首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unusual petrological diversity of abyssal lavas erupted along some segments of the Galapagos spreading center is a direct consequence of the propagation (elongation) of these segments into older oceanic crust. With increasing distance behind propagating rift tips, relatively unfractionated MORB erupted close to the tips are joined first by FeTi basalts (bimodal assemblage) and then by a wide range of basaltic and siliceous lavas. Further behind propagating rift tips, this broad range diminishes again, approaching the narrow compositional range of adjacent normal ridge segments.These compositional variations reflect the evolution of the subaxial magmatic system beneath the newly forming spreading center as it propagates through a pre-existing plate. We envisage this evolution as proceeding from small, isolated, ephemeral magma chambers through increasing numbers of larger, increasingly interconnected chambers to the steady-state buffered system of a normal ridge. Throughout this evolution, magma supply rates gradually increase and cooling rates of crustal magma bodies decrease. High degrees of crystal fractionation are favored only when a delicate balance between cooling rate and resupply rate of primitive magma is achieved.At other propagating and non-propagating ridge-transform intersections the degree to which the balance is achieved and the length of ridge over which it evolves control the distribution of fractionated lavas. These effects may be evaluated provided a number of tectonic variables including transform length, spreading and propagation rates are taken into account.  相似文献   

2.
Three-dimensional inversions of the magnetic field reveal the presence of zones of high magnetization over the propagating limb of large spreading center discontinuities. The presence of high-magnetization zones is confirmed by rock magnetic measurements where available. Magnetization highs are associated with basalts which tend to have high Fe contents and low Mg numbers. These data suggest that high-magnetization zones observed over large ridge axis discontinuities are associated with highly differentiated basalts enriched in iron. Following Christie and Sinton [1], such highly evolved basalts may be the result of shallow-level crystal fractionation in small magma bodies with a low supply rate. These small magma bodies are postulated to correspond to the first stages in the development of a sub-axial magmatic system as a result of the propagation of one of the limbs of the offset into older lithosphere. Because high-magnetization zones at large ridge axis discontinuities often correspond to gaps in the along-axis extent of a seismically detectable magma chamber, these magma bodies may be smaller than a few hundred meters. Rock magnetic measurements suggest that the enrichment in iron associated with increased differentiation may be accompanied, in a few cases, by an increase in the concentration of titanomagnetite within the basalts and in the magnetization of the rocks. However, the exact relationship between high magnetization intensities and iron enrichment is complex and unclear, and may be significantly affected by factors such as magnetic mineralogy and crystallization history.  相似文献   

3.
Specific features of the bottom topography structure and the character of morphostructural segmentation of the rift zone of the Reykjanes Ridge change substantially along the ridge strike with increasing distance from Iceland’s hotspot. A clearly pronounced regularity of changes is observed in the rift zone’s morphology from the axial uplift (in the northern part of the ridge) to the rift valleys (in the southern part of the ridge) through an intermediate or transitional type of morphology. The results of numerical modeling showed that changes in the rift zone’s morphology along the Reykjanes Ridge strike are largely caused by changes in the degree of mantle heating and depend on the intensity of magma supply. It is shown that under conditions of ultraslow spreading, it is these parameters that control the presence or absence of crustal magma chambers, as well as the thickness of the effectively-elastic layer of the axial lithosphere. The experimental modeling of topography-forming deformations and structuring on the Reykjanes Ridge showed that under oblique extension, specific features of the formation of axial fractures and the character of their segmentation mainly depend on the thickness of the axial lithosphere, its heating zone width, and the kinematics of spreading. The experiments also showed that the tendency of fractures to develop obliquely to the extension axis is caused by the action of the inclined zone of the location of the deformation, and shear deformations play a substantial role in the lithosphere’s destruction as the inclination angle increases.  相似文献   

