首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
陈家坝铜铅锌多金属矿床为近年来在陕西勉(县)-略(阳)-宁(强)铜金镍矿化集中区新发现的铜铅锌多金属矿床。为了查明陈家坝矿床成矿物质来源,笔者开展了系统的C、H、O、S和Sr同位素地球化学研究。结果表明,陈家坝矿区的围岩的δ~(13)CPDB值范围-0.93‰~1.44‰,平均值为0.35‰,δ~(18)OV-SMOW值范围14.14‰~27.49‰,平均22.1‰,为沉积成因海相碳酸盐岩。脉石矿物白云石的δ~(13)CPDB范围在-0.53‰~-0.89‰,δ~(18)OV-SMOW值范围12.12‰~13.23‰,指示成矿流体中的CO_2主要来自岩浆水,少量CO_2来源于围岩海相碳酸盐岩的溶解作用。成矿流体中δD值范围-91‰~-72‰,δ~(18)OH矿流体以岩浆流体为主。成矿流体与围2岩的水-岩反应是导致该区铜铅锌2矿床中白云石和黄铜矿、闪锌矿和方铅矿矿物沉淀结晶的主要机制。矿石金属硫化物δ34S值范围4.88‰~8.90‰,平均值为7.37‰,介于岩浆硫与海水硫之间,且与矿集区内典型的徐家沟铜矿床矿石矿物δ34S变化区间重叠,表明硫主要来自于岩浆硫,部分硫来自海水硫酸盐。矿石中黄铁矿的初始锶同位素比值87Sr/86Sr比值为0.72,高于赋矿围岩锶同位素比值,接近大陆地壳的87Sr/86Sr比值(0.719),指示了成矿流体流经了雪花太坪组地层,并与其中具有高87Sr/86Sr比值的白云岩进行水岩反应及同位素交换。  相似文献   

2.
李文博  黄智龙张冠 《岩石学报》2006,22(10):2567-2580
云南会泽铅锌矿田是我国著名的超大型特富铅锌矿田之一,由相距3公里的矿山厂和麒麟厂两个独立的矿床组成,Zn Pb 金属量超过五百万吨,矿石品位在25%至35%之间。为确定矿床成矿流体和成矿金属来源,本文系统研究了矿床的 Pb、S、C、O、H 和 Sr 同位素组成特征。矿石硫化物的铅同位素组成均一,~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb 和~(208)Pb/~(104)Pb 的变化范围分别为18.251~18.530,15.663~15.855和38.487~39.433,与围岩碳酸盐岩中浸染状黄铁矿一致,与碳酸盐地层相近,在~(208)Pb/~(204)Pb-~(206)Pb/~(204)Pb 图上显示明显的线性关系,表明铅同位素组成相近的碳酸盐围岩地层提供了成矿物质。矿石硫化物的δ~(34)S 变化范围为10.9‰~17.4‰,多数集中于13‰~17‰,表明还原硫主要来自地层中海相硫酸盐的还原,还原方式为热化学还原,下伏页岩、碎屑岩和泥质岩中的有机质在硫酸盐还原过程中发挥了重要作用。三种不同产状的脉石矿物方解石的碳氧同位素组成均一且没有明显差别,δ~(13)C 变化范围为-2.1‰~-3.5‰,δ~(18)O 为16.8‰~18.6‰。脉石矿物方解石中流体包裹体水的δD_(FI)为-50‰~-60‰,取温度为200℃计算包裹体水的δ~(18)O_(H_2O)值为7.0‰~8.8‰。碳、氧和氢、氧同位素研究结果表明,成矿流体为来自下部上升的变质流体,由于下伏页岩、碎屑岩和泥质岩中有机质的参与,成矿流体具有低的δ~(13)C和δD_(FI)值,在上升过程中与围岩发生了同位素交换。矿石中黄铁矿、闪锌矿和方解石的初始锶同位素组成(~(87)Sr/~(86)Sr)_i值的变化范围为0.714~0.717,赋矿围岩中未蚀变白云岩的初始锶同位素组成(~(87)Sr/~(86)Sr)_i值为0.7083~0.7093,明显低于蚀变白云岩(0.7106),表明成矿流体具有高的(~(87)Sr/~(86)Sr)_i比值。相对围岩碳酸盐岩而言,下伏地层中的页岩、碎屑岩和泥质岩往往具有高得多的~(87)Sr/~(86)Sr,因此,流经或者起源于这些地层的流体具有高的锶同位素比值。  相似文献   

