首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Geological identification of past tsunamis is important for risk assessment studies, especially in areas where the historical record is limited or absent. The main problem when using the geological evidence is to distinguish between tsunami and storm deposits. Both are high-energy events that may leave marine traces in coastal stratigraphic sequences. At Martinhal, SW Portugal both storm surge and tsunami deposits are present at the same site within a single stratigraphic sequence, which makes it suitable to study the differences between them, excluding variations caused by local factors.

The tsunami associated with the Lisbon earthquake of November 1st 1755 AD, had a major impact on the geomorphology and sedimentology of Martinhal. It breached the barrier and laid down an extensive sheet of sand, as described in eyewitness reports. Besides the tsunami deposit the stratigraphy of Martinhal also displays evidence for storm surges that have breached and overtopped the barrier, flooding the lowland and leaving sand layers. Both marine-derived flood deposits show similar grain size characteristics and distinctive marine foraminifera. The most important differences are the rip-up clasts and boulders exclusively found in the tsunami deposit and the landward extent of the tsunami deposit that everywhere exceeds that of the storm deposits. Identification of both depositional units was only possible using a collection of different data and extensive stratigraphical information from cores as well as trenches.  相似文献   


2.
Modern subaerial sand beds deposited by major tsunamis and hurricanes were compared at trench, transect, and sub-regional spatial scales to evaluate which attributes are most useful for distinguishing the two types of deposits. Physical criteria that may be diagnostic include: sediment composition, textures and grading, types and organization of stratification, thickness, geometry, and landscape conformity.

Published reports of Pacific Ocean tsunami impacts and our field observations suggest that sandy tsunami deposits are generally < 25 cm thick, extend hundreds of meters inland from the beach, and fill microtopography but generally conform to the antecedent landscape. They commonly are a single homogeneous bed that is normally graded overall, or that consists of only a few thin layers. Mud intraclasts and mud laminae within the deposit are strong evidence of tsunami deposition. Twig orientation or other indicators of return flow during bed aggradation are also diagnostic of tsunami deposits. Sandy storm deposits tend to be > 30 cm thick, generally extend < 300 m from the beach, and will not advance beyond the antecedent macrotopography they are able to fill. They typically are composed of numerous subhorizontal planar laminae organized into multiple laminasets that are normally or inversely graded, they do not contain internal mud laminae and rarely contain mud intraclasts. Application of these distinguishing characteristics depends on their preservation potential and any deposit modifications that accompany burial.

The distinctions between tsunami and storm deposits are related to differences in the hydrodynamics and sediment-sorting processes during transport. Tsunami deposition results from a few high-velocity, long-period waves that entrain sediment from the shoreface, beach, and landward erosion zone. Tsunamis can have flow depths greater than 10 m, transport sediment primarily in suspension, and distribute the load over a broad region where sediment falls out of suspension when flow decelerates. In contrast, storm inundation generally is gradual and prolonged, consisting of many waves that erode beaches and dunes with no significant overland return flow until after the main flooding. Storm flow depths are commonly < 3 m, sediment is transported primarily as bed load by traction, and the load is deposited within a zone relatively close to the beach.  相似文献   


3.
Tsunamis versus storm deposits from Thailand   总被引:3,自引:0,他引:3  
Along the Andaman (west) coast of Thailand, the 2004 tsunami depositional features associated with the 2004 tsunami were used to describe the characteristics of tsunamis in a place far away from the effect of both recent and ancient storms. The current challenge is that a lack of precise sedimentological characteristics have been described that will differentiate tsunami deposits from storm deposits. Here, in sedimentological senses, we reviewed the imprints of the sedimentological characteristics of the 2004 tsunami and older deposits and then compared them with storm deposits, as analyzed from the deposits found along the eastern (Gulf of Thailand; GOT) coast of Thailand. We discuss the hydraulic conditions of the 2004 tsunami and its predecessors, on the Andaman coast, and compare them to storm flows found on the coast of the GOT. Similar to an extensive tsunami inflow deposit, a storm flow overwash has very similar sedimentary structures. Well-preserved sedimentary structures recognized in sand sheets from both tsunami and storms include single and multiple normal gradings, reverse grading, parallel, incline and foreset lamina, rip-up clasts, and mud drapes. All these sedimentary structures verify the similarity of tsunami and storm inflow behavior as both types of high-energy flow start to scour the beach zone. Antidunes are likely to be the only unique internal sedimentary structures observed in the 2004 tsunami deposit. Rip-up clasts are rare within storm deposits compared to tsunami deposits. We found that the deposition during the outflow from both tsunami and storms was rarely preserved, suggesting that it does not persist for very long in the geological record.  相似文献   

