首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Using 2.5 ×2.5 winds and pressure grid data, the angular momentum budgets are studied in this paper for TC 9012 (Yancy) which was kept active 65 hours after land fall.It is found that the inland TC 9012 moved into the center of a relatively stable saddle, in which large amount of humid air was entrained into the storm from the southerly jet at low level to bund up the energy of latent heat, the weak cold air coming from the north provided it with baroclinic energy, while the vorticity transfer of geostrophic angular momentum on the radius 4°-8°from the cyclone center at upper troposphere and the input of cyclonic angular momentum produced by the βterm are immediate factors maintaining the central pressure and maximum winds.  相似文献   

2.
The features of the temperate jet stream including its location, intensity, structure, seasonal evolution and the relationship with the Asian monsoon are examined by using NCEP/NCAR reanalysis data. It is indicated that the temperate jet stream is prominent and active at 300 hPa in winter over the region from 45°-60°N and west of 120°E. The temperate jet stream is represented by a ridge area of high wind speed and dense stream lines in the monthly or seasonal mean wind field, but it .corresponds to an area frequented by a large number of jet cores in the daily wind field and exhibits a distinct boundary that separates itself with the subtropical jet. A comparison of the meridional wind component of the temperate jet stream with that of the subtropical jet shows that the northerly wind in the temperate jet stream is stronger than the southerly component of the subtropical jet, which plays an important role in the temperate jet stream formation and seasonal evolution, and thus the intensity change of the meridional wind component can be used to represent the temperate jet stream's seasonal variation. Analysis of the temperature gradient in the upper troposphere indicates that the temperate jet stream is accompanied by a maximum zonal temperature gradient and a large meridional temperature gradient, leading to a unique jet stream structure and particular seasonal evolution features, which are different from the subtropical jet. The zonal temperature gradient related to the land-sea thermal contrast along the East China coastal lines is responsible for the seasonal evolution of the temperate jet. In addition, there exists a coordinated synchronous change between the movement of the temperate jet and that of the subtropical jet. The seasonal evolution of the meridional wind intensity is closely related to the seasonal shift of the atmospheric circulation in East Asia, the onset of the Asian summer monsoon and the start of Meiyu in the Yangtze and Huaihe River Valleys, and it correlates well with summer and wint  相似文献   

3.
Based on NCEP/NCAR DOE daily reanalysis dataset during 1980-2015, this study investigates the boreal summer climatology and standard deviation of streamfunction in different low frequency periods (including 10-30 days, 30-60 days and more than 60 days) at 200 hPa. Distinctions in the characteristics in different periods are emphasized. It is found that the distribution of streamfunction on the timescale longer than 60 days is mainly zonal symmetric, accompanied by strong variability in the Northern Hemisphere subtropical jet streams. For the 10-30-day timescale, it reflects the zonal fluctuating structure in the middle and high latitudes and large variability in the Southern Hemisphere. Tropical quadrupole structure is observed on the 30-60-day timescale in climatology. Besides, a relative weak standard deviation is also found in this period. This work provides basic knowledge on climatology and variability in low-frequency streamfunction, which has not been fully illustrated in previous studies.  相似文献   

4.
Time-series of weekly total carbon(TC)concentrations of fine aerosol particles(PM2.5)in Beijing and Toronto were compared to investigate their respective levels and temporal patterns over two years from August 2001 through July 2003.In addition to this comparison,differences in the factors contributing to the observed concentrations and their temporal variations are discussed.Based upon past knowledge about the two megacities with highly contrasting air pollutant levels,it is not surprising that the average TC concentration in Beijing(31.5μg C m-3)was greater than that in Toronto by a factor of 8.3.Despite their large concentration differences,in both cities TC comprised a similarly large component of PM2.5.TC concentrations exhibited very different seasonal patterns between the two cities.In Beijing,TC experienced higher levels and greater weekly fluctuations in winter whereas in Toronto this behavior was seen in summer. As a result,the greatest gap in TC concentrations between Beijing and Toronto(by a factor of 12.7) occurred in winter,while the smallest gap(a factor of 4.6)was in summer.In Beijing,seasonal variations in the emissions probably played a greater role than meteorology in influencing the TC seasonality,while in Toronto during the warm months more than 80%of the hourly winds were recorded from the south,along with many potential anthropogenic sources for the days with high TC concentrations.This comparison of the differences provides insight into the major factors affecting carbonaceous aerosol in each city.  相似文献   