3.
花垣地区铅锌矿床有望成为中国最大的铅锌矿床,也是铅锌矿资源储量超过千万吨的世界级超大型矿床之一。文章通过碳、氧、氢、硫、铅和锶同位素地球化学特征研究,探讨了成矿流体和成矿金属来源。测试结果显示,花垣地区铅锌矿床主成矿期方解石样品的δ~(13) CPDB值范围为-2.71‰~1.21‰,δ~(18) OSMOW值范围为16.09‰~22.48‰,该地区铅锌矿床成矿流体中的碳主要来源于海相碳酸盐岩的溶解作用。花垣矿区的围岩的δ~(13) CPDB值范围为0.29‰~1.05‰,δ~(18) OSMOW值范围为21.33‰~23.89‰,为沉积成因海相碳酸盐岩。矿石中硫化物的δ~(34) S变化于24.93‰~34.66‰之间,重晶石δ~(34) S为32.78‰~34.22‰,表明还原硫主要来自地层中海相硫酸盐的还原。矿石硫化物的铅同位素组成均一,~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb分别为17.999~18.919、15.554~15.798和38.088~38.576,铅模式年龄为437~534Ma,成矿金属可能主要来源于奥陶系—寒武系。方解石和闪锌矿样品中流体的δD_(SMOW)变化于-91.1‰~-15‰之间,δ~(18) Ofluid变化范围为-4.1‰~8.75‰,矿床成矿流体的主要来源是建造水和大气降水。成矿流体与围岩的水-岩反应是导致该区铅锌矿床中方解石和闪锌矿矿物沉淀结晶的主要机制。成矿流体~(87)Sr/~(86)Sr为0.70906~0.71022,高于赋矿围岩寒武系清虚洞组灰岩锶同位素比值0.70886~0.70921,表明成矿流体流经了清虚洞组下伏地层,并与其中具有高锶同位素比值的碎屑岩、页岩和泥岩等进行了水岩反应及同位素交换。  相似文献   

4.
为探讨灰家堡金矿田矿化剂和成矿物质来源,系统开展了热液方解石的稀土元素和C-O-Sr同位素研究。结果表明,热液方解石的稀土元素具有"上凸型"配分模式,低的(La/Sm)N值(0.003~0.580),较高的(Gd/Yb)N值(1.21~15.73),Eu正异常,显示成矿流体的壳源特征;产于龙潭组(P3l)的矿体中的方解石δ13CPDB为-9.3‰~1.7‰(均值为-3.93‰);产于构造蚀变体(SBT)的矿体中的方解石δ13CPDB为-7.8‰~3.3‰(均值为1.04‰),C-O同位素组成介于地幔碳酸岩与海相碳酸盐岩之间,在δ13CPDB-δ18OSMOW图解上呈近水平分布,与矿体全岩及围岩碳同位素组成相似,表明成矿流体的C可能具有多来源特征。成矿流体与围岩之间的水-岩反应并未改变矿石的碳、氧同位素组成,流体-岩石相互作用不是导致热液方解石沉淀的主要机制,而更可能与CO2的脱气作用有关;方解石的87Sr/86Sr值接近碳酸盐岩围岩、明显高于幔源物质的平均值,表明成矿热液中的Sr可能主要来自碳酸盐岩围岩。  相似文献   

5.
湖南香花岭锡多金属矿床C、O、Sr同位素地球化学   总被引:7,自引:0,他引:7  
袁顺达 《地质学报》2008,82(11):1522-1530
对湖南香花岭锡多金属矿床成矿早、晚两期方解石进行了系统的C、O、Sr同位素研究。结果表明,成矿早期方解石具有相对较低的δ13CPDB(-5.4‰ ~ -1.4‰)、δ18OSMOW(+6.1‰ ~ +13.9‰)和较高的87Sr/86Sr值(0.7101 ~ 0.7230);而成矿晚期方解石则具有相对较高的δ13CPDB(+0.2‰ ~ +0.6‰)、δ18OSMOW(+19.4‰ ~ +21.5‰)和较低的87Sr/86Sr值(0.7101)。成矿早期方解石为岩浆热液与海相碳酸盐岩相互作用的产物,成矿流体中的碳源于岩浆碳和海相碳酸盐岩;模拟计算结果显示,成矿早期方解石为成矿溶液发生0.05-0.1摩尔分数的 CO2去气作用的产物。而成矿晚期方解石主要为矿区碳酸盐岩围岩低温淋滤的产物,流体中的碳主要源于矿区碳酸盐岩围岩。成矿流体中Sr源于矿区花岗岩和碳酸盐岩,从成矿早期到晚期,岩浆来源的Sr逐渐减少,而碳酸盐岩围岩提供的Sr比例不断增大。  相似文献   

