首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— We report here on an ion probe study of rare earth element (REE) geochemistry in the lherzolitic shergottite Grove Mountains (GRV) 99027. This meteorite shows almost identical mineralogy, petrology, and REE geochemistry to those of the lherzolitic shergottites Allan Hills (ALH) A77005, Lewis Cliff (LEW) 88516, and Yamato (Y‐) 793605. REE concentrations in olivine, pyroxenes, maskelynite, merrillite, and melt glass are basically comparable to previous data obtained from ALH A77005, LEW 88516, and Y‐793605. Olivine is the dominant phase in this meteorite. It is commonly enclosed by large (up to several mm) pigeonite oikocrysts. Non‐poikilitic areas consist of larger olivine grains (?mm), pigeonite, augite, and maskelynite. Minor merrillite (up to 150 μm in size) is widespread in non‐poikilitic regions, occurring interstitially between olivine and pyroxene grains. It is the main REE carrier in GRV 99027 and has relatively higher REEs (200–1000 × CI) than that of other lherzolitic shergottites. A REE budget calculation for GRV 99027 yields a whole rock REE pattern very similar to that of other lherzolites. It is characterized by the distinctive light REE depletion and a smooth increase from light REEs to heavy REEs. REE microdistributions in GRV 99027 strongly support the idea that all lherzolitic shergottites formed by identical igneous processes, probably from the same magma chamber on Mars. Despite many similarities in mineralogy, petrography, and trace element geochemistry, subtle differences exist between GRV 99027 and other lherzolitic shergottites. GRV 99027 has relatively uniform mineral compositions (both major elements and REEs), implying that it suffered a higher degree of sub‐solidus equilibration than the other three lherzolites. It is notable that GRV 99027 has experienced terrestrial weathering in the Antarctic environment, as its olivine and pyroxenes commonly display a light REE enrichment and a negative Ce anomaly. Caution needs to be taken in future chronological studies.  相似文献   

2.
Abstract— NWA 1950 is a new lherzolitic shergottite recently recovered from Morocco and is the first sample of this group found outside Antarctica. Major constituent phases of NWA 1950 are olivine, pyroxenes, and plagioclase glass (“maskelynite”) and the rock shows a two distinct textures: poikilitic and non‐poikilitic typical of lherzolitic shergottites. In poikilitic areas, several‐millimeter‐sized pyroxene oikocrysts enclose cumulus olivine and chromite. In contrast, pyroxenes are much smaller in non‐poikilitic areas, and olivine and plagioclase glass are more abundant. Olivine in non‐poikilitic areas is more Fe‐rich (Fa29–31) and shows a narrower distribution than that in poikilitic areas (Fa23–29). Pyroxenes in non‐poikilitic areas are also more Fe‐rich than those in poikilitic areas that show continuous chemical zoning suggesting fractional crystallization under a closed system. These observations indicate that pyroxene in non‐poikilitic areas crystallized from evolved interstitial melts and olivine was re‐equilibrated with such melts. NWA 1950 shows similar mineralogy and petrology to previously known lherzolitic shergottites (ALH 77005, LEW 88516, Y‐793605 and GRV 99027) that are considered to have originated from the same igneous body on Mars. Olivine composition of NWA 1950 is intermediate between those of ALH 77005‐GRV 99027 and those of LEW 88516‐Y‐793605, but is rather similar to ALH 77005 and GRV 99027. The subtle difference of mineral chemistry (especially, olivine composition) can be explained by different degrees of re‐equilibration compared to other lherzolitic shergottites, perhaps due to different location in the same igneous body. Thus, NWA 1950 experienced a high degree of re‐equilibration, similar to ALH 77005 and GRV 99027.  相似文献   