5.
In this paper, an explosive cyclone (EC) that occurred over Northeast China in the spring of 2016 is studied by using 6.7 μm FY satellite water vapor (WV) imagery and NCEP (1°×1°) reanalysis data. Moreover, the evolutions of the upper-level jet stream (ULJ), the vertical motions, and the potential vorticity (PV) are analyzed in detail. Results show that different shapes of the WV image dark zones could reflect different stages of the EC. At the pre-explosion stage, a small dark zone and an S-shaped baroclinic leaf cloud can be found on the WV imagery. Then the dark zone expands and the leaf cloud grows into a comma-shaped cloud at the explosively developing stage. At the post-explosion stage, the dark zone brightens, and the spiral cloud forms. The whole process can be well described by the WV imagery. The dynamic dry band associated with the sinking motion and the ULJ can develop into the dry intrusion later, which is an important signal in forecasting the EC and should be paid attention to when analyzing the WV imagery. Furthermore, the mechanism is also analyzed in detail in this article. EC usually occurs in the left-exit region of the 200-hPa jet and the region ahead of the 500-hPa trough where there is significant positive vorticity advection (PVA). When the EC moves onto the sea surface, the decreased friction would favour the development of the EC. The upper-level PVA, the strong convergence at low level, and the divergence at high levels can maintain the strong updraft. Meanwhile, the high PV zone from the upper levels extends downward, approaching the cyclone. Together, they keep the cyclone deepening continuously.  相似文献   

6.
Based on the Tropical Cyclone(TC briefly thereafter)Yearbook 1980-2009,this paper first analyzes the number and intensity change of the TCs which passed directly over or by the side of Poyang Lake(the distance of TC center is less than 1°longitude or 1°latitude from the Lake)among all the landfalling TCs in China during the past 30 years.Two cases are examined in detail in this paper.One is severe typhoon Rananim with a speed of 3.26 m/s and a change of 1 hPa in intensity when it was passing the Lake.The other is super typhoon Saomai with a faster moving speed of 6.50 m/s and a larger change in intensity of 6 hPa.Through numerical simulation experiments,this paper analyzes how the change of underlying surface from water to land contributes to the differences in intensity,speed and mesoscale convection of the two TCs when they passed the Lake.Results show that the moisture and dynamic condition above the Lake were favorable for the maintenance of the intensity when Rananim was passing through Poyang Lake,despite the moisture supply from the ocean was cut off.As a result,there was strong convection around the lake which led to a rainfall spinning counter-clockwise as it was affected by the TC movement.However,little impact was seen in the Saomai case.These results indicate that for the TCs coming ashore on Poyang Lake with a slow speed,the large water body is conducive to the sustaining of the intensity and strengthening of the convection around the TC center and the subsequent heavy rainfall.On the contrary,a fast-moving TC is less likely to be influenced by the underlying surface in terms of intensity and speed.  相似文献   

7.
Evolution of the electrifi cation of an idealized tropical cyclone (TC) is simulated by using the Advanced Weather Research and Forecasting (WRF-ARW) model. The model was modifi ed by addition of explicit electrifi cation and a new bulk discharge scheme. The characteristics of TC lightning is further examined by analyses of the electrifi cation and the charge structure of the TC. The fi ndings thus obtained are able to unify most of the previous inconsisitent observational and simulation studies. The results indicate that the TC eyewall generally exhibits an inverted dipole charge structure with negative charge above the positive. In the intensifi cation stage, however, the extremely tall towers of the eyewall may exhibit a normal tripole structure with a main negative region between two regions of positive charge. The outer spiral rainband cells display a simple normal dipole structure during all the stages. It is further found that the diff erences in the charge structure are associated with diff erent updrafts and particle distributions. Weak updrafts, together with a coexistence region of diff erent particles at lower levels in the eyewall, result in charging processes that occur mainly in the positive graupel charging zone (PGCZ). In the intensifi cation stage, the occurrence of charging processes in both positive and negative graupel charging zones is associated with strong updraft in the extremely tall towers. In addition, the coexistence region of graupel and ice crystals is mainly situated at upper levels in the outer rainband, so the charging processes mainly occur in the negative graupel charging zone (NGCZ).  相似文献   

