while a mid-maturing cultivar (Janz) was more sensitive to rainfall reduction. Janz could benefit more from increase in CO2 concentration. Rainfall reduction across all rainfall events would have a greater negative impact on wheat yield and WUE than if only smaller rainfall events reduced in magnitude, even given the same total decrease in annual rainfall. The greater the reduction in rainfall, the larger was the difference. The increase in temperature increased the difference of impact between the two rainfall change scenarios while increase in [CO2] reduced the difference.  相似文献   

3.
As a result of climate change, and in particular rainfall changes, agricultural production is likely to change across the globe. Until now most research has focused on areas which will become unsustainable for agricultural production. However, there are also regions where climate change might actually improve conditions for growth. In the western Pampas region of Argentina, average annual rainfall has increased by 100–200 mm over the last 70 years, mainly during summer. Wheat is grown during winter, primarily on stored soil water and the main factor limiting plant production in this area is rainfall. Using the well tested simulation model APSIM-NWheat, we studied whether recent climate change has potentially opened new opportunities for wheat cropping in Argentina. Simulation results indicated that the additional rainfall in the Pampas of Argentina has increased the achievable yield (defined as the yield limited by solar radiation, temperature, water and nitrogen supply) of wheat in the currently cropped region, but less than expected based on the large amount of additional rainfall. The higher achievable yield from additional rainfall could potentially allow an expansion of profitable wheat cropping into currently non-cropped areas, where the achievable wheat yield increased in average from 1 t/ha to currently 2 t/ha. However, the poor water-holding capacity of the sandy soils which dominate the region outside the current cropping area limits the systems ability to use most of the increased summer rainfall. Nevertheless, the current higher achievable yield indicates a suitability of the region for cropping, which will slightly decline or remain unchanged depending on summer rainfall storage, with current and future climate change, including projected changes in rainfall, temperature and atmospheric CO2 concentration. Factors other than just the achievable yield will eventually influence any future development of this region for cropping, including the high sensitivity of the sandy soils to erosion and nutrient leaching, current relatively high land prices, restrictions on clearing for cropping, the distance to the nearest port and current unsuitable cultivars withstanding the high frost risk.  相似文献   

4.
Wheat is the second important cereal crop after rice in West Bengal. During last three decades, due to climate fluctuations and variability, the productivity of this crop remains almost constant, bringing the threat of food security of this State. The objectives of the present study were to assess the trend of climatic variables (rainfall, rainy days, and temperature) over six locations covering five major agro-climatic sub-zones of West Bengal and to estimate the variability of potential, simulated yield using crop simulation model (DSAATv4.5) and the yield gap with actual yield. There were no significant change of rainfall and rainy days in annual, seasonal and monthly scale at all the study sites. In general, the maximum temperature is decreasing throughout West Bengal. Except for Birbhum, the minimum temperature increased significantly in different study sites. District average yield of wheat varied from 1757 kg ha?1 at Jalpaiguri to 2421 kg ha?1at Birbhum. The actual yield trend ranged from ??4.7 kg ha?1 year?1 at Nadia to 32.8 kg ha?1 year?1 at Birbhum. Decreasing trend of potential yield was observed in Terai (Jalpaiguri), New Alluvial Zone (Nadia) and Coastal saline zone (South 24 Parganas), which is alarming for food security in West Bengal.  相似文献   

5.
The study used a modelling approach to assess the potential impacts of likely climate change and increase in CO2 concentration on the wheat growth and water balance in Murray?CDarling Basin in Australia. Impacts of individual changes in temperature, rainfall or CO2 concentration as, well as the 2050 and 2070 climate change scenarios, were analysed. Along an E?CW transect, wheat yield at western sites (warmer and drier) was simulated to be more sensitive to temperature increase than that at eastern sites; along the S?CN transect, wheat yield at northern warmer sites was simulated to be more sensitive to temperature increase, within 1?C3°C temperature increase. Along the E?CW and S?CN transects, wheat at drier sites would benefit more from elevated [CO2] than at wetter sites, but more sensitive to the decline in rainfall. The increase in temperature only did not have much impact on water balance. Elevated [CO2] increased the drainage in all the sites, whilst rainfall reduction decreased evapotranspiration, runoff and drainage, especially at drier sites. In 2050, wheat yield would increase by 1?C10% under all climate change scenarios along the S?CN transect, except for the northernmost site (Dalby). Along the E?CW transect, the most obvious increase of wheat yields under all climate change scenarios occurred in cooler and wetter eastern sites (Yass and Young), with an average increase rate of 7%. The biggest loss occurred at the driest sites (Griffith and Swan Hill) under A1FI and B2 scenarios, ranging from ?5% to ?16%. In 2070, there would be an increased risk of yield loss in general, except for the cool and wet sites. Water use efficiency was simulated to increase at most of the study sites under all the climate change scenarios, except for the driest site. Yield variability would increase at drier sites (Ardlethan, Griffith and Swan Hill). Soil types would also impact on the response of wheat yield and water balance to future climate change.  相似文献   