4.
SeaBeam multibeam bathymetry obtained during cruise SO-69 of research vessel (R/V) Sonne defines the segmentation and structure of ∼ 300 km of the Mariana back-arc spreading center south of the Pagan fracture zone at 17°33'N. Eight ridge segments, ranging from 14 to 64 km in length, are displaced as much as 2.7–14.5 km by both right- (predominantly) and left-lateral offsets and transform faults. An axial ridge commonly occupies the middle portion of the rift valley and rises from 200 to 700 m above the adjacent sea floor, in places shoaling to a water depth of 3200 m. An exception is the 60-km-long segment between 16°58' and 17°33'N where single peaks only a few tens of meters high punctuate the rift axis. Photographic evidence and rock samples reveal the presence of mostly pillow lavas outcropping on the axial ridges or peaks whereas the deeper parts of the rift valley floor (max. depth 4900 m) are heavily to totally sedimented. Abundant talus ramps along fault scarps testify to ongoing disruption of the crust. Lozenge-shaped collapse structures are covered by layers of sediment up to tens of centimeters thick on the rift valley floor. The presence of discrete volcanic ridges in the southern Mariana back-arc spreading region suggests that emplacement of oceanic crust at this slow spreading center occurs by `multi-site' injection of magma. Along-axis variations in length, crestal depth, and size of the axial ridges can be best explained by different stages in the cyclicity of magma supply along-axis.  相似文献   

5.
The pattern of b-value of the frequency–magnitude relation, or mean magnitude, varies little in the Kaoiki-Hilea area of Hawaii, and the b-values are normal, with b=0.8 in the top 10 km and somewhat lower values below that depth. We interpret the Kaoiki-Hilea area as relatively stable, normal Hawaiian crust. In contrast, the b-values beneath Kilauea's South Flank are anomalously high (b=1.3–1.7) at depths between 4 and 8 km, with the highest values near the East Rift zone, but extending 5–8 km away from the rift. Also, the anomalously high b-values vary along strike, parallel to the rift zone. The highest b-values are observed near Hiiaka and Pauahi craters at the bend in the rift, the next highest are near Makaopuhi and also near Puu Kaliu. The mildest anomalies occur adjacent to the central section of the rift. The locations of the three major and two minor b-value anomalies correspond to places where shallow magma reservoirs have been proposed based on analyses of seismicity, geodetic data and differentiated lava chemistry. The existence of the magma reservoirs is also supported by magnetic anomalies, which may be areas of dike concentration, and self-potential anomalies, which are areas of thermal upwelling above a hot source. The simplest explanation of these anomalously high b-values is that they are due to the presence of active magma bodies beneath the East Rift zone at depths down to 8 km. In other volcanoes, anomalously high b-values correlate with volumes adjacent to active magma chambers. This supports a model of a magma body beneath the East Rift zone, which may widen and thin along strike, and which may reach 8 km depth and extend from Kilauea's summit to a distance of at least 40 km down rift. The anomalously high b-values at the center of the South Flank, several kilometers away from the rift, may be explained by unusually high pore pressure throughout the South Flank, or by anomalously strong heterogeneity due to extensive cracking, or by both phenomena. The major b-value anomalies are located SSE of their parent reservoirs, in the direction of motion of the flank, suggesting that magma reservoirs leave an imprint in the mobile flank. We hypothesize that the extensive cracking may have been acquired when the anomalous parts of the South Flank, now several kilometers distant from the rift zone, were generated at the rift zone near persistent reservoirs. Since their generation, these volumes may have moved seaward, away from the rift, but earthquakes occurring in them still use the preexisting complex crack distribution. Along the decollement plane at 10 km depth, the b-values are exceptionally low (b=0.5), suggesting faulting in a more homogeneous medium.  相似文献   