8.
In this study, the differences in spatial distribution and controlling parameters for the formation of near-equatorial tropical cyclones(NETCs) between the western North Pacific(WNP) and the North Atlantic(NA) are investigated.NETCs exhibit distinctive spatial variabilities in different basins. Over the past few decades, the majority of NETCs took place in WNP while none was observed in NA. The mechanism behind such a distinguishing spatial distribution difference is analyzed by using statistical methods. It is noted that the dynamical variables such as low-level relative vorticity and vertical wind shear(VWS) are likely the primary controlling parameters. Compared with NA, larger low-level vorticity and smaller VWS appear over WNP. The increase of vorticity attributes a lot to the turning of northeast trade wind. NETCs in WNP tend to occur in the areas with VWS less than 9 m s~(-1), while the VWS in NA generally exceeds 10 m s~(-1). On the other hand, the sea surface temperature in the near-equatorial region of both of the two oceans exceeds 26.5℃ and the difference of mid-level moisture is not significant; thus, thermal factors have little contribution to the distinction of NETC activities between WNP and NA. Intraseasonal oscillation(ISO) and synoptic-scale disturbances in WNP are also shown to be more favorable for NETC genesis. More NETCs were generated in ISO active phase. Synoptic-scale disturbances in WNP obtain more energy from the mean flows through the barotropic energy conversion process. The overall unfavorable thermal and dynamic conditions lead to the absence of NETCs in NA.  相似文献   

9.
It is generally thought that the influence of comparable track typhoons is approximately similar, but in fact their wind and especially their rainstorm distribution are often very different. Therefore, a contrastive analysis of rainstorms by tropical cyclones (TCs) Haitang (0505) and Bilis (0604), which are of a similar track, is designed to help understand the mechanism of the TC rainstorm and to improve forecasting skills. The daily rainfall of TC Haitang (0505) and Bilis (0604) is diagnosed and compared. The result indicates that these two TCs have similar precipitation distribution before landfall but different precipitation characteristics after landfall. Using NCEP/GFS analysis data, the synoptic situation is analyzed; water vapor transportation is discussed regarding the calculated water vapor flux and divergence. The results show that the heavy rainfall in the Zhejiang and Fujian Provinces associated with Haitang (0505) and Bilis (0604) before landfall results from a peripheral easterly wind, a combination of the tropical cyclone and the terrain. After landfall and moving far inland of the storm, the precipitation of Haitang is caused by water vapor convergence carried by its own circulation; it is much weaker than that in the coastal area. One of the important contributing factors to heavy rainstorms in southeast Zhejiang is a southeast jet stream, which is maintained over the southeast coast. In contrast, the South China Sea monsoon circulation transports large amounts of water vapor into Bilis – when a water-vapor transport belt south of the tropical cyclone significantly strengthens – which strengthens the transport. Then, it causes water vapor flux to converge on the south side of Bilis and diverge on the north side. Precipitation is much stronger on the south side than that on the north side. After Bilis travels far inland, the cold air guided by a north trough travels into the TC and remarkably enhances precipitation. In summary, combining vertical wind shear with water vapor transportation is a good way to predict rainstorms associated with landing tropical cyclones.  相似文献   