6.
Paleo-data suggest that East African mountain treelines underwent an altitudinal shift during the Last Glacial Maximum (LGM). Understanding the ecological and physiological processes underlying treeline response to such past climate change will help to improve forecasts of treeline change under future global warming. In spite of significant improvements in paleoclimatic reconstruction, the climatic conditions explaining this migration are still debated and important factors such as atmospheric CO2 concentration, the impact of lapse rate decreasing temperature along altitudinal gradients and rainfall modifications due to elevation have often been neglected or simplified. Here, we assess the effects of these different factors and estimate the influence of the most dominant factors controlling changes in past treeline position using a multi-proxy approach based on simulations from BIOME4, a coupled biogeography and biogeochemistry model, modified to account for the effect of elevation on vegetation, compared with pollen, and isotopic data. The results indicate a shift in mountain vegetation at the LGM was controlled by low pCO2 and low temperatures promoting species morphologically and physiologically better adapted to LGM conditions than many trees composing the forest belt limit. Our estimate that the LGM climate was cooler than today’s by ?4.5 °C (range: ?4.3 to ?4.6 °C) at the upper limit of the treeline, whereas at 831 m it was cooler by ?1.4 °C (range: ?2.6 to ?0.6 °C), suggests that a possible lapse rate modification strongly constrained the upper limit of treeline, which may limit its potential extension under future global warming.  相似文献   

7.
Ten wheat production sites of Pakistan were categorized into four climatic zones i.e. arid, semi-arid, sub-humid and humid to explore the vulnerability of wheat production in these zones to climate change using CSM-Cropsim-CERES-Wheat model. The analysis was based on multi-year (1971–2000) crop model simulation runs using daily weather series under scenarios of increased temperature and atmospheric carbon dioxide concentration (CO2) along with two scenarios of water management. Apart from this, sowing date as an adaptation option to offset the likely impacts of climate change was also considered. Increase in temperature resulted in yield declines in arid, semi-arid and sub-humid zone. But the humid zone followed a positive trend of gain in yield with rise in temperature up to 4°C. Within a water regime, increase in CO2 concentration from 375 to 550 and 700 ppm will exert positive effect on gain in wheat yield but this positive effect is significantly variable in different climatic zones under rainfed conditions than the full irrigation. The highest response was shown by arid zone followed by semi-arid, sub-humid and humid zones. But if the current baseline water regimes (i.e. full irrigation in arid and semi-arid zones and rainfed in sub-humid and humid zones) persist in future, the sub-humid zone will be most benefited in terms of significantly higher percent gain in yield by increasing CO2 level, mainly because of its rainfed water regime. Within a CO2 level the changes in water supply from rainfed to full irrigation shows an intense degree of responsiveness in terms of yield gain at 375 ppm CO2 level compared to 550 and 700 ppm. Arid and semi-arid zones were more responsive compared to sub-humid and humid zones. Rise in temperature reduced the length of crop life cycle in all areas, though at an accelerated rate in the humid zone. These results revealed that the climatic zones have shown a variable intensity of vulnerability to different scenarios of climate change and water management due to their inherent specific and spatial climatic features. In order to cope with the negative effects of climate change, alteration in sowing date towards cooler months will be an appropriate response by the farmers.  相似文献   