3.
Grove Mountains (GRV) 020090 is a “lherzolitic” shergottite found in the Grove Mountains, Antarctica. It exhibits two distinct textures: poikilitic and nonpoikilitic. In poikilitic areas, large pyroxene oikocrysts enclose subhedral olivine and chromite chadacrysts. Pyroxene oikocrysts are zoned from pigeonite cores to augite rims. In nonpoikilitic areas, olivine, pyroxene, and interstitial maskelynite occur as major phases, and minor phases include chromite and merrillite. Compared with typical “lherzolitic” shergottites, GRV 020090 contains a distinctly higher abundance of maskelynite (19 vol%). Olivine and pyroxene are more ferroan (Fa28–40, En57–72Fs24–31Wo4–14 and En46–53Fs17–21Wo26–35), and maskelynite is more alkali‐rich (Ab43–65Or2–7). The major phases, whole‐rock (estimated) and fusion crust of GRV 020090, are relatively enriched in light rare earth elements (LREE), similar to those of the geochemically enriched basaltic shergottites, but distinct from those of LREE‐depleted “lherzolitic” shergottites. Combined with a high oxygen fugacity of log fO2 = QFM ? 1.41 ± 0.04 (relative to the quartz‐fayalite‐magnetite buffer), it is clear that GRV 020090 sampled from an oxidized and enriched mantle reservoir similar to those of other enriched shergottites. The calculated REE abundances and patterns of the melts in equilibrium with the cores of major phases are parallel to but higher than that of the whole rock, suggesting that GRV 020090 originated from a single parent magma and experienced progressive fractional crystallization in a closed system. The crystallization age recorded by baddeleyite is 192 ± 10 (2σ) Ma, consistent with the young internal isochron ages of enriched shergottites. Baddeleyite dating results further demonstrated that the young ages, rather than ancient ages (>4 Ga), appear to represent the crystallization of Martian surface lava flow. GRV 020090 shares many similarities with Roberts Massif (RBT) 04261/2, the first enriched “lherzolitic” shergottite. Detailed comparisons suggest that these two rocks are petrologically and geochemically closely related, and probably launch paired.  相似文献   

4.
Northwest Africa (NWA) 7397 is a newly discovered, enriched, lherzolitic shergottite, the third described example of this group. This meteorite consists of two distinct textural lithologies (1) poikilitic—comprised of zoned pyroxene oikocrysts, with chadacrysts of chromite and olivine, and (2) nonpoikilitic—comprised of olivine, low‐Ca and high‐Ca pyroxene, maskelynite, and minor abundances of merrillite, spinel, ilmenite, and pyrrhotite. The constant Ti/Al ratios of pyroxene oikocrysts suggests initial crystallization of the poikilitic lithology at depth (equivalent to pressures of approximately 10 kbar), followed by crystallization of the nonpoikilitic lithology at shallower levels. Oxygen fugacity conditions become more oxidizing during crystallization ranging from fO2 conditions of approximately QFM‐2 to QFM‐0.7. Magma calculated to be in equilibrium with the major rock‐forming minerals is LREE‐enriched relative to depleted or intermediate shergottites and has flat overall profiles. Therefore, we suggest that the parental magma for NWA 7397 had sampled an enriched, oxidized, Martian geochemical source, similar to that of other enriched basaltic and olivine‐phyric shergottites. We present a polybaric formation model for the lherzolitic shergottite NWA 7397, to account for the petrologic constraints. Three successive stages in the development of NWA 7397 are discussed (1) formation of a REE‐enriched parental magma from a distinct Martian mantle reservoir; (2) magma ponding and development of a staging chamber concomitant with initial crystallization of the poikilitic lithology; and (3) magma ascent to the near surface, with entrainment of cumulates from the staging chamber and subsequent crystallization of the nonpoikilitic lithology en route to the surface.  相似文献   

5.
Grove Mountains (GRV) 020090 is an enriched lherzolitic shergottite, distinct from other lherzolitic shergottites, except RBT 04262/1. Its characteristics include high abundance of plagioclase (24.2 vol% in the nonpoikilitic area), presence of K‐feldspar, common occurrence of baddeleyite, high FeO contents of olivine (bimodal peaks at Fa 33 mol% and Fa 41 mol%) and low‐Ca pyroxenes (bimodal peaks at Fs 23.8–31.7 mol% and Fs 25.7–33.9 mol%), and significant LREE enrichment of phosphates (500–610 × CI). The bulk composition of GRV 020090 suggests derivation from partial melting of an enriched reservoir. However, the REE patterns of the cores of pigeonite oikocrysts and the olivine chadacrysts are indistinguishable from those of GRV 99027 and other moderately depleted lherzolitic shergottites, and reveal a LREE‐depleted pattern of the primordial parent magma. We propose that the primordial parent magma of GRV 020090 was derived from a moderately depleted Martian upper mantle reservoir, and later the residual melt was contaminated by oxidized and enriched Martian crustal materials as it ascended up to the subsurface. GRV 020090 and RBT 04262/1 may have sampled an igneous unit different from other lherzolitic shergottites.  相似文献   