6.
Ponta de São Lourenço is the deeply eroded eastern end of Madeira’s east–west trending rift zone, located near the geometric intersection of the Madeira rift axis with that of the Desertas Islands to the southeast. It dominantly consists of basaltic pyroclastic deposits from Strombolian and phreatomagmatic eruptions, lava flows, and a dike swarm. Main differences compared to highly productive rift zones such as in Hawai’i are a lower dike intensity (50–60 dikes/km) and the lack of a shallow magma reservoir or summit caldera. 40Ar/39Ar age determinations show that volcanic activity at Ponta de São Lourenço lasted from >5.2 to 4 Ma (early Madeira rift phase) and from 2.4 to 0.9 Ma (late Madeira rift phase), with a hiatus dividing the stratigraphy into lower and upper units. Toward the east, the distribution of eruptive centers becomes diffuse, and the rift axis bends to parallel the Desertas ridge. The bending may have resulted from mutual gravitational influence of the Madeira and Desertas volcanic edifices. We propose that Ponta de São Lourenço represents a type example for the interior of a fading rift arm on oceanic volcanoes, with modern analogues being the terminations of the rift zones at La Palma and El Hierro (Canary Islands). There is no evidence for Ponta de São Lourenço representing a former central volcano that interconnected and fed the Madeira and Desertas rifts. Our results suggest a subdivision of volcanic rift zones into (1) a highly productive endmember characterized by a central volcano with a shallow magma chamber feeding one or more rift arms, and (2) a less productive endmember characterized by rifts fed from deep-seated magma reservoirs rather than from a central volcano, as is the case for Ponta de São Lourenço.  相似文献   

7.
A computer model of mid-ocean ridge basalt generation using trace element geochemistry has been developed. The model simulates a periodically replenished, continually cooled and fractionated magma chamber, with periodic lava extrusion. Primitive basalts from the ocean floor are used to generate likely evolution paths for the magma chamber. The steady state variant of this model has led to the isolation of several variables which critically affect the basalt composition. Although the fraction of cumulates is an important parameter, other variables such as the volume of incoming magma batches, their frequency, and the volume of the mixing cell, play a critical part especially on slow-spreading ridges. The growing magma chamber model uses random number generators to simulate the initiation and growth of a chamber. This model predicts a rapid increase in incompatible element concentrations, immediately after chamber initiation on a fast-spreading ridge. This would occur in situations such as propagating rifts and may help in the understanding of ferrobasalt generation.  相似文献   

8.
The magmatic plumbing system of Kilauea Volcano consists of a broad region of magma generation in the upper mantle, a steeply inclined zone through which magma rises to an intravolcano reservoir located about 2 to 6 km beneath the summit of the volcano, and a network of conduits that carry magma from this reservoir to sites of eruption within the caldera and along east and southwest rift zones. The functioning of most parts of this system was illustrated by activity during 1971 and 1972. When a 29-month-long eruption at Mauna Ulu on the east rift zone began to wane in 1971, the summit region of the volcano began to inflate rapidly; apparently, blockage of the feeder conduit to Mauna Ulu diverted a continuing supply of mantle-derived magma to prolonged storage in the summit reservoir. Rapid inflation of the summit area persisted at a nearly constant rate from June 1971 to February 1972, when a conduit to Mauna Ulu was reopened. The cadence of inflation was twice interrupted briefly, first by a 10-hour eruption in Kilauea Caldera on 14 August, and later by an eruption that began in the caldera and migrated 12 km down the southwest rift zone between 24 and 29 September. The 14 August and 24–29 September eruptions added about 107 m3 and 8 × 106 m3, respectively, of new lava to the surface of Kilauea. These volumes, combined with the volume increase represented by inflation of the volcanic edifice itself, account for an approximately 6 × 106 m3/month rate of growth between June 1971 and January 1972, essentially the same rate at which mantle-derived magma was supplied to Kilauea between 1952 and the end of the Mauna Ulu eruption in 1971.The August and September 1971 lavas are tholeiitic basalts of similar major-element chemical composition. The compositions can be reproduced by mixing various proportions of chemically distinct variants of lava that erupted during the preceding activity at Mauna Ulu. Thus, part of the magma rising from the mantle to feed the Mauna Ulu eruption may have been stored within the summit reservoir from 4 to 20 months before it was erupted in the summit caldera and along the southwest rift zone in August and September.The September 1971 activity was only the fourth eruption on the southwest rift zone during Kilauea's 200 years of recorded history, in contrast to more than 20 eruptions on the east rift zone. Order-of-magnitude differences in topographic and geophysical expression indicate greatly disparate eruption rates for far more than historic time and thus suggest a considerably larger dike swarm within the east rift zone than within the southwest rift zone. Characteristics of the historic eruptions on the southwest rift zone suggest that magma may be fed directly from active lava lakes in Kilauea Caldera or from shallow cupolas at the top of the summit magma reservoir, through fissures that propagate down rift from the caldera itself at the onset of eruption. Moreover, emplacement of this magma into the southwest rift zone may be possible only when compressive stress across the rift is reduced by some unknown critical amount owing either to seaward displacement of the terrane south-southeast of the rift zone or to a deflated condition of Mauna Loa Volcano adjacent to the northwest, or both. The former condition arises when the forceful emplacement of dikes into the east rift zone wedges the south flank of Kilauea seaward. Such controls on the potential for eruption along the southwest rift zone may be related to the topographic and geophysical constrasts between the two rift zones.  相似文献   