8.
This paper explores changes in climatic variables, including solar radiation, rainfall, fraction of diffuse radiation (FDR) and temperature, during wheat season (October to May) and maize season (June to September) from 1961 to 2003 at four sites in the North China Plain (NCP), and then evaluates the effects of these changes on crop growth processes, productivity and water demand by using the Agricultural Production Systems Simulator. A significant decline in radiation and rainfall was detected during the 43 years, while both temperature and FDR exhibit an increasing trend in both wheat and maize seasons. The average trend of each climatic variable for each crop season from the four sites is that radiation decreased by 13.2 and 6.2 MJ m?2 a?1, precipitation decreased by 0.1 and 1.8 mm a?1, minimum temperature increased by 0.05 and 0.02°C a?1, maximum temperature increased by 0.03 and 0.01°C a?1, FDR increased by 0.21 and 0.38% a?1 during wheat and maize season, respectively. Simulated crop water demand and potential yield was significantly decreased because of the declining trend in solar radiation. On average, crop water demand was decreased by 2.3 mm a?1 for wheat and 1.8 mm a?1 for maize if changes in crop variety were not considered. Simulated potential crop yields under fully irrigated condition declined about 45.3 kg ha?1 a?1 for wheat and 51.4 kg ha?1 a?1 for maize at the northern sites, Beijing and Tianjin. They had no significant changes in the southern sites, Jinan and Zhengzhou. Irrigation, fertilization development and crop variety improvement are main factors to contribute to the increase in actual crop yield for the wheat–maize double cropping system, contrasted to the decline in the potential crop yield. Further research on how the improvement in crop varieties and management practices can counteract the impact of climatic change may provide insight into the future sustainability of wheat–maize double crop rotations in the NCP.  相似文献   

9.
This study comprises (1) an analysis of recent climate trends at two sites in north-west India (Ludhiana in Punjab and Delhi) and (2) an impact and risk assessment for wheat yields associated with climatic variability. North-west Indian agriculture is dominated by rice-wheat rotation in which the wheat season (‘rabi’, November to March) is characterized by predominantly dry conditions—superimposed by very high inter-annual variability of rainfall (17 to 260 mm in Ludhiana and <1 to 155 mm in Delhi). While rainfall remained without discernable trend over the last three decades, minimum and average temperatures showed increasing trends of 0.06 and 0.03°C year???1, respectively, at Ludhiana. The site in (metropolitan) Delhi was apparently influenced by city-effects, which was noticeable from the decrease in solar radiation of 0.09 MJ m???2 day???1 year???1. The CERES-wheat model was used to calculate yields of rainfed wheat that were at both locations highly correlated with seasonal rainfall. An assessment framework was developed to quantify yield impacts due to rainfall variability in three steps: (1) data from different years were aggregated into four classes, i.e., years with scarce, low, moderate, and high rainfall, (2) yield records of each rainfall class were ranked according to yield to facilitate (3) a comparison of yields with identical rank, i.e. among the best yield of each class, the second-best, etc. The class with moderate rainfall was taken as baseline yield to compute yield impacts of other rainfall scenarios. Years with scarce rainfall resulted in only 34% (Ludhiana) and 35% (Delhi) of the baseline yield. The yields in years with low rainfall accounted for 61% (Delhi) and 49% (Ludhiana) of the baseline yields. In Ludhiana, high rainfall years resulted in 200% yield as compared to the baseline yield, whereas they reached only 105% in Delhi. Low-intensity (1× and 3×) irrigation decreased the relative yield losses, but entailed a higher vulnerability in terms of absolute yield losses. Only high-intensity (4×) irrigation buffered wheat yields against adverse rainfall years. Early sowing was beneficial for wheat yields under all rainfall scenarios. The framework could be a valuable decision-support tool at the farm level where seasonal rainfall variability is high.  相似文献   

10.
Climate change is likely to significantly impact agricultural production in the Great Plains region of the Central United States. This study estimated the impact of changes in temperature and precipitation on wheat (triticum aestivum) variety yield distributions using the moment-based maximum entropy (MBME) model. This approach allows for quantification of potential weather impacts on the yield distribution, and allows these effects to vary across varieties. The unique data set matches wheat variety trial data for 1985 to 2011 with weather data from the exact trial site for 11 locations throughout Kansas. Ten widely-planted varieties with a range of biotic and abiotic characteristics were included for comparison. Weather scenarios were simulated for baseline, increased temperature (one-degree Celsius warming), decreased precipitation (tenth-percentile rainfall outcome), and a combination warming and drought scenario. Warming resulted in an 11 % yield reduction, drought a 22 % reduction, and warming and drought a cumulative 33 % reduction. These effects vary across varieties. Alternative measures of yield risk (e.g. yield variance and coefficient of variation) were also constructed under each scenario and a similar pattern of heterogeneous impacts emerges. The key findings are that (i) exposure to warming and drought lead to mean yield reductions coupled with increased yield risk for all varieties, and (ii) newer (post 2005) seed varieties have a yield advantage over older varieties, however this advantage is reduced under warming and drought conditions.  相似文献   