6.
呈层状、似层状产于震旦系灯影组角砾状白云岩层间构造带中的马元铅锌矿床是近年来在扬子陆块北缘铅锌找矿的新突破。文章通过碳、氧、氢、硫、铅和锶同位素地球化学特征研究,探讨了成矿流体和成矿金属来源。研究结果表明:矿石中热液脉石矿物的δ13CPDB为-4.24‰~0.93‰,δ18OSMOW为15.92‰~23.24‰,表明成矿流体中的CO2为震旦系碳酸盐岩的溶解成因。矿石中硫化物的δ34S变化于12.94‰~19.4‰之间;硫酸盐矿物的δ34S为32.2‰~33.48‰,表明还原硫主要来自地层中海相硫酸盐的还原。矿石硫化物的铅同位素组成均一,206Pb/204Pb、207Pb/204Pb和208Pb/204Pb分别为17.62~18.02、15.49~15.63和37.57~38.35,成矿金属可能主要来源于震旦系—志留系。脉石矿物石英流体包裹体的δDFI为-92‰和-113‰,如果取成矿温度200℃,根据δ18O石英值计算的相应流体包裹体的δ18O水为6.03‰~12.73‰,推测成矿流体可能起源于大气降水为主的盆地卤水,或为其他来源的流体与有机质反应形成。成矿流体87Sr/86Sr为0.70967~0.71146,高于赋矿围岩震旦系灯影组白云岩锶同位素比值(0.70890~0.70945),表明成矿流体流经了古生代地层(及基底),并与其中具有高锶同位素比值的碎屑岩、页岩和泥岩等进行了水岩反应及同位素交换。  相似文献   

7.
紫木凼金矿床是黔西南卡林型金矿区一个重要的大型金矿床,其成矿物质来源尚不明确.对紫木凼金矿床不同类型矿石和赋矿围岩进行了S、C、O、Pb和Sr同位素组成对比研究.矿石中硫化物的δ34S值为-13.49‰~17.91‰(主要为-0.99‰~3.58‰),赋矿围岩的δ34S值为-26.23‰~-19.63‰,矿床成矿期硫主要来源于岩浆,部分来源于赋矿地层中成矿前黄铁矿.热液期方解石的δ13C和δ18O分别为-9.10‰~0.59‰和15.65‰~23.82‰,与赋矿围岩、区域地层的碳、氧同位素组成差别较大,成矿流体的碳、氧部分来源于碳酸盐岩溶解,部分可能来源于岩浆.矿石中硫化物的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为18.064~18.973、15.585~15.670和38.219~39.054,赋矿围岩的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为18.136~18.650、15.574~15.656和38.423~38.812,矿石铅的来源较复杂,赋矿地层和岩浆可能都为其提供了部分铅.矿石中石英和方解石(87Sr/86Sr)i比值为0.707 26~0.708 11,赋矿围岩的(87Sr/86Sr)i比值为0.707 28~0.707 31,成矿流体中的锶主要来源于赋矿地层.紫木凼金矿床成矿物质具壳幔混合来源特征,成矿物质主要来自矿床深部隐伏岩浆岩,部分来自二叠系-三叠系赋矿地层.   相似文献   