9.
Pillow talk     
Three distinct types of pillows and pillow lava sequences with different modes of origin have been recognized in the extrusive sequences comprising the upper parts of ophiolite complexes that represent the mafic portion of the floor of an Early Cretaceous back-arc basin in southern Chile. One type of pillow formed by non-explosive submarine effusion. A second type formed by magmatic intrusion into pre-existing aquagene tuff formed by explosive eruption. The third type of pillow occurs within dikes, forming pillowed dikes, possibly as a result of vapor streaming within a cooling dike. Where studied in southern Chile, aquagene tuffs and intrusive pillows decrease and water-lain pillows increase in relative abundance from north to south. This variation corresponds with a north-to-south decrease in both the relative volume of extrusives to extensional dikes and the range and volume of differentiated rocks, suggesting a southward increase in rate of extension relative to rate of magma supply within the spreading ridges at which the ophiolites formed. In the northern part of the original basin where the rate of extension was small relative to the rate of magma supply, magma remained in magma chambers longer, resulting in a greater range and volume of differentiated rocks. The larger volume of more differentiated, cooler and more viscous magmas, in conjunction with the likelihood of more violent eruption of volatile-rich differentiates, may have been responsible for the large volume of aquagene tuff in the northern part of the original basin. These observations in southern Chile suggest that ophiolites which contain a great abundance of aquagene tuffs and intrusive pillow lavas formed in tectonic environments in which the rate of extension was small relative to the rate of magma supply (island arcs, embryonic marginal basins). Ophiolites with predominantly water-lain pillowed and massive lavas formed in tectonic environments in which the rate of extension was large relative to the rate of magma supply (mid-ocean ridges, mature back-arc basins). Thus geologic field data may supplement geochemical data as a tool in distinguishing the original igneous-tectonic environments in which ophiolites originate.  相似文献   

10.
We present a new model for the Easter plate in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. We use the distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion.The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. We use simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation.  相似文献   

11.
Shallow crustal magma reservoirs beneath the summit of Kilauea Volcano and within its rift zones are linked in such a way that the magma supply to each can be estimated from the rate of ground deformation at the volcano's summit. Our model builds on the well-documented pattern of summit inflation as magma accumulates in a shallow summit reservoir, followed by deflation as magma is discharged to the surface or into the rift zones. Magma supply to the summit reservoir is thus proportional to summit uplift, and supply to the rift zones is proportional to summit subsidence; the average proportionality constant is 0.33 × 106 m3/γrad. This model yields minimum supply estimates because it does not account for magma which escapes detection by moving passively through the summit reservoir or directly into the rift zones.Calculations suggest that magma was supplied to Kilauea during July 1956– April 1983 at a minimum average rate of 7.2 × 106 m3/month. Roughly 35% of the net supply was extruded; the rest remains stored within the volcano's east rift zone (55%) and southwest rift zone (10%). Periods of relatively rapid supply were associated with the large Kapoho eruption in 1960 and the sustained Mauna Ulu eruptions in 1969–1971 and 1972–1974. Bursts of harmonic tremor from the mantle beneath Kilauea were also unusually energetic during 1968–1975, suggesting a close link between Kilauea's deep magma supply region and shallow storage reservoirs. It remains unclear whether pulses in magma supply from depth give rise to corresponding increases in shallow supply, or if instead unloading of a delicately balanced magma transport system during large eruptions or intrusions triggers more rapid ascent from a relatively constant mantle source.  相似文献   