11.
This study evaluated the effects of climate change on sugarcane yield, water use efficiency, and irrigation needs in southern Brazil, based on downscaled outputs of two general circulation models (PRECIS and CSIRO) and a sugarcane growth model. For three harvest cycles every year, the DSSAT/CANEGRO model was used to simulate the baseline and four future climate scenarios for stalk yield for the 2050s. The model was calibrated for the main cultivar currently grown in Brazil based on five field experiments under several soil and climate conditions. The sensitivity of simulated stalk fresh mass (SFM) to air temperature, CO2 concentration [CO2] and rainfall was also analyzed. Simulated SFM responses to [CO2], air temperature and rainfall variations were consistent with the literature. There were increases in simulated SFM and water usage efficiency (WUE) for all scenarios. On average, for the current sugarcane area in the State of São Paulo, SFM would increase 24 % and WUE 34 % for rainfed sugarcane. The WUE rise is relevant because of the current concern about water supply in southern Brazil. Considering the current technological improvement rate, projected yields for 2050 ranged from 96 to 129 t?ha?1, which are respectively 15 and 59 % higher than the current state average yield.  相似文献   

12.
Three environmental change scenarios (the best scenario, the most likely scenario and the worst scenario) were used by the APSIM (Agricultural Production System sIMulator) Wheat module to study the possible impacts of future environmental change (climate change plus pCO2 change) on wheat production in the Mid-Lower North of South Australia. GIS software was used to manage spatial-climate data and spatial-soil data and to present the results. Study results show that grain yield (kg ha−1) was adversely affected under the worst environmental change scenario (−100% ∼ −42%) and the most likely environmental change scenario (−58% ∼ −3%). Grain nitrogen content (% N) either increased or decreased depending on the environmental change scenarios used and climate divisions (−25% ∼ +42%). Spatial variability was found for projected impact outcomes within climate divisions indicating the necessity of including the spatial distribution of soil properties in impact assessment.  相似文献   

13.
Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from ?5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from ?5 to ?30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.  相似文献   

14.
Based on LGM experiments with an atmosphere–ocean general circulation model, we systematically investigated the effects of physical changes in the ocean and induced biological effects as well on the low atmospheric CO2 concentration (pCO2) at the last glacial maximum (LGM). Numerical experiments with an oceanic carbon-cycle model showed that pCO2 was lowered by ~30 ppm in the LGM ocean. Most of the pCO2 reduction was explained by the change in CO2 solubility in the ocean due to lower sea surface temperature (SST) during the LGM. Moreover, we found that SST changes in the high-latitude Northern Atlantic could explain more than one-third of the overall change in pCO2 induced by global SST change, suggesting an important feedback between the Laurentide ice sheet and pCO2.  相似文献   

15.
Quantification of the spatial impact of climate on crop productivity and the potential value of seasonal climate forecasts can effectively assist the strategic planning of crop layout and help to understand to what extent climate risk can be managed through responsive management strategies at a regional level. A simulation study was carried out to assess the climate impact on the performance of a dryland wheat-fallow system and the potential value of seasonal climate forecasts in nitrogen management in the Murray-Darling Basin (MDB) of Australia. Daily climate data (1889–2002) from 57 stations were used with the agricultural systems simulator (APSIM) to simulate wheat productivity and nitrogen requirement as affected by climate. On a good soil, simulated grain yield ranged from <2 t/ha in west inland to >7 t/ha in the east border regions. Optimal nitrogen rates ranged from <60 kgN/ha/yr to >200 kgN/ha/yr. Simulated gross margin was in the range of –$20/ha to $700/ha, increasing eastwards. Wheat yield was closely related to rainfall in the growing season and the stored soil moisture at sowing time. The impact of stored soil moisture increased from southwest to northeast. Simulated annual deep drainage ranged from zero in western inland to >200 mm in the east. Nitrogen management, optimised based on ‘perfect’ knowledge of daily weather in the coming season, could add value of $26~$79/ha compared to management optimised based on historical climate, with the maximum occurring in central to western part of MDB. It would also reduce the nitrogen application by 5~25 kgN/ha in the main cropping areas. Comparison of simulation results with the current land use mapping in MDB revealed that the western boundary of the current cropping zone approximated the isolines of 160 mm of growing season rainfall, 2.5t/ha of wheat grain yield, and $150/ha of gross margin in QLD and NSW. In VIC and SA, the 160-mm isohyets corresponded relatively lower simulated yield due to less stored soil water. Impacts of other factors like soil types were also discussed.  相似文献   