8.
龙山Au-Sb矿床是湘中Au、Sb矿集区的代表性矿床,本文对其不同类型矿石、矿区围岩和区域地层进行了S、Pb、Sr同位素组成对比研究。矿石中硫化物的δ~(34)S值为-3.0‰~5.1‰,平均值2.3‰;矿区围岩的δ~(34)S值为4.0‰~5.9‰,平均值5.2‰;区域地层的δ~(34)S值为9.3‰~13.3‰,平均值11.3‰。矿石与矿区围岩、区域地层的硫同位素组成差别较大,矿石硫具岩浆来源特征。矿石中硫化物的~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb比值分别为16.992~18.457、15.392~15.722和37.586~38.960,矿区围岩的~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb比值分别为17.630~17.993、15.522~15.644和37.981~38.366;区域地层的~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb比值分别为17.566~18.092、15.430~15.630和37.988~38.710。矿石铅同位素组成变化较大,矿石铅的来源较复杂,赋矿地层、印支期岩浆岩和上地幔可能都为其提供了部分铅。石英流体包裹体的(~(87)Sr/~(86)Sr)_i比值为0.71540~0.72309,矿区围岩的(~(87)Sr/~(86)Sr)_i比值为0.71844~0.72153,区域地层的(~(87)Sr/~(86)Sr)_i比值为0.71792~0.71939,矿石、矿区围岩、区域地层的初始锶同位素值均较高,主要为壳源锶,部分锶来自赋矿地层,部分来自印支期岩浆岩。龙山矿床成矿物质具壳幔混合来源特征,矿化剂硫主要来源于岩浆,成矿物质部分来自江口组地层,部分来自印支期岩浆岩。  相似文献   

9.
天宝山铅锌矿床位于扬子地台西缘,为川滇黔铅锌矿集区具有代表性大型铅锌矿床,其金属储量(Pb+Zn)可达2.6Mt,铅锌品位10%~15%。本文在系统的分析流体包裹体和C、H、O、S、Pb、Sr同位素研究的基础上,确定其成矿物质来源、成矿流体性质及来源,并探讨其成矿机制。H-O同位素及流体包裹体研究表明,成矿流体具有中低温(均一温度峰值为140~200℃)及中低盐度(盐度峰值为6%~12% NaCleqv)的特征。灯影组白云岩与海相沉积碳酸盐岩的C、O同位素组成较为相似,热液方解石与含矿白云岩O同位素组成均稍低于灯影组白云岩,表明成矿流体中的CO_2可能来源于海相碳酸盐岩的溶解。矿区硫化物δ~(34)S值介于1.1‰~7.5‰之间,表明S主要来源于灯影组中硫酸盐热化学还原作用和岩浆硫的混合。矿石硫化物的Pb同位素比值在Pb演化图解上主要落入上地壳与造山带之间,表明Pb具有壳源特征,成矿物质来源主要来自于盖层沉积岩和基底地层。闪锌矿的~(87)Sr/~(86) Sr值(0.71099~0.71856)及热液方解石~(87)Sr/~(86) Sr值(0.71014~0.71169)均高于灯影组白云岩~(87)Sr/~(86) Sr值(0.70773~0.71026),表明成矿流体流经了具有高~(87)Sr/~(86) Sr值的基底地层,并与其发生水岩反应及同位素交换。  相似文献   

10.
铲子坪金矿位于雪峰山构造岩浆岩带的白马山复式花岗岩体外接触带附近。本文通过对铲子坪金矿床岩石地球化学以及稳定同位素的研究,探讨其矿床成矿物质来源及矿床成因。研究结果表明:矿石中金属硫化物的δ34S介于-7.58‰~+0.32‰,平均为-2.44‰,富轻硫,表明硫化物中的硫主要来自花岗岩浆,有部分地层硫酸盐中的硫混入;铅同位素组成相对稳定,变化范围很小。根据铅构造模式图解和△γ-△β图解,铅同位素主要来源于地幔,有部分地壳铅的加入;氢、氧同位素表明成矿流体具有变质热液和岩浆热液的双重性,成矿晚期热液有大气水成分加入;碳同位素表明成矿流体与砂质板岩关系密切,与地幔或深部流体有一定的关系,矿床成矿流体中的CO2很可能为壳幔混合;锶同位素研究表明,铲子坪金矿床的(87Sr/86Sr)i组成特征与华南陆壳重熔性花岗岩初始岩浆水的(87Sr/86Sr)i组成特征基本一致,表明其成矿作用可能与岩浆热液有关。铲子坪金矿成因类型为岩浆热液型。  相似文献   