6.
Abstract— We report the concentration of 50 elements, including rare earth elements (REEs) and platinum group elements (PGEs) in bulk samples of the Grove Mountains (GRV) 99027 lherzolitic shergottite. The abundances of REEs are distinctly lower than those of Allan Hills (ALH) A77005 and other lherzolitic shergottites, indicating that GRV 99027 is not paired with them. It may, nevertheless, sample the same igneous unit as the others (Lin et al. 2005b; Wang and Chen 2006). The CI‐normalized elemental pattern of GRV 99027 reveals low (0.004–0.008 × CI) and unfractionated PGEs (except for Pd of 0.018 × CI) without depletion of W. or Ga relative to lithophile element trends. Fractionation between siderophile and lithophile elements become less pronounced with increase of volatility, except for high abundances of Ni and Co. These characteristics are probably representative of the mantle of Mars, which is consistent with previous work that the Martian mantle formed in a deep magma ocean followed by a later accretion of chondritic materials.  相似文献   

7.
Abstract– Northwest Africa (NWA) 4797 is an ultramafic Martian meteorite composed of olivine (40.3 vol%), pigeonite (22.2%), augite (11.9%), plagioclase (9.1%), vesicles (1.6%), and a shock vein (10.3%). Minor phases include chromite (3.4%), merrillite (0.8%), and magmatic inclusions (0.4%). Olivine and pyroxene compositions range from Fo66–72,En58–74Fs19–28Wo6–15, and En46–60Fs14–22Wo34–40, respectively. The rock is texturally similar to “lherzolitic” shergottites. The oxygen fugacity was QFM?2.9 near the liquidus, increasing to QFM?1.7 as crystallization proceeded. Shock effects in olivine and pyroxene include strong mosaicism, grain boundary melting, local recrystallization, and pervasive fracturing. Shock heating has completely melted and vesiculated igneous plagioclase, which upon cooling has quench‐crystallized plagioclase microlites in glass. A mm‐size shock melt vein transects the rock, containing phosphoran olivine (Fo69–79), pyroxene (En44–51Fs14–18Wo30–42), and chromite in a groundmass of alkali‐rich glass containing iron sulfide spheres. Trace element analysis reveals that (1) REE in plagioclase and the shock melt vein mimics the whole rock pattern; and (2) the reconstructed NWA 4797 whole rock is slightly enriched in LREE relative to other intermediate ultramafic shergottites, attributable to local mobilization of melt by shock. The shock melt vein represents bulk melting of NWA 4797 injected during pressure release. Calculated oxygen fugacity for NWA 4797 indicates that oxygen fugacity is decoupled from incompatible element concentrations. This is attributed to subsolidus re‐equilibration. We propose an alternative nomenclature for “lherzolitic” shergottites that removes genetic connotations. NWA 4797 is classified as an ultramafic poikilitic shergottite with intermediate trace element characteristics.  相似文献   