12.
Observations of eroded volcanic rift zones indicate that dikes in Iceland are typically several times thicker than those in Hawaii. Geodetic and seismic observations of active rifts, however, suggest that dike heights in the two regions are similar. Provided the elastic properties of the rift zones are the same, this implies that dikes are intruded with higher driving pressures (magma pressure minus compressive stress perpendicular to the dike plane) in Iceland than Hawaii. A second major difference between the two regions is the greater prevalence of large normal fault scarps in rift zones in Iceland. From this it can be infered that a lower percentage of dikes breach the surface in Iceland than in Hawaii. Thus, although dikes in Iceland are intruded with higher driving pressures, they possess lower absolute magma pressures than in Hawaii. These differences can be interpreted in terms of the tectonic settings in the two regions. In Iceland, a steady remote extension reduces the horizontal stress perpendicular to the rift zone, allowing dikes to be intruded with low absolute pressures but high driving pressures when magma becomes available. In Hawaii, a more continuous magma supply on the timescale over which the dike-induced stresses are relaxed, and perhaps a greater role for intrusions in driving long-term rift extension, ensure that the rift-compressive stress is not relaxed significantly before the next dike is intruded. Thus the magma pressure must be nearly sufficient for eruption in order for intrusion to occur. If the mechanism for relaxing the rift-compressive stress were less efficient still, then an even higher percentage of dikes would erupt, and at times the rift zone trend could become an unfavorable orientation for dike intrusion. Such might be the case at Mauna Loa, which lacks large rift-zone faults and fissures and possesses numerous radial vents outside its two main rift zones.  相似文献   

13.
Despite a spreading rate of 65–70 km Ma−1, the East Scotia Ridge has, along most of its length, a form typically associated with slower rates of sea floor spreading. This may be a consequence of cooler than normal mantle upwelling, which could be a feature of back-arc spreading. At the northern end of the ridge, recently acquired sonar data show a complex, rapidly evolving pattern of extension within 100 km of the South Sandwich Trench. New ridge segments appear to be nucleating at or near the boundary between the South American and Scotia Sea plates and propagating southwards, supplanting older segments. The most prominent of these, north of 56°30′S, has been propagating at a rate of approximately 60 km Ma−1 for at least 1 Ma, and displays a morphology unique on this plate boundary. A 40 km long axial high exists at the centre of this segment, forming one of the shallowest sections of the East Scotia Ridge. Beneath it, seismic reflection profiles reveal an axial magma chamber, or AMC, reflector, similar to those observed beneath the East Pacific Rise and Valu Fa Ridge. Simple calculations indicate the existence here of a narrow (<1 km wide) body of melt at a depth of approximately 3 km beneath the sea floor. From the topographic and seismic data, we deduce that a localised mantle melting anomaly lies beneath this segment. Rates of spreading in the east Scotia Sea show little variation along axis. Hence, the changes in melt supply are related to the unique tectonic setting, in which the South American plate is tearing to the east, perhaps allowing mantle flow around the end of the subducting slab. Volatiles released from the torn plate edge and entrained in the flow are a potential cause of the anomalous melting observed. A southward mantle flow may have existed beneath the axis of the East Scotia Ridge throughout its history.  相似文献   