10.
In this study,the effect of vertical wind shear(VWS)on the intensification of tropical cyclone(TC)is investigated via the numerical simulations.Results indicate that weak shear tends to facilitate the development of TC while strong shear appears to inhibit the intensification of TC.As the VWS is imposed on the TC,the vortex of the cyclone tends to tilt vertically and significantly in the upper troposphere.Consequently,the upward motion is considerably enhanced in the downshear side of the storm center and correspondingly,the low-to mid-level potential temperature decreases under the effect of adiabatic cooling,which leads to the increase of the low-to mid-level static instability and relative humidity and then facilitates the burst of convection.In the case of weak shear,the vertical tilting of the vortex is weak and the increase of ascent,static instability and relative humidity occur in the area close to the TC center.Therefore,active convection happens in the TC center region and facilitates the enhancement of vorticity in the inner core region and then the intensification of TC.In contrast,due to strong VWS,the increase of the ascent,static instability and relative humidity induced by the vertical tilting mainly appear in the outer region of TC in the case with stronger shear,and the convection in the inner-core area of TC is rather weak and convective activity mainly happens in the outer-region of the TC.Therefore,the development of a warm core is inhibited and then the intensification of TC is delayed.Different from previous numerical results obtained by imposing VWS suddenly to a strong TC,the simulation performed in this work shows that,even when the VWS is as strong as 12 m s-1,the tropical storm can still experience rapid intensification and finally develop into a strong tropical cyclone after a relatively long period of adjustment.It is found that the convection plays an important role in the adjusting period.On one hand,the convection leads to the horizontal convergence of the low-level vorticity flux and therefore leads to the enhancement of the low-level vorticity in the inner-core area of the cyclone.On the other hand,the active ascent accompanying the convection tends to transport the low-level vorticity to the middle levels.The enhanced vorticity in the lower to middle troposphere strengths the interaction between the low-and mid-level cyclonical circulation and the upper-level circulation deviated from the storm center under the effect of VWS.As a result,the vertical tilting of the vortex is considerably decreased,and then the cyclone starts to develop rapidly.  相似文献   

11.
The sensitivity of TC intensification and track to the initial inner-core structure on a β plane is investigated using a numerical model. The results show that the vortex with large inner-core winds(CVEX-EXP) experiences an earlier intensification than that with small inner-core winds(CCAVE-EXP), but they have nearly the same intensification rate after spin-up. In the early stage, the convective cells associated with surface heat flux are mainly confined within the inner-core region in CVEXEXP, whereas the vortex in CCAVE-EXP exhibits a considerably asymmetric structure with most of the convective vortices being initiated to the northeast in the outer-core region due to the β effect. The large inner-core inertial stability in CVEX-EXP can prompt a high efficiency in the conversion from convective heating to kinetic energy. In addition, much stronger straining deformation and PBL imbalance in the inner-core region outside the primary eyewall ensue during the initial development stage in CVEX-EXP than in CCAVE-EXP, which is conducive to the rapid axisymmetrization and early intensification in CVEX-EXP. The TC track in CVEX-EXP sustains a northwestward displacement throughout the integration, whereas the TC in CCAVE-EXP undergoes a northeastward recurvature when the asymmetric structure is dominant. Due to the enhanced asymmetric convection to the northeast of the TC center in CCAVE-EXP, a pair of secondary gyres embedded within the large-scale primary β gyres forms, which modulates the ventilation flow and thus steers the TC to move northeastward.  相似文献   