4.
A simple model for calculating tsunami flow speed from tsunami deposits   总被引:2,自引:0,他引:2  
This paper presents a simple model for tsunami sedimentation that can be applied to calculate tsunami flow speed from the thickness and grain size of a tsunami deposit (the inverse problem). For sandy tsunami deposits where grain size and thickness vary gradually in the direction of transport, tsunami sediment transport is modeled as a steady, spatially uniform process. The amount of sediment in suspension is assumed to be in equilibrium with the steady portion of the long period, slowing varying uprush portion of the tsunami. Spatial flow deceleration is assumed to be small and not to contribute significantly to the tsunami deposit. Tsunami deposits are formed from sediment settling from the water column when flow speeds on land go to zero everywhere at the time of maximum tsunami inundation. There is little erosion of the deposit by return flow because it is a slow flow and is concentrated in topographic lows. Variations in grain size of the deposit are found to have more effect on calculated tsunami flow speed than deposit thickness. The model is tested using field data collected at Arop, Papua New Guinea soon after the 1998 tsunami. Speed estimates of 14 m/s at 200 m inland from the shoreline compare favorably with those from a 1-D inundation model and from application of Bernoulli's principle to water levels on buildings left standing after the tsunami. As evidence that the model is applicable to some sandy tsunami deposits, the model reproduces the observed normal grading and vertical variation in sorting and skewness of a deposit formed by the 1998 tsunami.  相似文献   

5.
The sandy deposits produced by tsunamis and liquefaction share many sedimentary features, and distinctions between the two are important in seismically active coastal zones. Both types of deposits are present in the wetlands bordering Puget Sound, where one or more earthquakes about 1100 years ago caused both tsunami flooding and sediment venting. This co‐occurrence allows an examination of the resulting deposits and a comparison with tsunami and liquefaction features of modern events. Vented sediments occur at four of five wetland field localities and tsunami deposits at two. In comparison with tsunami deposits, vented sediments in this study and from other studies tend to be thicker (although they can be thin). Vented sediments also have more variable thickness at both outcrop and map scale, are associated with injected dykes and contain clasts derived from underlying deposits. Further, vented sediments tend to contain a greater variety of sedimentary structures, and these structures vary laterally over metres. Tsunami deposits compared with vented sediments are commonly thinner, fine and thin landward more consistently, have more uniform thickness on outcrop and map scales, and have the potential of containing coarser clasts, up to boulders. For both tsunami deposits and vented sediments, the availability and grain size of source material condition the characteristics of the deposit. In the cases presented in this paper, both foraminifera and diatom assemblages within tsunami deposits and vented sediments consisted of brackish and marine species, and no distinction between processes could be made based on microfossils. In summary, this study indicates a need for more careful analysis and mapping of coastal sediments associated with earthquakes to avoid misidentification of processes and misevaluation of hazards.  相似文献   

6.
Four sand units deposited by tsunamis and one sand unit deposited by storm surge(s) were identified in a muddy marsh succession in a narrow coastal lowland along the Pacific coast of central Japan. Tsunamis in ad 1498, 1605, 1707 and 1854 that were related to large subduction‐zone earthquakes along the Nankai Trough, and storm surges in 1680 and/or 1699 were responsible for the deposition of these sand units. These sand units are distinguished by lithofacies, sedimentary structures, grain‐size and mineral composition, and radiocarbon ages; their ages are supported by events in local historical records. The tsunami deposits in the study area are massive or parallel‐laminated sands, with associated intraclasts, gravels, draping mud layers and, rarely, a return‐flow subunit. The storm surge deposits are devoid of these characteristics, and are composed of groups of thin, current ripple‐laminated sand layers. The differences in sedimentary structures between the tsunami and storm surge deposits are attributed to the different characteristics of tsunami and storm waves.  相似文献   