16.
A crop-growth-simulation model based on SUCROS87 was used to study effects of temperature rise and increase of atmospheric CO2 concentration on wheat yields in several regions in Europe. The model simulated potential and water-limited crop production (growth with ample supply of nutrients and in the absence of damage by pests, diseases and weeds). Historic daily weather data from 13 sites in Western Europe were used as starting point.For potential production (optimal water) a 3 °C temperature rise led to a yield decline due to a shortening of the growing period on all locations. Doubling of the CO2 concentration caused an increase in yield of 40% due to higher assimilation rates. It was found that effects of higher temperature and higher CO2 concentration were nearly additive and the combination of both led to a yield increase of 1–2 ton ha-1. A very small CO2-temperature interaction was found: the effect of doubled CO2 concentration on crop yield was larger at higher temperatures. The inter-annual yield variability was hardly affected.When water was limiting crop-production effects of temperature rise and higher CO2 levels were different than for the potential production. Rise in temperature led to a smaller yield reduction, doubled CO2 concentration to a larger yield increase and combination of both led to a large yield increase (3 ton ha-1) in comparison with yields simulated for the present situation. Both rise in temperature and increase in the CO2 concentration reduced water requirements of the crop. Water shortages became smaller, leading to a reduction in inter-annual variability. It is concluded that when no major changes in precipitation pattern occur a climate change will not affect wheat yields since negative effects of higher temperatures are compensated by positive effects of CO2 enrichment.  相似文献   

17.
Simulating the impacts of climate change on cotton production in India   总被引:1,自引:0,他引:1  
General circulation models (GCMs) project increases in the earth’s surface air temperatures and other climate changes by the mid or late 21st century, and therefore crops such as cotton (Gossypium spp L.) will be grown in a much different environment than today. To understand the implications of climate change on cotton production in India, cotton production to the different scenarios (A2, B2 and A1B) of future climate was simulated using the simulation model Infocrop-cotton. The GCM projections showed a nearly 3.95, 3.20 and 1.85 °C rise in mean temperature of cotton growing regions of India for the A2, B2 and A1B scenarios, respectively. Simulation results using the Infocrop-cotton model indicated that seed cotton yield declined by 477 kg?ha?1 for the A2 scenario and by 268 kg?ha?1 for the B2 scenario; while it was non-significant for the A1B scenario. However, it became non-significant under elevated [CO2] levels across all the scenarios. The yield decline was higher in the northern zone over the southern zone. The impact of climate change on rainfed cotton which covers more than 60 % of the country’s total cotton production area (mostly in the central zone) and is dependent on the monsoons is likely to be minimum, possibly on account of marginal increase in rainfall levels. Results of this assessment suggest that productivity in northern India may marginally decline; while in central and southern India, productivity may either remain the same or increase. At the national level, therefore, cotton production is unlikely to change with climate change. Adaptive measures such as changes in planting time and more responsive cultivars may further boost cotton production in India.  相似文献   