14.
青藏高原内部除大规模的东西向走滑断裂以外,另一个显著的地质特征就是在藏南及高原腹地广泛发育东西向的伸展构造,形成走向近南北的断裂构造,如亚东一谷露裂谷带及双湖断裂.伸展构造已经成为青藏高原地质研究的一个焦点问题.在羌塘地块89°E附近存在明显的低重力、负磁、深度达300 km的低速异常及连通壳幔的高导异常,且地表伴生大规模的新生代火山岩,这些特殊的地质及地球物理场特征的发生位置与地表双湖断裂的位置基本对应.本文通过卫星重力数据的多尺度小波分析结果发现,双湖断裂之下,存在一明显由上地壳一直向下延伸至地幔深部的低重力异常,说明双湖断裂向下延伸深度大,且上下连通性好.结合已有的地质和地球物理资料,认为由于双湖断裂的存在,使得深部幔源岩浆沿断裂构造薄弱带上涌,从而导致羌塘地块之下壳幔温度的升高及大规模部分熔融的发生.  相似文献   

15.
Isotopic data for Sr and Nd from fresh glassy East Pacific Rise basalts suggest that this part of the suboceanic mantle is characterized by subtle but distinct large-scale regional isotopic variability which may reflect differences between cells of the convecting mantle. In spite of a systematic N—S change in spreading rate of a factor of three along the sampled portion of the EPR, no correlation is observed between spreading rate and range of isotopic composition, indicating that the regional variations override homogenization effects which may be correlated with rate of magma generation and hence spreading rate. There is no clear signature in our data of effects from the postulated global “Dupal Anomaly” [30,31]. However, for a restricted ridge segment at the latitude of Easter Island, anomalously high87Sr/86Sr and low143Nd/144Nd occur, coupled with high incompatible element concentrations. These features are most easily understood as being the result of inclusion of a “plume” component in these ridge basalts.  相似文献   

16.
The structure and volcanic stratigraphy of the Pico Teide–Pico Viejo (PT–PV) formation, deriving from the basanite–phonolite stratovolcanoes PT and PV, and numerous flank vent systems, are documented in detail based on new field and photogeologic mapping, geomorphologic analysis, borehole data, and petrological and geochemical findings. Results provide insight into the structure and evolution of the PT–PV magma system, and the long-term, cyclic evolution of Tenerife's post-shield volcanic complex. The PT–PV formation comprises products of central volcanism, mainly emplaced into the Las Cañadas caldera (LCC), and contemporaneous products from adjacent rifts. PT–PV central volcanic products become more differentiated up-section with felsic lavas dominating the recent output of the system. This is attributed to the evolution of a shallow magma reservoir beneath PT that was emplaced early in the PT–PV cycle on the intra-caldera segment of Tenerife's post-shield rift system. The rift axis has been the focus of PT–PV intrusive and eruptive activity, and has controlled the location of the stratocones. The current geometry of the rifts reflects a major structural reorganisation defining the start of the PT–PV cycle at 0.18 Ma, namely the truncation of the north side of the LCC/LCE by the giant Icod landslide. The internal stratigraphy of the PT–PV formation suggests that PT developed early, with PV developing as a satellite vent. Activity has since alternated between PT and PV due to episodes of vent blockage or chamber sealing. These processes have allowed significant volumes of phonolitic magmas to develop and accumulate within the PT chamber, which have vented through radial dike systems during tumescence episodes and from the rift system, which has permitted lateral magma transport. The PT–PV magma system is a potentially hazardous source of future, felsic eruptive activity on Tenerife.  相似文献   