7.
The Indian Ocean tsunami flooded the coastal zone of the Andaman Sea and left tsunami deposits with a thickness of a few millimetres to tens of centimetres over a roughly one-kilometre-wide tsunami inundation zone. The preservation potential and the post-depositional changes of the onshore tsunami deposits in the coastal plain setting, under conditions of a tropical climate with high seasonal rainfall, were assessed by reinvestigating trenches located along 13 shore-perpendicular transects; the trenches were documented shortly after the tsunami and after 1, 2, 3 and 4 years. The tsunami deposits were found preserved after 4 years at only half of the studied sites. In about 30% of the sites, the tsunami deposits were not preserved due to human activity; in a further 20% of the sites, the thin tsunami deposits were eroded or not recognised due to new soil formation. The most significant changes took place during the first rainy season when the relief of the tsunami deposits was levelled; moderate sediment redeposition took place, and fine surface sediments were washed away, which frequently left a residual layer of coarse sand and gravel. The fast recovery of new plant cover stabilised the tsunami deposits and protected them against further remobilisation during the subsequent years. After five rainy seasons, tsunami deposits with a thickness of at least a few centimetres were relatively well preserved; however, their internal structures were often significantly blurred by roots and animal bioturbation. Moreover, soil formation within the deposits caused alterations, and in the case of thin layers, it was not possible to recognise them anymore. Tsunami boulders were only slightly weathered but not moved. Among the various factors influencing the preservation potential, the thickness of the original tsunami deposits is the most important. A comparison between the first post-tsunami survey and the preserved record suggests that tsunamis with a run-up smaller than three metres are not likely to be preserved; for larger tsunamis, only about 50% of their inundation area is likely to be presented by the preserved extent of the tsunami deposits. Any modelling of paleotsunamis from their deposits must take into account post-depositional changes.  相似文献   

8.
李向东 《古地理学报》2020,22(6):1065-1080
丘状交错层理多和风暴沉积相关,似丘状交错层理多和浊流沉积相关,随着研究的深入,早已打破了丘状(似丘状)交错层理分别只存在于浅水(深水)沉积环境中的界线,故近年来丘状(似丘状)交错层理在作为沉积环境判别标志方面出现了很大的争议和混淆,究其原因则在于对丘状交错层理和似丘状交错层理的成因机制缺乏明确的认识。在详细总结丘状(似丘状)交错层理的结构、形态特征和垂向序列的基础上发现: (1)丘状交错层理底界常为剥蚀面,内部削切关系发育且与洼状交错层理关系密切;垂向序列常出现层段缺失和丘状交错层理叠置。(2)似丘状交错层理纹层厚度变化多样;丘状层可镶嵌于平行层理或小型交错层理之中,且为连续沉积;垂向序列往往出现高流态沉积构造与低流态沉积构造交替叠置。依据这些特征并结合水槽实验的相关研究成果,从流体力学角度可将丘状(似丘状)交错层理的形成机制分为水动力机制和沉积机制两部分。两者的水动力机制完全相同,即为立轴漩涡形成,在自然界中一般为斜压波动引起。两者的沉积机制完全不同: 丘状交错层理为剥蚀悬砂沉积机制,而似丘状交错层理则为悬砂降落沉积机制。由于2种沉积机制所形成的沉积物悬浮浓度及其对沉积流体能量的要求不同,故形成丘状和似丘状交错层理各自不同的沉积特征。这对于从流体演化方面判断沉积环境具有非常重要的意义。  相似文献   