8.
Abstract— We examine the occurrences, textures, and compositional patterns of spinels in the olivine‐phyric shergottites Sayh al Uhaymir (SaU) 005, lithology A of Elephant Moraine A79001 (EET‐A), Dhofar 019, and Northwest Africa (NWA) 1110, as well as the Iherzolitic shergottite Allan Hills (ALH) A77005, in order to identify spinel‐olivine‐pyroxene assemblages for the determination of oxygen fugacity (using the oxybarometer of Wood [1991]) at several stages of crystallization. In all of these basaltic martian rocks, chromite was the earliest phase and crystallized along a trend of strict Cr‐Al variation. Spinel (chromite) crystallization was terminated by the appearance of pyroxene but resumed later with the appearance of ulvöspinel. Ulvöspinel formed overgrowths on early chromites (except those shielded as inclusions in olivine or pyroxene), retaining the evidence of the spinel stability gap in the form of a sharp core/rim boundary (except in ALH A77005, where subsolidus reequilibration diffused this boundary). Secondary effects seen in chromites include reaction with melt before ulvöspinel overgrowth, reaction with melt inclusions, reaction with olivine hosts (in ALH A77005), and exsolution of ulvöspinel or ilmenite. All chromites experienced subsolidus Fe/Mg reequilibration. Spinel‐olivine‐pyroxene assemblages representing the earliest stages of crystallization in each rock essentially consist of the highest‐Cr#, lowest‐fe# chromites not showing secondary effects plus the most magnesian olivine and equilibrium low‐Ca pyroxene. Assemblages representing the onset of ulvöspinel crystallization consist of the lowest‐Ti ulvöspinel, the most magnesian olivine in which ulvöspinel occurs as inclusions, and equilibrium low‐Ca pyroxene. The results show that, for early crystallization conditions, oxygen fugacity (fO2) increases from SaU 005 and Dhofar 019 (?QFM ‐3.8), to EET‐A (QFM ‐2.8) and ALH A77005 (QFM ‐2.6), to NWA 1110 (QFM ‐1.7). Estimates for later conditions indicate that in SaU 005 and Dhofar 019 oxidation state did not change during crystallization. In EET‐A, there was an increase in fO2 that may have been due to mixing of reduced material with a more oxidized magma. In NWA 1110, there was a dramatic increase, indicating a non‐buffered system, possibly related to its high oxidation state. Differences in fO2 among shergottites are not primarily due to igneous fractionation but, rather, to derivation from (and possibly mixing of) different reservoirs.  相似文献   

9.
Abstract– Rb‐Sr and Sm‐Nd isotopic analyses of the lherzolitic shergottite Grove Mountains (GRV) 99027 are reported. GRV 99027 yields a Rb‐Sr mineral isochron age of 177 ± 5 (2σ) Ma and an initial 87Sr/86Sr ratio (ISr) of 0.710364 ± 11 (2σ). Due to larger uncertainties of the Sm‐Nd isotopic data, no Sm‐Nd isochron age was obtained for GRV 99027. The ε143Nd value is estimated approximately +12.2, assuming an age of 177 Ma. The ISr of GRV 99027 is distinguishable from other lherzolitic shergottites, confirming our previous conclusion that it is not paired with them ( Lin et al. 2005 ). The new data of GRV 99027 support the same age of approximately 180 Ma for most lherzolitic shergottites, and fill the small gap of ISr between Allan Hills A77005 and Lewis Cliff 88516 ( Borg et al. 2002 ). All available data are consistent with a single igneous source for the intermediate subgroup of lherzolitic shergottites.  相似文献   

10.
Abstract— Plagioclase in the Martian lherzolitic shergottite Grove Mountains (GRV) 99027 was shocked, melted, and recrystallized. The recrystallized plagioclase contains lamellae of pyroxene, olivine, and minor ilmenite (<1 μm wide). Both the pyroxene and the olivine inclusions enclosed in plagioclase and grains neighboring the plagioclase were partially melted into plagioclase melt pools. The formation of these lamellar inclusions in plagioclase is attributed to exsolution from recrystallizing melt. Distinct from other Martian meteorites, GRV 99027 contains no maskelynite but does contain recrystallized plagioclase. This shows that the meteorite experienced a slower cooling than maskelynite‐bearing meteorites. We suggest that the parent rock of GRV 99027 could have been embedded in hot rocks, which facilitated a more protracted cooling history.  相似文献   

11.
Northwest Africa (NWA) 6342 is an intermediate, poikilitic shergottite, found in Algeria in 2010. It is comprised of two distinct petrographic areas; poikilitic domains with rounded Mg‐rich olivine chadacrysts enclosed by large low‐Ca pyroxene oikocrysts, and a nonpoikilitic domain mainly comprised of subhedral olivine and vesicular recrystallized plagioclase. Oxygen fugacity conditions become more oxidizing during crystallization from the poikilitic to the nonpoikilitic domain (QFM?3.0 to QFM?2.2). As such, it is likely that NWA 6342 experienced a two‐stage (polybaric) crystallization history similar to that of the enriched poikilitic shergottites. NWA 6342 also experienced relatively high levels of shock metamorphism in comparison to most other poikilitic shergottites as evidenced by the fine‐grained recrystallization texture in olivine, as well as melting and subsequent crystallization of plagioclase. The recrystallization of plagioclase requires an extended period of postshock thermal metamorphism for NWA 6342 and similarly shocked intermediate poikilitic shergottites NWA 4797 and Grove Mountains 99027 most likely due to launch from Mars. The similarities in petrology, chemistry, and shock features between these three meteorites indicate that they have similar crystallization and shock histories; possibly originating from the same source area on Mars.  相似文献   