12.
Characterization of carbonaceous aerosols including CC (carbonate carbon), OC (organic carbon), and EC (elemental carbon) were investigated at Xi'an, China, near Asian dust source regions in spring 2002. OC varied between 8.2 and 63.7 μg m-3, while EC ranged between 2.4 and 17.2 μ m-3 during the observation period. OC variations followed a similar pattern to EC and the correlation coeflcient between OC and EC is 0.89 (n=31). The average percentage of total carbon (TC, sum of CC, OC, and EC) in PM2.5 during dust storm (DS) events was 13.6%, which is lower than that during non-dust storm (NDS) periods (22.7%). CC, OC, and EC accounted for 12.9%, 70.7%, and 16.4% of TC during DS events, respectively. The average ratio of OC/EC was 5.0 in DS events and 3.3 in NDS periods. The OC-EC correlation (R2=0.76, n=6) was good in DS events, while it was stronger (R2=0.90, n=25) in NDS periods. The percentage of water-soluble OC (WSOC) in TC accounted for 15.7%, and varied between 13.3% and 22.3% during DS events. The distribution of eight carbon fractions indicated that local emissions such as motor vehicle exhaust were the dominant contributors to carbonaceous particles. During DS events, soil dust dominated the chemical composition, contributing 69% to the PM2.5 mass, followed by organic matter (12.8%), sulfate (4%), EC (2.2%), and chloride (1.6%). Consequently, CC was mainly entrained by Asian dust. However, even in the atmosphere near Asian dust source regions, OC and EC in atmospheric dust were controlled by local emission rather than the transport of Asian dust.  相似文献   

13.
Diurnal variation of tropical cyclone (TC) rainfall in the western North Pacific (WNP) is investigated using the high-resolution Climate Prediction Center’s morphing technique (CMORPH) products obtained from the National Oceanic and Atmospheric Administration (NOAA). From January 2008 to October 2010, 72 TCs and 389 TC rainfall days were reported by the Joint Typhoon Warning Center’s (JTWC) best-track record. The TC rain rate was partitioned using the Objective Synoptic Analysis Technique (OSAT) and interpolated into Local Standard Time (LST). Harmonic analysis was applied to analyze the diurnal variation of the precipitation. Obvious diurnal cycles were seen in approximately 70% of the TC rainfall days. The harmonic amplitude and phase of the mean TC rainfall rate vary with TC intensity, life stage, season, and spatial distribution. On the basis of intensity, tropical depressions (TDs) exhibit the highest precipitation variation amplitude (PVA), at approximately 30%, while super typhoons (STs) contain the lowest PVA, at less than 22%. On the basis of lifetime stage, the PVA in the decaying stage (more than 37%) is stronger than that in the developing (less than 20%) and sustaining (28%) stages. On the basis of location, the PVA of more than 35% (less than 18%) is the highest (lowest) over the high-latitude oceanic areas (the eastern ocean of the Philippine Islands). In addition, a sub-diurnal cycle of TC rainfall occurs over the high-latitude oceans. On the basis of season, the diurnal variation is more pronounced during summer and winter, at approximately 30% and 32%, respectively, and is weaker in spring and autumn, at approximately 22% and 24%, respectively.  相似文献   

14.
The multifractality of energy and thermal dissipation of fully developed intermittent turbulence is investigated in the urban canopy layer under unstable conditions by the singularity spectrum for the fractal dimensions of sets of singularities characterizing multifractals. In order to obtain high-order moment properties of smallscale turbulent dissipation in the inertial range, an ultrasonic anemometer with a high sampling frequency of 100 Hz was used. The authors found that the turbulent signal could be singular everywhere. Moreover, the singular exponents of energy and thermal dissipation rates are most frequently encountered at around 0.2, which is significantly smaller than the singular exponents for a wind tunnel at a moderate Reynolds number. The evidence indicates a higher intermittency of turbulence in the urban canopy layer at a high Reynolds number, which is demonstrated by the data with high temporal resolution. Furthermore, the temperature field is more intermittent than the velocity field. In addition, a large amount of samples could be used for verification of the results.  相似文献   