9.
Li Xiang-Dong 《古地理学报》2021,22(6):1065-1080
Hummocky and hummocky-like cross-stratification(HCS and HCS-like)as the identification criteria for sedimentary environments have recently become confused because of the little knowledge on their genetic mechanism based on the following facts: HCS and HCS-like are often associated with storm deposits and turbidity current deposits,respectively; the views on HCS produced in shallow water environments and HCS-like produced in deep-water environments have been abandoned recently. According to the detail reviews on structural and morphologic characteristics and vertical sequence of HCS and HCS-like from literatures,here we found that: (1) the special features of HCS include the sharp or erosional basal contact,the internal truncation surface,close relationship with swaley cross-stratification,and the missing zone or amalgamation of HCS in vertical sequence;(2) the special features of HCS-like often include various thickness of individual lamina,hummocky layer interbedded with parallel bedding or small-scale cross-bedding under continuous deposition,and alternating sedimentary structures of upper and lower flow regime in vertical sequence. According to hydrodynamic theory and flume experiment achievements,these results show that the genetic mechanism of HCS and HCS-like could be divided into two parts,hydrodynamic mechanism and depositional mechanism. The hydrodynamic mechanism of HCS and HCS-like is same and could be interpreted by vertical vortex generated by baroclinic wave in nature. However,depositional mechanism of HCS and HCS-like is very different: HCS and HCS-like could be interpreted by erosion suspending sand mechanism and suspending sand settling mechanism,respectively,and the special features in HCS and HCS-like are due to the different sediment suspension concentration and depositional flow energy. The division for hydrodynamic and depositional mechanism of HCS and HCS-like is very significant in determining sedimentary environments from depositional flow evolution perspective.  相似文献   

10.
中国东海、南海等近海临近琉球海沟、马尼拉海沟等俯冲带,地震频发。过去的海啸研究主要关注历史文献分析、海啸数值模拟等,据此评估中国近岸海啸灾害的历史和风险。历史时期是否引发了海啸,特别是具有特大致灾风险的大海啸记录,目前还不明确。近年来,本课题组通过对海岛、海洋沉积和海岸带及其岛屿的沉积过程、海啸遗迹和历史记录研究,阐述了确定古海啸的系列研究方法。首先通过对南海西沙群岛东岛湖泊沉积序列、大量砗磲和珊瑚块在海岛分布的特征分析,识别出距今千年的一次海啸事件。以此为标志,根据湖泊沉积结构作为识别海岛海啸沉积的特征。同时提出了确定海岛海啸发生时代的样品采集和定年方法,其中包括根据事件沉积层顶部和底部植物残体14C年龄定年和历史文献记录的印证。首次确定在过去1 300年中,南海发生过一次海啸,其发生时间为公元1076年。为了寻找更古老的海啸记录,结合对东海闽浙沿岸过去两千年海洋泥质沉积的分析,发现南海海啸在沉积序列中留下记录,但除此之外沉积记录中并无更强的扰动,因此东海在过去两千年中受到海啸的影响较小。1076年的海啸同时冲击了南海沿岸,通过对广东南澳岛考察发现,岛屿东南海岸保存着距今约1 000年的海啸沉积层,其中夹杂着宋代陶器瓷器残片。对遗迹数量变化的分析显示,岛上的文化受海啸破坏出现了长达500年的文化中断,直至明代中后期设镇之后才逐渐恢复。根据海啸层植物残体、贝壳14C测年、覆盖海啸层的海砂光释光定年以及瓷器碎片的年代鉴定了海啸的发生时代,并据此提出了海岸带古海啸沉积的定年方法。此外,不同环境下海啸沉积的特征也存在较大区别,需要结合地形、沉积物来源以及地球化学特征等多种指标进行识别。有迹象表明海南岛东侧海岸带有海啸破坏的明显证据,需要进行深入的研究。  相似文献   