12.
Larkman Nunatak (LAR) 12095 and LAR 12240 are recent olivine‐phyric shergottite finds. We report the results of petrographic and chemical analyses of these two samples to understand their petrogenesis on Mars. Based on our analyses, we suggest that these samples are likely paired and are most similar to other depleted olivine‐phyric shergottites, particularly Dar al Gani (DaG) 476 and Sayh al Uhaymir (SaU) 005 (and samples paired with those). The olivine megacryst cores in LAR 12095 and LAR 12240 are not in equilibrium with the groundmass olivines. We infer that these megacrysts are phenocrysts and their major element compositions have been homogenized by diffusion (the cores of the olivine megacrysts have Mg# ~70, whereas megacryst rims and groundmass olivines typically have Mg# ~58–60). The rare earth element (REE) microdistributions in the various phases (olivine, low‐ and high‐Ca pyroxene, maskelynite, and merrillite) in both samples are similar and support the likelihood that these two shergottites are indeed paired. The calculated parent melt (i.e., in equilibrium with the low‐Ca pyroxene, which is one of the earliest formed REE‐bearing minerals) has an REE pattern parallel to that of melt in equilibrium with merrillite (i.e., one of the last‐formed minerals). This suggests that the LAR 12095/12240 paired shergottites represent the product of closed‐system fractional crystallization following magma emplacement and crystal accumulation. Utilizing the europium oxybarometer, we estimate that the magmatic oxygen fugacity early in the crystallization sequence was ~IW. Finally, petrographic evidence indicates that LAR 12095/12240 experienced extensive shock prior to being ejected from Mars.  相似文献   

13.
Petrology of Martian meteorite Northwest Africa 998   总被引:1,自引:0,他引:1  
Abstract— Nakhlite Northwest Africa (NWA) 998 is an augite-rich cumulate igneous rock with mineral compositions and oxygen isotopic composition consistent with an origin on Mars. This 456-gram, partially fusion-crusted meteorite consists of (by volume) ∼75% augite (core composition Wo39En39Fs22), ∼9% olivine (Fo35), ∼7% plagioclase (Ab61An35) as anhedra among augite and olivine, ∼3.5% low-calcium pyroxenes (pigeonite and orthopyroxene) replacing or forming overgrowths on olivine and augite, ∼1% titanomagnetite, and other phases including potassium feldspar, apatite, pyrrhotite, chalcopyrite, ilmenite, and fine-grained mesostasis material. Minor secondary alteration materials include “iddingsite” associated with olivine (probably Martian), calcite crack fillings, and iron oxide/hydroxide staining (both probably terrestrial). Shock effects are limited to minor cataclasis and twinning in augite. In comparison to other nakhlites, NWA 998 contains more low-calcium pyroxenes and its plagioclase crystals are blockier. The large size of the intercumulus feldspars and the chemical homogeneity of the olivine imply relatively slow cooling and chemical equilibration in the late- and post-igneous history of this specimen, and mineral thermometers give subsolidus temperatures near 730 °C. Oxidation state was near that of the QFM buffer, from about QFM-2 in earliest crystallization to near QFM in late crystallization, and to about QFM + 1.5 in some magmatic inclusions. The replacement or overgrowth of olivine by pigeonite and orthopyroxene (with or without titanomagnetite), and the marginal replacement of augite by pigeonite, are interpreted to result from late-stage reactions with residual melts (consistent with experimental phase equilibrium relationships). Apatite is concentrated in planar zones separating apatite-free domains, which suggests that residual magma (rich in P and REE) was concentrated in planar (fracture?) zones and possibly migrated through them. Loss of late magma through these zones is consistent with the low bulk REE content of NWA 998 compared with the calculated REE content of its parent magma.  相似文献   