17.
Systematic analyses of the major-element chemistry of products of several eruptions during syn-and post-caldera stages of Izu-Oshima volcano were compiled. Comparisons of the products of large-scale eruptions in 1338?, 1421? and 1777–1778, of intermediate-scale eruptions in 1950–1951 and 1986, and of small-scale eruptions in 1954, 1964 and 1974 clearly show the existence of two types of magmas. One is “plagioclase-controlled” and the other is “differentiated” magma (multimineral-controlled); i.e. the bulk chemistry of the first magma type is controlled by plagioclase addition or removal, while that of the second type is controlled by fractionation of plagioclase, orthopyroxene, clinopyroxene, and titanomagnetite. Eruptions of Izu-Oshima volcano have occurred at the summit and along the flanks. Summit eruptions tap only plagioclase-controlled magmas, while flank eruptions supply both magma types. It is considered unlikely that both magma types would coexist in the same magma chamber based on the petrology. In the case of the 1986 eruption, the flank magma was isolated sometime in the past from the summit magma chamber or central conduit, and formed small magma pockets, where further differentiation occurred due to relatively rapid cooling. In a period of quiescence prior to the 1986 eruption, new magma was supplied to the summit magma chamber, and the summit eruption began. The dike intrusion or fracturing around the small magma pockets triggered the flank eruption of the differentiated magma. This model can be applied to the large-scale flank eruption in 1338(?) which erupted differentiated magmas. In 1421(?), the flank eruption tapped plagioclase-controlled magma. In this case, the isolated magmas from the summit magma chamber directly penetrated the flank without differentiation.  相似文献   

18.
Abstract Multi- and single-channel seismic profiles are used to investigate the structural evolution of back-arc rifting in the intra-oceanic Izu-Bonin Arc. Hachijo and Aoga Shima Rifts, located west of the Izu-Bonin frontal arc, are bounded along-strike by structural and volcanic highs west of Kurose Hole, North Aoga Shima Caldera and Myojin Sho arc volcanoes. Zig-zag and curvilinear faults subdivide the rifts longitudinally into an arc margin (AM), inner rift, outer rift and proto-remnant arc margin (PRA). Hachijo Rift is 65 km long and 20–40 km wide. Aoga Shima Rift is 70 km long and up to 45 km wide. Large-offset border fault zones, with convex and concave dip slopes and uplifted rift flanks, occur along the east (AM) side of the Hachijo Rift and along the west (PRA) side of the Aoga Shima Rift. No cross-rift structures are observed at the transfer zone between these two regions; differential strain may be accommodated by interdigitating rift-parallel faults rather than by strike- or oblique-slip faults. In the Aoga Shima Rift, a 12 km long flank uplift, facing the flank uplift of the PRA, extends northeast from beneath the Myojin Knoll Caldera. Fore-arc sedimentary sequences onlap this uplift creating an unconformity that constrains rift onset to ~1-2Ma. Estimates of extension (~3km) and inferred age suggest that these rifts are in the early syn-rift stage of back-arc formation. A two-stage evolution of early back-arc structural evolution is proposed: initially, half-graben form with synthetically faulted, structural rollovers (ramping side of the half-graben) dipping towards zig-zagging large-offset border fault zones. The half-graben asymmetry alternates sides along-strike. The present ‘full-graben’ stage is dominated by rift-parallel hanging wall collapse and by antithetic faulting that concentrates subsidence in an inner rift. Structurally controlled back-arc magmatism occurs within the rift and PRA during both stages. Significant complications to this simple model occur in the Aoga Shima Rift where the east-dipping half-graben dips away from the flank uplift along the PRA. A linear zone of weakness caused by the greater temperatures and crustal thickness along the arc volcanic line controls the initial locus of rifting. Rifts are better developed between the arc edifices; intrusions may be accommodating extensional strain adjacent to the arc volcanoes. Pre-existing structures have little influence on rift evolution; the rifts cut across large structural and volcanic highs west of the North Aoga Shima Caldera and Aoga Shima. Large, rift-elongate volcanic ridges, usually extruded within the most extended inner rift between arc volcanoes, may be the precursors of sea floor spreading. As extension continues, the fissure ridges may become spreading cells and propagate toward the ends of the rifts (adjacent to the arc volcanoes), eventually coalescing with those in adjacent rift basins to form a continuous spreading centre. Analysis of the rift fault patterns suggests an extension direction of N80°E ± 10° that is orthogonal to the trend of the active volcanic arc (N10°W). The zig-zag pattern of border faults may indicate orthorhombic fault formation in response to this extension. Elongation of arc volcanic constructs may also be developed along one set of the possible orthorhombic orientations. Border fault formation may modify the regional stress field locally within the rift basin resulting in the formation of rift-parallel faults and emplacement of rift-parallel volcanic ridges. The border faults dip 45–55° near the surface and the majority of the basin subsidence is accommodated by only a few of these faults. Distinct border fault reflections decreases dips to only 30° at 2.5 km below the sea floor (possibly flattening to near horizontal at 2.8 km although the overlying rollover geometry shows a deeper detachment) suggesting that these rifting structures may be detached at extremely shallow crustal levels.  相似文献   