11.
Tsunami deposits have been found at more than 60 sites along the Cascadia margin of Western North America, and here we review and synthesize their distribution and sedimentary characteristics based on the published record. Cascadia tsunami deposits are best preserved, and most easily identified, in low-energy coastal environments such as tidal marshes, back-barrier marshes and coastal lakes where they occur as anomalous layers of sand within peat and mud. They extend up to a kilometer inland in open coastal settings and several kilometers up river valleys. They are distinguished from other sediments by a combination of sedimentary character and stratigraphic context. Recurrence intervals range from 300–1000 years with an average of 500–600 years. The tsunami deposits have been used to help evaluate and mitigate tsunami hazards in Cascadia. They show that the Cascadia subduction zone is prone to great earthquakes that generate large tsunamis. The inclusion of tsunami deposits on inundation maps, used in conjunction with results from inundation models, allows a more accurate assessment of areas subject to tsunami inundation. The application of sediment transport models can help estimate tsunami flow velocity and wave height, parameters which are necessary to help establish evacuation routes and plan development in tsunami prone areas.  相似文献   

12.
Tsunami deposits in the geological record   总被引:2,自引:0,他引:2  
A review is presented here of tsunami deposits in the geological record. It begins with a discussion of the relationships between the processes of tsunami generation and propagation and the sedimentary responses. This is followed by a consideration of the sedimentary processes associated with the passage of tsunami waves across coastlines. Attention is also given to the sedimentary processes associated with tsunami-triggered gravity backwash flows and comparisons are made with turbidity current action. We observe that despite sedimentary evidence for recent tsunamiites, geological research on ancient tsunamis has not identified stratigraphic units associated with onshore tsunami sedimentation. Equally, it is noted that nearly all published studies of sedimentary processes associated with modern tsunamis have not considered patterns of sediment transport and deposition in the offshore zone.  相似文献   

13.
The catastrophic storm surge of tropical cyclone Nargis in May 2008 demonstrated Myanmar's exposure to coastal flooding. The investigation of sediments left by tropical cyclone Nargis and its predecessors is an important contribution to prepare for the impact of future tropical cyclones and tsunamis in the region, because they may extend the database for long-term hazard assessment beyond the relatively short instrumental and historical record. This study, for the first time, presents deposits of modern and historical tropical cyclones and tsunamis from the coast of Myanmar. The aim is to establish regional sedimentary characteristics that may help to identify and discriminate cyclones and tsunamis in the geological record, and to document post-depositional changes due to tropical weathering in the first years after deposition. These findings if used to interpret older deposits will extend the existing instrumental record of flooding events in Myanmar. Evaluating deposits that can be related to specific events, such as the 2006 tropical cyclone Mala and the 2004 Indian Ocean tsunami, indicates similar sedimentary characteristics for both types of sediments. Landward thinning and fining trends, littoral sediment sources and sharp lower contacts allow for the differentiation from underlying deposits, while discrimination between tropical cyclone and tsunami origin is challenging based on the applied methods. The modern analogues also demonstrate a rather low preservation potential of the sand sheets due to carbonate dissolution, formation of organic top soils, and coastal erosion. However, in coastal depressions sand sheets of sufficient thickness (>10 cm) may be preserved where the shoreline is prograding or stable. In the most seaward swale of a beach-ridge plain at the Rakhine coast, two sand sheets have been identified in addition to the deposits of 2006 tropical cyclone Mala. Based on a combination of optically stimulated luminescence, radiocarbon and 137Cs dating, the younger sand layer is related to 1982 tropical cyclone Gwa, while the older sand layer is most probably the result of an event that took place prior to 1950. Comparison with historical records indicates that the archive is only sensitive to tropical cyclones of category 4 (or higher) with landfall directly in or a few tens of kilometres north of the study area. While the presented tropical cyclone records are restricted to the last 100 years, optically stimulated luminescence ages of the beach ridges indicate that the swales landward of the one investigated in this study might provide tropical cyclone information for at least the past 700 years.  相似文献   