11.
The Antuoling Mo deposit is a major porphyry‐type deposit in the polymetallic metallogenic belt of the northern Taihang Mountains, China. The processes of mineralization in this deposit can be divided into three stages: an early quartz–pyrite stage, a middle quartz–polymetallic sulfide stage, and a late quartz–carbonate stage. Four types of primary fluid inclusions are found in the deposit: two‐phase aqueous inclusions, daughter‐mineral‐bearing multiphase inclusions, CO2–H2O inclusions, and pure CO2 inclusions. From the early to the late ore‐forming stages, the homogenization temperatures of the fluid inclusions are 300 to >500°C, 270–425°C, and 195–330°C, respectively, with salinities of up to 50.2 wt%, 5.3–47.3 wt%, and 2.2–10.4 wt% NaCl equivalent, revealing that the ore‐forming fluids changed from high temperature and high salinity to lower temperature and lower salinity. Moreover, based on the laser Raman spectra, the compositions of the fluid inclusions evolved from the NaCl–CO2–H2O to the NaCl–H2O system. The δ18OH2O and δD values of quartz in the deposit range from +3.9‰ to +7.0‰ and ?117.5‰ to ?134.2‰, respectively, reflecting the δD of local meteoric water after oxygen isotopic exchange with host rocks. The Pb isotope values of the sulfides (208Pb/204Pb, 36.320–37.428; 207Pb/204Pb, 15.210–15.495; 206Pb/204Pb, 16.366–17.822) indicate that the ore‐forming materials originated from a mixed upper mantle–lower crust source.  相似文献   

12.
广西大厂锡多金属矿床硅质岩和层状矿体氧硅同位素研究   总被引:1,自引:0,他引:1  
姚晓梅  丁悌平 《地球学报》1994,15(Z1):124-130
作者对大厂地区泥盆纪地层中的不同成历的硅质岩进行了系统的硅氧同位素研究。其中一种是与矿化无关的浅海放射虫硅质岩,其硅质来自海水的溶解硅,表现出低的负δ30Si值和变化较大的δ18O值;另一种岩石可能属海底喷气成因,表现出你的负δ30Si值和均一的δ18O值,与硫化物成矿作用有密切关系。  相似文献   

13.
Shoreline carbonate deposits of Pleistocene Lake Bonneville record the conditions and processes within the lake, including the evaporative balance as well as vertical and lateral chemical and isotopic gradients. Tufas (swash‐zone) and tufaglomerates (cemented, subaqueous colluvium or beachrock) on multiple, well‐developed shorelines near the Silver Island Range, Utah, also present an opportunity to examine physicochemical lake processes through time. Three shorelines are represented by carbonate deposits, including the 23–20 ka Stansbury stage, 15–14.5 ka Bonneville stage, and 14.5–14 ka Provo stage. Mean δ18OVSMOW values of all three shorelines are statistically indistinguishable ( ~ 27 ± 1‰), when a few Bonneville samples of unusual composition are neglected. However, differences in primary carbonate mineralogy indicate that the correspondence is an artefact of the different fractionation factors between calcite or aragonite and water. Second, in order to sustain a much smaller, shallower lake during the colder Stansbury stage, the climate must have also been relatively dry. Third, δ18O values in tufa are higher than tufaglomerate by ~ 0.5‰, consistent with greater evaporative enrichment of lake water in the swash zone. Fourth, mean δ13C values for the Provo, Stansbury and Bonneville shorelines (4.4, 5.0 and 5.2‰, respectively) show that carbon species were dominated by atmospheric exchange, with the variations produced by differences in the oxidation of organic matter. Comparisons of shoreline carbonates with deep‐lake marls of the same approximate age indicate that shoreline carbonate was much higher in δ13C and δ18O values (both ~ 2.5‰) during Bonneville time, whereas isotopic differences were minor (both ~ 1‰) in Stansbury time. In particular, the Bonneville stage may have sustained large vertical or lateral isotopic gradients due to evaporative enrichment effects on δ18O values. In contrast, the lake during the much shallower Stansbury stage may have been well mixed. Differences in the primary mineralogy (Stansbury and Bonneville, aragonite > calcite; Provo, calcite > aragonite) reflect profound differences in lake chemistry in terms of open versus closed‐basin lakes. The establishment of a continuous outlet during Provo time probably reduced the Mg2+/Ca2+ ratio of lake water. Curiously, regardless of primary mineralogy, tufaglomerate cements are enriched in Na+ and Cl? and depleted in Mg2+ relative to capping tufa of the same age. This probably reflects vital or kinetic effects in the swash zone (tufa). We suspect that ‘abiotic’ effects may have been important in the dark pore space of developing tufaglomerate, where the absence of light suppressed photosynthesis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
位于冈底斯斑岩铜矿带北侧的铅锌银矿化带是冈底斯成矿带的重要组成部分,具有巨大的成矿潜力。对冈底斯北侧铅锌银矿带的3个典型矿床进行的矿石矿物S、Pb同位素组成分析显示,各个矿床的金属硫化物的S同位素组成比较一致,δ34S为-3.9‰~-1.1‰,均值-2.42‰,与冈底斯斑岩铜矿床的S同位素组成接近。3个矿床矿石矿物的206Pb/204Pb范围为18.51523~19.76144,207Pb/204Pb变化于15.56129~15.85036之间,208Pb/204P介于38.50412~40.29409之间。3个铅锌银矿床的Pb同位素组成变化较大,可能指示它们具有不同的起源。在铅构造模式图上多偏离造山带Pb演化曲线而靠近上地壳Pb演化线。3个铅锌矿床的S、Pb同位素数据暗示,成矿物质主要来自上部地壳,具有复杂的演化历史。  相似文献   