19.
Bathymetry, gravity and deep-tow sonar image data are used to define the segmentation of a 400 km long portion of the ultraslow-spreading Knipovich Ridge in the Norwegian-Greenland Sea, Northeast Atlantic Ocean. Discrete volcanic centers marked by large volcanic constructions and accompanying short wavelength mantle Bouguer anomaly (MBA) lows generally resemble those of the Gakkel Ridge and the easternmost Southwest Indian Ridge. These magmatically robust segment centers are regularly spaced about 85-100 km apart along the ridge, and are characterized by accumulated hummocky terrain, high relief, off-axis seamount chains and significant MBA lows. We suggest that these eruptive centers correspond to areas of enhanced magma flux, and that their spacing reflects the geometry of underlying mantle upwelling cells. The large-scale thermal structure of the mantle primarily controls discrete and focused magmatism, and the relatively wide spacing of these segments may reflect cool mantle beneath the ridge. Segment centers along the southern Knipovich Ridge are characterized by lower relief and smaller MBA anomalies than along the northern section of the ridge. This suggests that ridge obliquity is a secondary control on ridge construction on the Knipovich Ridge, as the obliquity changes from 35° to 49° from north to south, respectively, while spreading rate and axial depth remain approximately constant. The increased obliquity may contribute to decreased effective spreading rates, lower upwelling magma velocity and melt formation, and limited horizontal dike propagation near the surface. We also identify small, magmatically weaker segments with low relief, little or no MBA anomaly, and no off-axis expression. We suggest that these segments are either fed by lateral melt migration from adjacent magmatically stronger segments or represent smaller, discrete mantle upwelling centers with short-lived melt supply.  相似文献   

20.
Mount Etna volcano is often characterized by bilateral eruptive events, involving both the south (S) and the north east (NE) rifts. The last event occurred in 2002?C2003 from October 27 to January 28. A detailed, stratigraphically time-controlled sampling of lavas and tephra of the southern eruptive fissure was performed in order to (1) track the petrological features of products during the eruption and (2) integrate the results with those previously obtained on the NE rift. Whole-rock composition and textural observations were implemented by major and minor element analyses of plagioclases in lavas and tephra from both sides of the volcano. Fractionation models constrained by mass balance (major and trace elements) and Rayleigh calculations suggest that magmas are linked by the same liquid line of descent by fractionating 9.11?% of a mineral assemblage of Cpx (52.69?%), Plg (21.41), and Ol (7.46?%). These new data allowed us to identify at least two feeding episodes through the southern fissure and infer that high-K2O porphyritic magmas, emitted on both the S and NE rifts, derives by fractionation from the same parent magma. However, lavas and tephra from the southern flank were slightly more primitive. Textural and petrological study of plagioclase moreover indicates that chemical?Cphysical conditions in the deep feeding system were similar for magmas erupting from both rifts as suggested by the presence of dissolved rounded cores in both lavas. Magmas evolved differently on the S and the NE rifts only at shallow levels. Comparison with published seismotectonic data supports the idea that the main magma feeding the eruption on October 27 ascended along the same pathway at depth and was intercepted by the fracture system of the S and NE rifts at shallow depth, between 6 and 3?km b.s.l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号