14.
Tissint is an olivine‐phyric shergottite from an incompatible element depleted Martian mantle source. Oxythermobarometry applied to Tissint mineral phases demonstrates that the Tissint magma underwent an increase in oxygen fugacity, from ~3.5 log units below the quarz‐fayalite‐magnetite (QFM ) buffer during the early stages of crystallization, to QFM ?1.4 during the latter stages. This is the first time that such an oxidation event has been observed in a depleted shergottite. The reason for the oxidation event is unclear; however, calculations using the MELTS thermodynamic model suggest that auto‐oxidation is insufficient to cause more than ~1 log unit of oxidation, and therefore an external oxidation mechanism—such as oxidation by degassing—is required. If volatiles are responsible for the oxidation, then it indicates that volatiles are not exclusively tied to the enriched Martian mantle reservoir. A series of experiments using the Tissint parental magma were carried out under fixed (isothermal) or variable (cooling rate) temperature control, and at either reducing (QFM ?3.2) or oxidizing (QFM ?1) redox conditions. The observed liquid line of descent supports a potential genetic relationship between basaltic shergottites and olivine‐phyric shergottites. A peritectic relation where olivine is resorbed to form pyroxene is favored by increased oxygen fugacity; if oxidation during crystallization is more common than presently believed, it may explain why olivine is typically anhedral in olivine‐phyric shergottites. Results from a cooling‐rate experiment in which the oxygen fugacity was changed during the latter stages of crystallization resulted in olivine with a Cr compositional profile consistent with oxidized isothermal experiments, despite forming primarily under reducing conditions. A similar profile is observed in Tissint olivines, consistent with its redox history. Our results provide insights into the potential influence of oxidation events on the compositional zoning of minor or trace elements in olivine in olivine‐phyric basalts.  相似文献   

15.
Olivine‐phyric shergottites represent primitive basaltic to picritic rocks, spanning a large range of Mg# and olivine abundances. As primitive olivine‐bearing magmas are commonly representative of their mantle source on Earth, understanding the petrology and evolution of olivine‐phyric shergottites is critical in our understanding of Martian mantle compositions. We present data for the olivine‐phyric shergottite Northwest Africa (NWA) 10170 to constrain the petrology with specific implications for magma plumbing‐system dynamics. The calculated oxygen fugacity and bulk‐rock REE concentrations (based on modal abundance) are consistent with a geochemically intermediate classification for NWA 10170, and overall similarity with NWA 6234. In addition, we present trace element data using laser ablation ICP‐MS for coarse‐grained olivine cores, and compare these data with terrestrial and Martian data sets. The olivines in NWA 10170 contain cores with compositions of Fo77 that evolve to rims with composition of Fo58, and are characterized by cores with low Ni contents (400–600 ppm). Nickel is compatible in olivine and such low Ni content for olivine cores in NWA 10170 suggests either early‐stage fractionation and loss of olivine from the magma in a staging chamber at depth, or that Martian magmas have lower Ni than terrestrial magmas. We suggest that both are true in this case. Therefore, the magma does not represent a primary mantle melt, but rather has undergone 10–15% fractionation in a staging chamber prior to extrusion/intrusion at the surface of Mars. This further implies that careful evaluation of not only the Mg# but also the trace element concentrations of olivine needs to be conducted to evaluate pristine mantle melts versus those that have fractionated olivine (±pyroxene and oxide minerals) in staging chambers.  相似文献   