15.
姚军明  华仁民  林锦富 《地质学报》2006,80(7):1045-1054
湘南宝山矿区的花岗闪长岩体、地层(灰岩)、方解石及黄铁矿具有相似的稀土元素地球化学特征,即轻稀土富集和Eu负异常。其中,黄铁矿表现为最低的稀土总量、明显的Eu负异常和较明显的Ce负异常,这反映了流体的稀土元素地球化学特征。认为成矿流体既有来自花岗闪长岩体的岩浆水参与,又有大气降水的作用。本次工作的矿床硫化物单矿物Pb同位素组成变化范围较小,在铅同位素构造演化图上均位于地壳演化线附近,反映的主要是地壳的信息。矿床硫化物S同位素组成与岩体及围岩地层基本一致,属于同源。通过对六个黄铁矿样品的Rb-Sr同位素分析,获得宝山矿床的Rb-Sr等时线年龄为174±7Ma,MSWD=0.55,黄铁矿的(87Sr/86Sr)i为0.70912±0.00016,高于花岗闪长岩体的锶同位素初始比值。黄铁矿Rb-Sr等时线年龄与花岗闪长岩体的单颗粒锆石U-Pb年龄十分一致,表明矿床的形成与岩体有密切的联系,花岗闪长岩体提供了矿床形成所需要的能量和部分流体,而地层也提供了部分成矿物质。  相似文献   

16.
From the studies of ore deposit geologic settings,sulfur isotopes,lead isotopes,carbon isotopes and oxygen isotopes,fluid inclusions and petrochemistry in this paper,the authors have drawn a conclusion that the ore-forming hydrothermal solutions are the high-temperature magmatic hydrothermal solutions for the gold ore deposit,and at the same time,the involvemety of crustal materials can not be ruled out .It is the first time that the authors have proposed that the Laozuoshan gold-ploymetallic ore deposit in Heilongjiang Province was formed in the calc-alkaline series environment at the margin of an active continent.  相似文献   

17.
Lake sediments can provide important historical information on records of paleoenvironments and paleoclimates and their changes.This study deals with the sedimentary history of the westem Taihu Lake based on seven geochemical indices measured in an 89-cm long sediment core. The core, corresponding to a time period from 6870 a B.P. to the present, was analyzed for δ^13Corg, δ^15N, TOC, TN, TP, C/N ratio and radiocarbon dates. Comparison of these multiple geochemical tracers helps to improve interpretations of the paleoenvironmental changes. All of the geochemical proxies used in the study change regularly, and show four major time scales that suggest different environments. During 6870-6532 a B.P., the values of all parameters slightly varied. δ^13Corg values increased in a wave pattern from -25.9‰ to -20.7‰. Similarly, δ^15N values increased from 1.6‰ to 4.5‰. TOC, TN and TP concentrations remained around 0.8%, 0.1%-3.2% and 0.5%, respectively. C/N ratios varied from 20.6 to 6.6. At 6370 a B.P., the sediment record profile showed dramatic variations in all parameters. δ^13Corg and δ^15N values dropped to -26.9‰ and 1.3‰, respectively.  相似文献   

