首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Predicting the ability of the biosphere to continue to deliver ecosystem services in the face of biodiversity loss and environmental change is a major challenge. The results of short‐term and small‐scale experimental studies are both equivocal and difficult to extrapolate from. In this study we use data on benthic palaeocommunities covering 4,000,000 years (in the Late Jurassic when temperate coastal seas in NW Europe experienced fluctuations in oxygenation). The biological traits associated with each species in the palaeocommunities were combined to index the delivery of ecological functions. Five ecosystem functions were examined: food for large mobile predators, biogenic habitat provision, nutrient recycling/regeneration, inorganic carbon sequestration and food‐web dynamics. In modern systems these ecological functions underpin ecosystem services that are important for human well‐being. Our results show that the supply of food for higher predators was remarkably constant during the 4,000,000 years, suggesting that redundancy amongst species in the assemblage drives the biodiversity–ecosystem function (BEF) relationship. By contrast, the provision of biogenic habitat varied with the occurrence of a relatively few taxa, a pattern consistent with a rivet type model of BEF. For nutrient regeneration, carbon sequestration and food‐web dynamics the patterns were complex and suggestive of an idiosyncratic model of BEF. To our knowledge this is the first study to quantify ecological functioning through deep time and demonstrates the utility of this approach to understanding long‐term patterns of BEF in both ancient and contemporary marine ecosystems. The delivery of all five ecological functions studied became increasingly variable as the regional climate became drier, thus modifying the supply of terrigenous nutrient inputs.  相似文献   

2.
海洋生态动力学模型的研究进展   总被引:1,自引:0,他引:1  
海洋生态系统动力学模型与模拟研究是海洋生态学研究的最重要方面之一,依据近来国内外的研究成果,综述了海洋生态系统动力学模型的目的、研究方法及建立数学模型应遵循的原则、进展以及未来的发展方向,讨论了海洋生态模型的基本性质及分类并就它们在海洋生态系统研究中的应用作了一些初步分析。  相似文献   

3.
A computer analysis was performed on experimental results obtained when mine tailings were added to seawater. The Mixed Upper-Layer Ecotrophie Simulation (MULES) model was tested by changing the extinction coefficient and the abundance of heterotrophic zooflagellates. Increasing the extinction coefficient resulted in a delay of phytoplankton growth, an increase in zooplankton standing stock and better growth of autotrophic flagellates compared with diatoms. Zooflagellates in the ecosystem influence the growth of zooplankton; secondary production by zooplankton was markedly depressed at low levels of zooflagellates. These results are believed to be of general significance for the diagnosis of suspended sediment effects on planktonic ecosystems.  相似文献   

4.
胶州湾北部水层-底栖耦合生态系统的动力数值模拟分析   总被引:13,自引:2,他引:13  
基于胶州湾1995年5航次的生态动力学综合实验观测,建立了一个水层-底栖生态系耦合的动力学箱式模型,其中水层亚模型包括浮游植物、浮游动物、无机氮、无机磷以及DOC、POC和溶解氧7变量,底栖部分包括大型、小型底栖生物、细胞、碎屑及无机氮和磷6变量。模型考虑了海面太阳辐照度变化、海水及底泥温度变化,以及营养盐与DOC陆源流入的影响,利用该模型成功地模拟了胶州湾北部各生态变量的季节变化特征。同吴增茂等(1999)水层模型模拟结果相比可以看出,耦合模型的结果更加合理。  相似文献   

5.
运用压力-状态-响应(pressure-state-response,PSR)模型,采用生态系统健康理论评价珊瑚礁生态状况.借鉴国内外现有生态系统评价方法,结合珊瑚礁生态系统的特点,建立适合我国国情的珊瑚礁生态系统评价方法和模式,并对我国典型海域珊瑚礁生态健康状况进行评价,以期为我国典型珊瑚礁生态系统健康状况提供基础资料.评价结果显示东山、涠洲岛、海南东部珊瑚礁生态健康状况为健康,徐闻和西沙海域珊瑚礁生态健康状况为亚健康,评价结果与我国相关生态监控区调查结果基本一致.  相似文献   

6.
海洋生态系统动力学模型作为定量地认识和分析海洋生态系统现象的有力工具,近年来得到了长足发展。本文首先回顾了海洋生态动力学模型的发展历史,着重介绍了21世纪以来生态系统动力学模型的三大发展趋势:一是进一步探索海洋生态系统复杂性,二是全球气候变化与海洋生态系统的相互作用;三是不再局限于理论研究,而进入于灾害预报与评估、公共决策等应用领域。其次介绍了海洋生态动力学模型的分类及典型海洋生态动力学数值模型COHERENS的特点、功能和最新的应用情况。最后总结归纳了目前海洋生态动力学模型研究领域的几大问题与挑战,展望了该研究领域未来的发展趋势和方向。  相似文献   