14.
The December 26, 2004 Sumatra tsunami caused severe damage at the coasts of the Indian ocean. We report results of a sedimentological study of tsunami run-up parameters and the sediments laid down by the tsunami at the coast of Tamil Nadu, India, and between Malindi and Lamu, Kenya. In India, evidence of three tsunami waves is preserved on the beaches in the form of characteristic debris accumulations. We measured the maximum run-up distance at 580 m and the maximum run-up height at 4.85 m. Flow depth over land was at least 3.5 m. The tsunami deposited an up to 30 cm thick blanket of moderately well to well-sorted coarse and medium sand that overlies older beach deposits or soil with an erosional unconformity. The sand sheet thins inland without a decrease of grain-size. The deposits consist frequently of three layers. The lower one may be cross-bedded with foresets dipping landward and indicating deposition during run-up. The overlying two sand layers are graded or parallel-laminated without indicators of current directions. Thus, it remains undecided whether they formed during run-up or return flow. Thin dark laminae rich in heavy minerals frequently mark the contacts between successive layers. Benthic foraminifera indicate an entrainment of sediment by the tsunami from water depths less than ca. 30 m water depth. On the Indian shelf these depths are present at distances of up to 5 km from the coast. In Kenya only one wave is recorded, which attained a run-up height of 3 m at a run-up distance of ca. 35 m from the tidal water line at the time of the tsunami impact. Only one layer of fine sand was deposited by the tsunami. It consists predominantly of heavy minerals supplied to the sea by a nearby river. The sand layer thins landward with a minor decrease in grain-size. Benthic foraminifera indicate an entrainment of sediment by the tsunami from water depths less than ca. 30 m water depth, reaching down potentially to ca. 80 m. The presence of only one tsunami-related sediment layer in Kenya, but three in India, reflects the impact of only one wave at the coast of Kenya, as opposed to several in India. Grain-size distributions in the Indian and Kenyan deposits are mostly normal to slightly positively skewed and indicate that the detritus was entrained by the tsunami from well sorted pre-tsunami deposits in nearshore, swash zone and beach environments.  相似文献   

15.
Offshore sediment characteristics of the 2004 tsunami were identified from a shallow core collected from the Chennai Coast, India. The depositional sequence clearly distinguishes four different processes: mixed facies (post-tsunami): 0–8 cm; tsunami return flow facies (TRFF): 8–20 cm; tsunami landward flow facies: 20–44 cm; and pre-tsunami facies: 44–64 cm, which all took place during and after the tsunami event. The coarse-grained nature and higher carbonate in the TRFF indicate that considerable sediment load was transported from the beach/land area to the offshore region during the return flow of tsunami waves. The relatively greater abundance of benthic foraminiferal species in the core sample suggests that the taxa were transported from deeper regions of the inner shelf regions of Bay of Bengal region. The depositional characteristics in this region can be utilized for future comparative studies from this region as well as in other offshore regions affected by tsunamis with sequence-based studies on local topography.  相似文献   

16.
Although the north‐western coast of Western Australia is highly vulnerable to tropical cyclones and tsunamis, little is known about the geological imprint of historic and prehistoric extreme wave events in this particular area. Despite a number of site‐specific difficulties such as post‐depositional changes and the preservation potential of event deposits, both tropical cyclones and tsunamis may be inferred from the geomorphology and the stratigraphy of beach ridge sequences, washover fans and coastal lagoons or marshes. A further challenge is the differentiation between tsunami and storm deposits in the geological record, particularly where modern deposits and/or historical reports on the event are not available. This study presents a high‐resolution sedimentary record of washover events from the Ashburton River delta (Western Australia) spanning approximately the last 150 years. A detailed characterization of event deposits is provided, and a robust chronostratigraphy for the investigated washover sequence is established based on multi‐proxy sediment analyses and optically stimulated luminescence dating. Combining sedimentological, geochemical and high‐resolution optically stimulated luminescence data, event layers are assigned to known historical events and tropical cyclone deposits are separated from tsunami deposits. For the first time, the 1883 Krakatoa and 1977 Sumba tsunamis are inferred from sedimentary records of the north‐western part of Western Australia. It is demonstrated that optically stimulated luminescence applied in coastal sedimentary archives with favourable luminescence characteristics can provide accurate chronostratigraphies even on a decadal timescale. The results contribute to the data pool of tropical cyclone and tsunami deposits in Holocene stratigraphies; however, they also demonstrate how short‐lived sediment archives may be in dynamic sedimentary environments.  相似文献   