18.
Simulated impacts of global and regional climate change, induced by an enhanced greenhouse effect and by Amazonian deforestation, on the phenology and yield of two grain corn cultivars in Venezuela (CENIAP PB-8 and OBREGON) are reported. Three sites were selected:Turén, Barinas andYaritagua, representing two important agricultural regions in the country. The CERES-Maize model, a mechanistic process-based model, in theDecision Support System for Agrotechnology Transfer (DSSAT) was used for the crop simulations. These simulations assume non-limiting nutrients, no pest damage and no damage from excess water; therefore, the results indicate only the difference between baseline and perturbed climatic conditions, when other conditions remain the same. Four greenhouse-induced global climate change scenarios, covering different sensitivity levels, and one deforestation-induced regional climate change scenario were used. The greenhouse scenarios assume increased air temperature, increased rainfall and decreased incoming solar radiation, as derived from atmospheric GCMs for doubled CO2 conditions. The deforestation scenarios assume increased air temperature, increased incoming solar radiation and decreased rainfall, as predicted by coupled atmosphere-biosphere models for extensive deforestation of a portion of the Amazon basin. Two baseline climate years for each site were selected, one year with average precipitation and another with lower than average rainfall. Scenarios associated with the greenhouse effect cause a decrease in yield of both cultivars at all three sites, while the deforestation scenarios produce small changes. Sensitivity tests revealed the reasons for these responses. Increasing temperatures, especially daily maximum temperatures, reduce yield by reducing the duration of the phenological phases of both cultivars, as expected from CERES-Maize. The reduction of the duration of the kernel filling phase has the largest effect on yield. Increases of precipitation associated with greenhouse warming have no effects on yield, because these sites already have adequate precipitation; however, the crop model used here does not simulate potential negative effects of excess water, which could have important consequences in terms of soil erosion and nutrient leaching. Increases in solar radiation increased yields, according to the non-saturating light response of the photosynthesis rate of a C4 plant like corn, compensating for reduced yields from increased temperatures in deforestation scenarios. In the greenhouse scenarios, reduced insolation (due to increased cloud cover) and increased temperatures combine to reduce yields; a combination of temperature increase with a reduction in solar radiation produces fewer and lighter kernels.A report of thePAN-EARTH Project, Venezuela Case Study.  相似文献   

19.
We assert that the simulation of fine-scale crop growth processes and agronomic adaptive management using coarse-scale climate change scenarios lower confidence in regional estimates of agronomic adaptive potential. Specifically, we ask: 1) are simulated yield responses tolow-resolution climate change, after adaptation (without and with increased atmospheric CO2), significantly different from simulated yield responses tohigh-resolution climate change, after adaptation (without and with increased atmospheric CO2)? and 2) does the scale of the soils information, in addition to the scale of the climate change information, affect yields after adaptation? Equilibrium (1 × CO2 versus 2 × CO2)climate changes are simulated at two different spatial resolutions in the Great Plains using the CSIRO general circulation model (low resolution) and the National Center for Atmospheric Research (NCAR) RegCM2 regional climate model (high resolution). The EPIC crop model is used to simulate the effects of these climate changes; adaptations in EPIC include earlier planting and switch to longer-season cultivars. Adapted yields (without and with additional carbon dioxide) are compared at the different spatial resolutions. Our findings with respect to question 1 suggest adaptation is more effective in most cases when simulated with a higher resolution climate change than its more generalized low resolution equivalent. We are not persuaded that the use of high resolution climate change information provides insights into the direct effects of higher atmospheric CO2 levels on crops beyond what can be obtained with low resolution information. However, this last finding may be partly an artifact of the agriculturally benign CSIRO and RegCM2 climate changes. With respect to question 2, we found that high resolution details of soil characteristics are particularly important to include in adaptation simulations in regions typified by soils with poor water holding capacity.  相似文献   

20.
This paper analyzes the impact of climate, crop production technology, and atmospheric carbon dioxide (CO2) on current and future crop yields. The analysis of crop yields endeavors to advance the literature by estimating the effect of atmospheric CO2 on observed crop yields. This is done using an econometric model estimated over pooled historical data for 1950–2009 and data from the free air CO2 enrichment experiments. The main econometric findings are: 1) Yields of C3 crops (soybeans, cotton, and wheat) directly respond to the elevated CO2, while yields of C4 crops (corn and sorghum) do not, but they are found to indirectly benefit from elevated CO2 in times and places of drought stress; 2) The effect of technological progress on mean yields is non-linear; 3) Ignoring atmospheric CO2 in an econometric model of crop yield likely leads to overestimates of the pure effects of technological progress on crop yields of about 51, 15, 17, 9, and 1 % of observed yield gain for cotton, soybeans, wheat, corn and sorghum, respectively; 4) Average climate conditions and climate variability contribute in a statistically significant way to average crop yields and their variability; and 5) The effect of CO2 fertilization generally outweighs the effect of climate change on mean crop yields in many regions resulting in an increase of 7–22, 4–47, 5–26, 65–96, and 3–35 % for yields of corn, sorghum, soybeans, cotton, and wheat, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号