15.
Upper-level jet streams over East Asia simulated by the LASG/IAP coupled climate system model FGOALS-s2 were assessed, and the mean state bias explained in terms of synoptic-scale transient eddy activity (STEA). The results showed that the spatial distribution of the seasonal mean jet stream was reproduced well by the model, except that following a weaker meridional temperature gradient (MTG), the intensity of the jet stream was weaker than in National Centers for Environment Prediction (NCEP)/Department of Energy Atmospheric Model Inter-comparison Project Ⅱ reanalysis data (NCEP2). Based on daily mean data, the jet core number was counted to identify the geographical border between the East Asian Subtropical Jet (EASJ) and the East Asian Polar-front Jet (EAPJ). The border is located over the Tibetan Plateau according to NCEP2 data, but was not evident in FGOALS-s2 simulations. The seasonal cycles of the jet streams were found to be reasonably reproduced, except that they shifted northward relative to reanalysis data in boreal summer owing to the northward shift of negative MTGs. To identify the reasons for mean state bias, the dynamical and thermal forcings of STEA on mean flow were examined with a focus on boreal winter. The dynamical and thermal forcings were estimated by extended Eliassen-Palm flux (E) and transient heat flux, respectively. The results showed that the failure to reproduce the tripolar-pattern of the divergence of E over the jet regions led to an unsuccessful separation of the EASJ and EAPJ, while dynamical forcing contributed less to the weaker EASJ. In contrast, the weaker transient heat flux partly explained the weaker EASJ over the ocean.  相似文献   

16.
Rainfall is triggered and mainly dominated by atmospheric thermo-dynamics and rich water vapor.Nonetheless, turbulence is also considered as an important factor influencing the evolution of rainfall microphysical parameters. To study such an influence, the present study utilized boundary layer wind profiler radar measurements. The separation point of the radar power spectral density data was carefully selected to classify rainfall and turbulence signals;the turbulent dissipation rate ε and rainfall microphysical parameters can be retrieved to analyze the relationship betweenε and microphysical parameters. According to the retrievals of two rainfall periods in Beijing 2016, it was observed that(1) ε in the precipitation area ranged from 10~(-3.5) to 10~(-1) m~2 s~(-3) and was positively correlated with the falling velocity spectrum width;(2) interactions between turbulence and raindrops showed that small raindrops got enlarge through collision and coalescence in weak turbulence, but large raindrops broke up into small drops under strong turbulence, and the separation value of ε being weak or strong varied with rainfall attributes;(3) the variation of rainfall microphysical parameters(characteristic diameters, number concentration, rainfall intensity, and water content) in the middle stage were stronger than those in the early and the later stages of rainfall event;(4) unlike the obvious impacts on raindrop size and number concentration, turbulence impacts on rain rate and LWC were not significant because turbulence did not cause too much water vapor and heat exchange.  相似文献   

17.
An extreme monsoonal heavy rainfall event lasted for nine days and recurred in the interior of northern south China from June 13 to 21, 2022. Using regional meteorological stations and ERA5 reanalysis data, the causes of this extreme monsoonal rainfall event in south China were analyzed and diagnosed. The results are shown as follows. A dominant South Asian high tended to be stable near the Qinghai-Tibet Plateau, providing favorable upper-level dispersion conditions for the occurrence of heavy rainfall in south China. A western Pacific subtropical high dominated the eastern part of the South China Sea, favoring stronger and more northward transport of water vapor to the northern part of south China at lower latitudes than normal. The continuous heavy precipitation event can be divided into two stages. The first stage (June 13-15) was the frontal heavy rainfall caused by cold air (brought by an East Asian trough) from the mid-latitudes that converged with a monsoonal airflow. The heavy rains occurred mostly in the area near a shear in front of the center of a synoptic-system-related low-level jet (SLLJ), and the jet stream and precipitation were strongest in the daytime. The second stage (June 16-21) was the warm-sector heavy rainfall caused by a South China Sea monsoonal low-level jet penetrating inland. The heavy rainfall occurred on the windward slope of the Nanling Mountains and in the northern part of a boundary layer jet (BLJ). The BLJ experienced five nighttime enhancements, corresponding well with the enhancement of the rainfall center, showing significant nighttime heavy rainfall characteristics. Finally, a conceptual diagram of inland-type warm-sector heavy rainfall in south China is summarized.  相似文献   