17.
Large boulder accumulations have been observed on various coasts bordering the Mediterranean and have been associated with extreme wave events such as powerful storms or tsunamis. This study provides an in-depth analysis of 430 boulder deposits, located along a 3.5 km stretch of rocky coast situated on the SE of the Maltese Islands. It includes a geomorphometric analysis of the observed boulders and use of numerical modelling to estimate wave height required to initiate boulder movement. Comparisons of aerial imagery over a period of 46 years have made it possible to identify boulder movement that could only be attributed to storm waves, given that no local tsunamigenic event has been recorded over this time period. Positioned in the central Mediterranean, the Maltese Islands are exposed to potential tsunamis generated by seismic activity associated with the Malta Escarpment, and the Calabrian and Hellenic arcs. Although imprints from historic tsunami impact cannot be excluded, results indicate that the area is exposed to strong storm waves that are capable of displacing some of the very large boulders observed on site.  相似文献   

18.
X-ray tomography is used to analyse the grain size and sedimentary fabric of two tsunami deposits in the Marquesas Islands (French Polynesia, Pacific Ocean) which are particularly exposed to trans-Pacific tsunamis. One site is located on the southern coast of Nuku Hiva Island (Hooumi) and the other one is on the southern coast of Hiva Oa Island (Tahauku). Results are compared with other techniques such as two-dimensional image analysis on bulk samples (particle analyser) and anisotropy of magnetic susceptibility. The sedimentary fabric is characterized through three-dimensional stacks of horizontal slices (following a vertical step of 2·5 mm along the cores), while grain-size distribution is estimated from two-dimensional vertical slices (following a step of 2 mm). Four types of fabric are distinguished: (a) moderate to high angle (15 to 75°); (b) bimodal low-angle (<15°); (c) low to high angle with at least two different orientations; and (d) dispersed fabric. The fabric geometry in a tsunami deposit is not only controlled by the characteristics of the flow itself (current strength, flow regime, etc.) but also sediment concentration, deposition rate and grain-size distribution. There is a notable correlation between unimodal high-angle fabric – type (a) – and finely-skewed grain-size distribution. The two tsunami deposits studied represent two different scenarios of inundation. As demonstrated here, X-ray tomography is an essential method for characterizing past tsunamis from their deposits. The method can be applied to many other types of sediments and sedimentary rocks.  相似文献   

19.
According to the old documents, two historic tsunamis of volcanic origin attacked Hokkaido, northern Japan. They are the 1640 Komagatake event which killed more than 700 people and the 1741 Oshima-Ohshima event which killed 1467 people. In order to obtain more information of these old tsunami disasters, we studied onshore tsunami deposits associated with these events. Tsunami deposits are identified by their sedimentary structure and granulometric characteristics. We traced the 1640 and 1741 tsunami deposits showing similar features at outcrops, by making pits or trenches. Minimum runup heights of these historic tsunamis were revealed by these tsunami deposit distributions. Trench survey is one of the best way to find and study onshore paleo-tsunami deposit  相似文献   

20.
Causon Deguara  J.  Gauci  R. 《Natural Hazards》2016,86(2):543-568

Large boulder accumulations have been observed on various coasts bordering the Mediterranean and have been associated with extreme wave events such as powerful storms or tsunamis. This study provides an in-depth analysis of 430 boulder deposits, located along a 3.5 km stretch of rocky coast situated on the SE of the Maltese Islands. It includes a geomorphometric analysis of the observed boulders and use of numerical modelling to estimate wave height required to initiate boulder movement. Comparisons of aerial imagery over a period of 46 years have made it possible to identify boulder movement that could only be attributed to storm waves, given that no local tsunamigenic event has been recorded over this time period. Positioned in the central Mediterranean, the Maltese Islands are exposed to potential tsunamis generated by seismic activity associated with the Malta Escarpment, and the Calabrian and Hellenic arcs. Although imprints from historic tsunami impact cannot be excluded, results indicate that the area is exposed to strong storm waves that are capable of displacing some of the very large boulders observed on site.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号