16.
Abstract— In 1998, Dar al Gani (DaG) 476 was found in the Libyan desert. The meteorite is classified as a basaltic shergottite and is only the 13th martian meteorite known to date. It has a porphyritic texture consisting of a fine‐grained groundmass and larger olivines. The groundmass consists of pyroxene and feldspathic glass. Minor phases are oxides and sulfides as well as phosphates. The presence of olivine, orthopyroxene, and chromite is a feature that DaG 476 has in common with lithology A of Elephant Moraine (EET) A79001. However, in DaG 476, these phases appear to be early phenocrysts rather than xenocrysts. Shock features, such as twinning, mosaicism, and impact‐melt pockets, are ubiquitous. Terrestrial weathering was severe and led to formation of carbonate veins following grain boundaries and cracks. With a molar MgO/(MgO + FeO) of 0.68, DaG 476 is the most magnesian member among the basaltic shergottites. Compositions of augite and pigeonite and some of the bulk element concentrations are intermediate between those of lherzolitic and basaltic shergottites. However, major elements, such as Fe and Ti, as well as LREE concentrations are considerably lower than in other shergottites. Noble gas concentrations are low and dominated by the mantle component previously found in Chassigny. A component, similar to that representing martian atmosphere, is virtually absent. The ejection age of 1.35 ± 0.10 Ma is older than that of EETA79001 and could possibly mark a distinct ejection. Dar al Gani 476 is classified as a basaltic shergottite based on its mineralogy. It has a fine‐grained groundmass consisting of clinopyroxene, pigeonite and augite, feldspathic glass and chromite, Ti‐chromite, ilmenite, sulfides, and whitlockite. Isolated olivine and single chromite grains occur in the groundmass. Orthopyroxene forms cores of some pigeonite grains. Shock‐features, such as shock‐twinning, mosaicism, cracks, and impact‐melt pockets, are abundant. Severe weathering in the Sahara led to significant formation of carbonate veins crosscutting the entire meteorite. Dar al Gani 476 is distinct from other known shergottites. Chemically, it is the most magnesian member among known basaltic shergottites and intermediate in composition for most trace and major elements between Iherzolitic and basaltic shergottites. Unique are the very low bulk REE element abundances. The CI‐normalized abundances of LREEs are even lower than those of Iherzolitic shergottites. The overall abundance pattern, however, is similar to that of QUE 94201. Textural evidence indicates that orthopyroxene, as well as olivine and chromite, crystallized as phenocrysts from a magma similar in composition to that of bulk DaG 476. Whether such a magma composition can be a shergottite parent melt or was formed by impact melting needs to be explored further. At this time, it cannot entirely be ruled out that these phases represent relics of disaggregated xenoliths that were incorporated and partially assimilated by a basaltic melt, although the texture does not support this possibility. Trapped noble gas concentrations are low and dominated by a Chassigny‐like mantle component. Virtually no martian atmosphere was trapped in DaG 476 whole‐rock splits. The exposure age of 1.26 ± 0.09 Ma is younger than that of most shergottites and closer to that of EETA79001. The ejection age of 1.35 ± 0.1 Ma could mark another distinct impact event.  相似文献   

17.
Abstract– Northwest Africa (NWA) 5298 is an evolved basaltic shergottite that has bulk characteristics and mineral compositions consistent with derivation from an oxidized reservoir in Mars. Chemically zoned clinopyroxene (64.5%, augite and pigeonite), with interstitial lath‐shaped plagioclase (29.4%, An40 to An55), constitutes the bulk of this meteorite. The plagioclase has been converted by shock to both isotropic maskelynite and spherulitic, birefringent feldspar representing a quenched vesicular melt. The remainder of the rock consists of minor amounts of Fe‐Ti oxides (ilmenite and titanomagnetite), phosphates (merrillite and apatite), silica polymorph, fayalite, pyrrhotite, baddeleyite, and minor hot desert weathering products (calcite and barite). Oxygen fugacity derived from Fe‐Ti oxide thermobarometry is close to the quartz‐fayalite‐magnetite (QFM) buffer indicating that the late stage evolution of this magma occurred under more oxidizing condition than those recorded in most other shergottites. Merrillite contains the largest abundances of rare earth elements (REE) of all phases, thereby controlling the REE budget in NWA 5298. The calculated bulk rock REE pattern normalized to CI chondrite is relatively flat. The evolution of the normalized REE patterns of the bulk rock, clinopyroxene, plagioclase, and phosphate in NWA 5298 is consistent with closed‐system chemical behavior with no evidence of crustal contamination or postcrystallization disturbance of the REE contents of these phases.  相似文献   