18.
夏甸金矿是胶东金矿集区中一处大型焦家式矿床。文章在详尽的岩相学和矿相学研究基础上,对该矿床进一步开展 了H-O同位素并首次开展了He-Ar和Sr-Nd-Pb同位素示踪研究,为该矿床成矿流体及成矿物质来源提供了新的制约。石 英中流体包裹体的H-O同位素(δDV-SMOW=-102.3‰~-93.9‰,δ18OH2O=-0.2‰~1.6‰) 揭示出成矿流体主要为富集地幔流体, 并有少许大气降水加入;黄铁矿中He-Ar同位素[3He/4/He=0.58×10− 6~1.90×10− 6 (0.42~1.36 Ra),40Ar/36Ar=724.7~1358.4]同样 表明成矿流体以富集地幔流体为主导;矿石及蚀变岩的Nd-Pb同位素既不同于围岩花岗岩,也不同于基底变质岩,与胶东 地区中生代软流圈地幔起源的玄武岩也相差甚远,而与胶东地区中生代富集岩石圈地幔起源的煌斑岩相一致,但它们的初 始87Sr/86Sr比值明显高于煌斑岩,甚至高于围岩花岗岩。Sr-Nd-Pb同位素特征表明成矿流体及成矿物质来源于富集岩石圈地 幔,并在其上升过程中与基底变质岩发生了相互作用。  相似文献   

19.
紫阳黄柏树湾毒重石矿床和竹山文峪河毒重石-重晶石矿床呈层状或似层状产于下寒武统下部或其相当层位的硅质岩中,矿体受岩性和岩相控制作用明显.对矿床中毒重石、钡解石和方解石的锶同位素及碳氧同位素的研究结果表明,形成这些矿物的碳主要来自沉积物中的生物有机质在早期成岩阶段经降解、缩合及脱羧基作用所形成的烃类物质或生物气;而锶主要为沉积物孔隙水中海水锶与沉积物中火山碎屑物质蚀变过程中所释放的锶的混合.毒重石形成于早期成岩阶段沉积物的孔隙水介质中,形成毒重石的成矿流体主要为早期成岩阶段沉积物中由海水、有机质组分和火山物质组分相互叠加和混合而组成的孔隙水有机成矿流体.毒重石矿石中广泛发育的生物碎屑及粒屑结构说明生物作用通过生物成因重晶石 (bio- barite)的形式将海水中的 Ba2 浓集并沉降于海底,形成钡矿床的初始富集体.因而,海水中生物作用和沉积物的早期成岩作用是形成本区毒重石矿床的主要机制.  相似文献   

20.
Abstract: The Dajing Cu‐polymetallic ore deposit in Linxi county, Inner Mongolia Autonomous Region, China, is economically a valuable Cu–Sn–Ag–Zn–Pb deposit in the southern section of the Da Hinggan metallogenic province. For the analyzed 23 samples of sulfide minerals, including chalcopyrite, pyrite, sphalerite and galena, the δ34S values range from –1.8 to +3.8 % with an average of +0.65 %. The narrow distributions of the δ34S values with +1 % peak value, including the published data, and the δ13C values around –5 % indicate that the sulfur and carbon of the hydrothermal fluids are derived from a hypomagmatic source, and exclude the possibility that the hosted strata, i.e., the Upper Permian Linxi Formation, provided certain amounts of sulfur and carbon. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of sulfide ores range respectively within 18.257‐18.368, 15.476‐15.609, and 37.916‐38.355 with the model ages of 122–209 Ma. The black shale, however, contains higher radiogenic lead with the 206Pb/204Pb ratios of 18.473‐20.156, differing from the ores. However, the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the ore, basaltic porphyrite and feldspar leads are similar, and lie on the same lines in the diagrams of 208Pb/204Pb vs. 206Pb/204Pb and 207Pb/204Pb vs. 206Pb/204Pb. The fact that these mixing lines are composed of the two end members, the mantle and orogenic belt, strongly supports that all the metallogenic elements were carried by the hypomagma mixing the matters of the mantle and orogenic belt prior to the Mesozoic. Therefore, the Dajing ore deposit is a typical mag–matic–hydrothermal vein type ore deposit associated with subvolcanic rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号