7.
建立了一个包括浮游植物、浮游动物、无机氮和磷、溶解态与悬浮有机物及溶解氧七状态变量的浅海水体生态动力学箱式模型,并且考虑了海面太阳辐照度变化、海水与底泥温度变化以及营养盐海底溶出和陆源流入的影响。初步分析了在胶州湾北部浮游生态系统演变的几个特征时期动力学方程中的物流动态特征。结果是比较合理的。  相似文献   

8.
Three experimental ecosystems were employed to test the effect of Corexit 9527, with and without Prudhoe Bay crude oil, on the ecology of a temperate pelagic ecosystem. The results indicated that Corexit 9527 alone enhanced biological productivity without changing the structure of the ecosystem. The mixture of Corexit and crude oil caused a major change in the ecology of the ecosystem which resulted in large numbers of bacteria and zooflagellates, but a depression of all other zooplankton phyla.  相似文献   

9.
We consider the decadal evolution of the Black-Sea ecosystem on the basis of a three-dimensional coupled model consisting of the Black-Sea circulation model and a biogeochemical block. The circulation model is based on the widely used POM (Princeton Ocean Model) model. The calculated hydrophysical fields are interpolated then to levels of the biogeochemical model, which covers the upper 150-m layer. We demonstrate the close relationship between the interannual variation of hydrophysical fields and the evolution of the main elements of the ecosystem. The period under consideration (1992–2001) is characterized by the warming of the Black-Sea upper layer, which can be traced by the trend of a growing surface temperature. It follows from the results of modeling that the process of warming is also revealed in the subsurface hydrophysical characteristics and the dynamics of the main elements of the Black-Sea ecosystem.  相似文献   

10.
海洋生态系统动力学模型是研究海洋生态环境的重要手段。随着模型的发展, 生态参数取值不确定性增加, 对模型结果的影响逐渐增大, 因此模型参数优化显得尤为重要。本研究在南海北部应用一维物理-生态耦合模型, 通过对模型生态参数进行敏感性分析, 获取关键生态参数, 利用遗传算法对参数进行优化。结果表明, 模型中的敏感参数主要集中于浮游植物生长和浮游动物生长、摄食和死亡以及碎屑沉降等过程。针对以上参数利用遗传算法优化, 发现仅加入表层卫星数据, 模型表层和垂向模拟误差分别降低27.80%和21.40%; 加入垂向观测数据, 表层和垂向模拟误差分别降低14.90%和32.70%。遗传算法应用于海洋生态模型的关键参数优化研究, 所获取的参数对模型有明显的改善效果, 提高了耦合模型对生态系统的模拟精度, 为参数优化在三维模型中的应用提供了依据。  相似文献   

11.
Ecosystem-based management of marine fisheries requires the use of simulation modelling to investigate the system-level impact of candidate fisheries management strategies. However, testing of fundamental assumptions such as system structure or process formulations is rarely done. In this study, we compare the output of three different ecosystem models (Atlantis, Ecopath with Ecosim, and OSMOSE) applied to the same ecosystem (the southern Benguela), to explore which ecosystem effects of fishing are most sensitive to model uncertainty. We subjected the models to two contrasting fishing pressure scenarios, applying high fishing pressure to either small pelagic fish or to adult hake. We compared the resulting model behaviour at a system level, and also at the level of model groups. We analysed the outputs in terms of various commonly used ecosystem indicators, and found some similarities in the overall behaviour of the models, despite major differences in model formulation and assumptions. Direction of change in system-level indicators was consistent for all models under the hake pressure scenario, although discrepancies emerged under the small-pelagic-fish scenario. Studying biomass response of individual model groups was key to understanding more integrated system-level metrics. All three models are based on existing knowledge of the system, and the convergence of model results increases confidence in the robustness of the model outputs. Points of divergence in the model results suggest important areas of future study. The use of feeding guilds to provide indicators for fish species at an aggregated level was explored, and proved to be an interesting alternative to aggregation by trophic level.  相似文献   

12.
水层生态系统动力学模式参数的敏感性分析   总被引:1,自引:1,他引:0  
通过生态动力学模式参数的敏感性试验,比较详细地讨论了模拟结果对影响因子的敏感性。模式在温度、辐射和透明度等实际观测资料的强迫下,模拟了1982年5月至1983年5月渤海水层生态系统的年变化。分析表明,浮游植物的最大生长率、海水的消光系数、浮游动物对浮游植物的最大捕食率、捕食效率和碎屑的再矿化率是影响渤海水层生态系统年循环的主要因子。  相似文献   