18.
Northwest Africa (NWA) 7755 is a newly found enriched lherzolitic shergottite. Here, we report its detailed petrography and mineralogy. NWA 7755 contains both poikilitic and non‐poikilitic lithologies. Olivine has different compositional ranges in the poikilitic and non‐poikilitic lithologies, Fa30–39 and Fa37–40, respectively. Pyroxene in the non‐poikilitic lithology is systematically Fe‐richer than that in the poikilitic lithology. The chromite grains in non‐poikilitic lithology are highly Ti‐richer than those in the poikilitic lithology. The chemical variations of olivine, pyroxene, and chromite between the poikilitic and non‐poikilitic lithologies support a two‐stage formation model of lherzolitic shergottites. Besides planar fractures and strong mosaicism in olivine and pyroxene, shock‐induced melt veins and pockets are observed in NWA 7755. Olivine grains within and adjacent to melt veins and/or pockets have either transformed to ringwoodite, amorphous phase, or dissociated to bridgmanite plus magnesiowüstite. Merrillite in melt veins has completely transformed to tuite; however, apatite only has partially transformed to tuite, indicating a relatively sluggish transformation rate. The partial transformation from apatite to tuite resulted in fractional devolatilization of Cl and F in apatite. The fine‐grained mineral assemblage in melt veins consists mainly of bridgmanite, minor magnesiowüstite, Fe‐sulfide, Fe‐phosphide, and Ca‐phosphate minerals. The coexistence of bridgmanite and magnesiowüstite in these veins indicates a shock pressure of >~24 GPa and a temperature of 1800–2000 °C. Coesite and seifertite are probably present in NWA 7755. The presence of these high‐pressure minerals indicates that NWA 7755 has experienced a more intense shock metamorphism than other enriched lherzolitic shergottites.  相似文献   

19.
The chemical compositions of shergottite meteorites, basaltic rocks from Mars, provide a broad view of the origins and differentiation of these Martian magmas. The shergottite basalts are subdivided based on their Al contents: high‐Al basalts (Al > 5% wt) are distinct from low‐Al basalts and olivine‐phyric basalts (both with Al < 4.5% wt). Abundance ratios of highly incompatible elements (e.g., Th, La) are comparable in all the shergottites. Abundances of less incompatible elements (e.g., Ti, Lu, Hf) in olivine‐phyric and low‐Al basalts correlate well with each other, but the element abundance ratios are not constant; this suggests mixing between components, both depleted and enriched. High‐Al shergottites deviate from these trends consistent with silicate mineral fractionation. The “depleted” component is similar to the Yamato‐980459 magma; approximately, 67% crystal fractionation of this magma would yield a melt with trace element abundances like QUE 94201. The “enriched” component is like the parent magma for NWA 1068; approximately, 30% crystal fractionation from it would yield a melt with trace element abundances like the Los Angeles shergottite. This component mixing is consistent with radiogenic isotope and oxygen fugacity data. These mixing relations are consistent with the compositions of many of the Gusev crater basalts analyzed on Mars by the Spirit rover (although with only a few elements to compare). Other Mars basalts fall off the mixing relations (e.g., Wishstone at Gusev, Gale crater rocks). Their compositions imply that basalt source areas in Mars include significant complexities that are not present in the source areas for the shergottite basalts.  相似文献   

20.
We evaluate the relationship between the intensity of remanent magnetization and fO2 in natural and synthetic Mars meteorites. The olivine‐phyric shergottite meteorite Yamato 980459 (Y‐980459) and a sulfur‐free synthetic analog (Y‐98*) of identical major element composition were analyzed to explore the rock magnetic and remanence properties of a basalt crystallized from a primitive melt, and to explore the role of magmatic and alteration environment fO2 on Mars crustal anomalies. The reducing conditions under which Y‐980459 is estimated to have formed (QFM‐2.5; Shearer et al. 2006) were replicated during the synthesis of Y‐98*. Y‐980459 contains pyrrhotite and chromite. Chromite is the only magnetic phase in Y‐98*. The remanence‐carrying capacity of Y‐980459 is comparable to other shergottites that formed in the fO2 range of QFM‐3 to QFM‐1. The remanence‐carrying capacity of these low fO2 basalts is 1–2 orders of magnitude too weak to account for the intense crustal anomalies observed in Mars's southern cratered highlands. Moderately oxidizing conditions of >QFM‐1, which are more commonly observed in nakhlites and Noachian breccias, are key to generating either a primary igneous assemblage or secondary alteration assemblage capable of acquiring an intense remanent magnetization, regardless of the basalt character or thermal history. This suggests that if igneous rocks are responsible for the intensely magnetized crust, these oxidizing conditions must have existed in the magmatic plumbing systems of early Mars or must have existed in the crust during secondary processes that led to acquisition of a chemical remanent magnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号