18.
The Weather Research and Forecasting (WRF) model was used to investigate the role of downward momentum transport in the formation of severe surface winds for a squall line on 3-4 June 2009 across regions of the Henan and Shandong Provinces of China. The results show that there was a strong westerly jet belt with a wind speed greater than 30 m s 1 and a thickness of 5 km at an altitude of 11-16 km. The jet belt was accelerated, and it descended while the squall line convective system occurred. It was found that the appearance of strong negative perturbation pressure accompanied by the squall line caused the acceleration of the upper-level westerly jet and increased the horizontal wind speed by a maximum of 18%. Meanwhile, the negative buoyancy due to the loading, melting, and evaporation of cloud hydrometeors induced the downward momentum transport from the upper levels. The downward momentum transport contributed approximately 70% and the surface cold pool 30% to the formation of severe surface winds.  相似文献   

19.
On the basis of NCEP/NCAR reanalysis data and yearbooks of CMA tropical cyclones, statistical analysis is performed for 1949—2013 offshore typhoons subjected to rapid decay(RD). This analysis indicates that RD typhoons are small-probability events, making up about 2.2% of the total offshore typhoons during this period. The RD events experience a decadal variation, mostly in the 1960 s and 1970 s(maximal in the 1970 s), rapidly decrease in the 1980 s and 1990 s and quickly increase from 2000. Also, RD typhoons show remarkable seasonal differences: they arise mainly in April and July-December, with the prime stage being in October-November. The offshore RD typhoons occur mostly in the South China Sea(SCS) and to a lesser extent in the East China Sea(ECS); however, none are observed over the Huang Sea and Bo Sea.Composite analysis and dynamic diagnosis of the RD typhoon-related large-scale circulations are performed.Physical quantities of the composite analysis consist of 500-h Pa height and temperature fields, vapor transfer, vertical wind shear(VWS), density of core convection(DCC), and high-level jet and upper-air outflow of the typhoon. The results suggest that(1) at the 500-h Pa height field, the typhoon is ahead of a westerly trough and under the effects of its passing trough;(2) at the temperature field, the typhoon is ahead of a temperature trough, with an invading cold tongue present;(3) at the vapor transfer field, water transfer into the RD typhoon is cut off; and(4) at higher levels, the related jet weakens and the outbreak of convection becomes attenuated in the typhoon core. In addition, VWS bears a relation to the RD typhoon; in particular, strong VWS favors RD occurrence.The differences in RD events between the SCS and ECS show that for the RD, the VWS of the ECS environmental winds is markedly stronger in comparison with its SCS counterpart. The cold advection invading into the typhoons is more intense in the SCS than in the ECS, and the low-level vapor transfer and high-level outflow are weaker in the SCS RD typhoons.Data analysis shows that sea surface temperature(SST), VWS, and DCC can be employed as efficient factors to predict RD occurrence. With appropriate SST, VWS, and DCC, a warning of RD occurrence can be given 36, 30-36,and 30 h, respectively, in advance. These values suggest that atmospheric SST responses lag. Owing to this time lag,the prediction of RD typhoons is possible.  相似文献   

20.
In this paper, statistics were analyzed concerning correlation between the storm rainfall far from typhoon and non-zonal upper-level jet stream. The results show that the jet stream at 200 hPa is constantly SW (90.2 %) during the period in which storm rainfall occurs. Rainfall area lies in the right rear regions of the jet axes. While the storm intensifies, the jet tends to be stronger and turn non-zonal. With the MM4 model, numerical simulation and diagnosis were carried out for Typhoon No.9711 (Winnie) on August 19 to 20, 1997. The distant storm rainfall is tightly correlative to the jet and low-level typhoon trough. The divergence field of jet is related to the v component. The upper level can cause the allobaric wind convergence at low level. This is the result of the form of low-level typhoon trough and the strength of the storm. By scale analysis, it is found that there is a branch of middle scale transverse inverse circulation in the right entrance regions behind the jet below the 300-hPa level, which is very important to the maintenance and strengthening of storm rainfall. This branch of inverse circulation is relative to the reinforcement of jet's non-zonal characteristics. From the field of mesoscale divergence field and non-zonal wind field, we know that the stronger symmetry caused by transverse circulation in the two sides of the jet, rainfall’s feedback and reinforcement of jet’s non-zonal characteristics had lead to positive feedback mechanism that was favorable of storm rainfall’s strengthening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号