13.
胃含物分析样本数量对生态系统指标估计的影响   总被引:1,自引:0,他引:1  
本研究应用在胶州湾构建的Ecopath生态系统模型,评估了在模型构建过程中,3种鱼类胃含物分析不同样本数量获得的食性数据对模型输出结果的影响。该模型的生态系统指标被分为3种类别:(1)直接指标,如物种营养级等被胃含物分析样本量直接影响的指标;(2)间接指标,如无脊椎生物生态效率(Ecology efficiency, EE)等受营养关系影响的指标;(3)系统指标,如系统总流量(TST)等用来描述整个生态系统的指标。本研究评估了不同的胃含物分析数量对这些指标的影响。结果表明生态系统模型的系统指标最为稳健,受胃含物分析样本数量的影响最低,而与物种直接相关的指标则在胃含物分析样本量较低时准确度较低。当更多的鱼类胃含物分析数量降低时,生态系统指标的不确定性会增加。本研究有助于理解食性信息的质量如何影响生态系统模型输出,同时可以指导为生态模型构建而进行的胃含物分析实验设计。  相似文献   

14.
The Pagasitikos gulf ecosystem is studied through the analysis of experimental field data acquired during several monitoring projects and the application of a complex biogeochemical model. The gulf was separated into three different parts (internal, top central-external, bottom central-external) according to the patterns exhibited by the key ecosystem indicators. Unlike other semi-enclosed gulfs Pagasitikos can be characterised as meso-oligotrophic undergoing periods of P or N limitation. Although the signal of nutrient inputs is not very clear in the field data, their importance is assessed through simulation. Increased phosphate concentrations either due to mixing or due to anthropogenic activities can result in phytoplanktonic blooms with significant contribution by diatoms. The effect of hydrodynamic patterns on primary production has been demonstrated through ecosystem modeling indicating that due to long stratification periods, all nutrients released through the benthic regeneration are trapped in the deeper layers, developing a microbial food web. However when the thermocline erodes nutrients find their way up in the upper layers of the euphotic zone and the system turns into more classical type with primary producers growing significantly faster.  相似文献   

15.
Numerical simulations using a physiologically-based model of marine ecosystem size spectrum are conducted to study the influence of primary production and temperature on energy flux through marine ecosystems. In stable environmental conditions, the model converges toward a stationary linear log–log size-spectrum. In very productive ecosystems, the model predicts that small size classes are depleted by predation, leading to a curved size-spectrum.It is shown that the absolute level of primary production does not affect the slope of the stationary size-spectrum but has a nonlinear effect on its intercept and hence on the total biomass of consumer organisms (the carrying capacity). Three domains are distinguished: at low primary production, total biomass is independent from production changes because loss processes dominate dissipative processes (biological work); at high production, ecosystem biomass is proportional to primary production because dissipation dominates losses; an intermediate transition domain characterizes mid-production ecosystems. Our results enlighten the paradox of the very high ecosystem biomass/primary production ratios which are observed in poor oceanic regions. Thus, maximal dissipation (least action and low ecosystem biomass/primary production ratios) is reached at high primary production levels when the ecosystem is efficient in transferring energy from small sizes to large sizes. Conversely, least dissipation (most action and high ecosystem biomass/primary production ratios) characterizes the simulated ecosystem at low primary production levels when it is not efficient in dissipating energy.Increasing temperature causes enhanced predation mortality and decreases the intercept of the stationary size spectrum, i.e., the total ecosystem biomass. Total biomass varies as the inverse of the Arrhenius coefficient in the loss domain. This approximation is no longer true in the dissipation domain where nonlinear dissipation processes dominate over linear loss processes. Our results suggest that in a global warming context, at constant primary production, a 2–4 °C warming would lead to a 20–43% decrease of ecosystem biomass in oligotrophic regions and to a 15–32% decrease of biomass in eutrophic regions.Oscillations of primary production or temperature induce waves which propagate along the size-spectrum and which amplify until a “resonant range” which depends on the period of the environmental oscillations. Small organisms oscillate in phase with producers and are bottom-up controlled by primary production oscillations. In the “resonant range”, prey and predators oscillate out of phase with alternating periods of top-down and bottom-up controls. Large organisms are not influenced by bottom-up effects of high frequency phytoplankton variability or by oscillations of temperature.  相似文献   

16.
基于参数空间分布的海洋生态系统模拟   总被引:1,自引:0,他引:1  
在模拟大尺度海洋生态系统时,由于子区域的生态系统有着各自的特征,导致参数值在空间上存在差异,因此参数在整个研究区域取常数的做法必须改进.基于此,使用气候模式FOAM的气侯态背景场驱动一个简单的三维海洋生态系统模型,并引入参数的空间分布,在全球尺度上通过伴随方法同化SeaWiFS叶绿素资料.引入参数空间分布后,同化结果得到很大改进:浮游植物表层生物量(氮)的平均差从0.155 3减小至0.060 6 mmol·m-3,下降了60.9%,有效地降低了模拟值与观测值在空间上的差异;浮游植物表层生物量平均值也从0.103 1上升至0.125 2 mmol·m-3,更接近SeaWiFS观测.实验结果表明通过引入参数的空间分布来改进海洋生态系统的模拟是可行的.  相似文献   

17.
为掌握霞浦核电基地海洋生物的放射性本底水平,在其周边50 km范围内采集5类9种海洋生物样品,测量其中的天然放射性核素238U、232Th、226Ra、40K,以及人工放射性核素137Cs、134Cs、90Sr、58Co、60Co、54Mn、110mAg、65Zn的活度浓度并进行辐射剂量评价。结果显示,所有样品中134Cs、58Co、60Co、54Mn、110mAg、65Zn的活度浓度均低于最小可探测活度浓度,238U、232Th、226Ra、40K、137Cs和90Sr的平均活度浓度分别为(0.48±0.48)、(0.86±1.20)、(0.27±0.34)、(74.3±43.0)、(0.023±0.019)、(0.242±0.167) Bq/kg,处于我国食品天然放射性本底水平内。当地公众由于食入海产品所致年有效剂量为55.1 μSv/a,其中137Cs、90Sr所致剂量分别为0.021、0.49 μSv/a;海洋生物所受辐射剂量为0.048~0.276 μSv/h。〖JP2〗当地公众及海洋生物所受辐射剂量均远低于国家标准限值或国际推荐控制值。本次调查为霞浦核电厂运行前海洋生物放射性本底建立了基线数据,并提出了今后海洋生物监测的重点核素,除137Cs、134Cs、90Sr、58Co、60Co、54Mn、110mAg、65Zn,还应增加对3H、14C、131I的监测。  相似文献   

18.
We study the dynamics of the planktonic ecosystem in the coastal upwelling zone within the California Current System using a three-dimensional (3-D), eddy-resolving circulation model coupled to an ecosystem/biogeochemistry model. The physical model is based on the Regional Oceanic Modeling System (ROMS), configured at a resolution of 15 km for a domain covering the entire US West Coast, with an embedded child grid covering the central California upwelling region at a resolution of 5 km. The model is forced with monthly mean boundary conditions at the open lateral boundaries as well as at the surface. The ecological/biogeochemical model is nitrogen based, includes single classes for phytoplankton and zooplankton, and considers two detrital pools with different sinking speeds. The model also explicitly simulates a variable chlorophyll-to-carbon ratio. Comparisons of model results with either remote sensing observations (AVHRR, SeaWiFS) or in-situ measurements from the CalCOFI program indicate that our model is capable of replicating many of the large-scale, time-averaged features of the coastal upwelling system. An exception is the underestimation of the chlorophyll levels in the northern part of the domain, perhaps because of the lack of short-term variations in the atmospheric forcing. Another shortcoming is that the modeled thermocline is too diffuse, and that the upward slope of the isolines toward the coast is too small. Detailed time-series comparisons with observations from Monterey Bay reveal similar agreements and discrepancies. We attribute the good agreement between the modeled and observed ecological properties in large part to the accuracy of the physical fields. In turn, many of the discrepancies can be traced back to our use of monthly mean forcing. Analysis of the ecosystem structure and dynamics reveal that the magnitude and pattern of phytoplankton biomass in the nearshore region are determined largely by the balance of growth and zooplankton grazing, while in the offshore region, growth is balanced by mortality. The latter appears to be inconsistent with in situ observations and is a result of our consideration of only one zooplankton size class (mesozooplankton), neglecting the importance of microzooplankton grazing in the offshore region. A comparison of the allocation of nitrogen into the different pools of the ecosystem in the 3-D results with those obtained from a box model configuration of the same ecosystem model reveals that only a few components of the ecosystem reach a local steady-state, i.e. where biological sources and sinks balance each other. The balances for the majority of the components are achieved by local biological source and sink terms balancing the net physical divergence, confirming the importance of the 3-D nature of circulation and mixing in a coastal upwelling system.  相似文献   

19.
分析浅海物理环境与浮游生物动力学过程的互相影响,讨论相互作用过程在生态系模型中的定量化表示方法,探讨胶州湾的生态系统动力学特征。  相似文献   

20.
以Logistic模型为基础,考虑捕捞行为及其所造成的污染对浮游生物的削弱作用,并考虑浮游生态系统具有一定的自净能力,建立了一个新的海洋浮游生态系统非线性动力学模型。分析了模型的非线性动力学特性,并得出了模型的稳定性条件和发生Hopf分岔条件,在此基础上,深入分析了捕捞强度参数的变化对系统稳态的影响,并且用数值模拟验证了理论分析结果的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号