首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Few investigations link post‐fire changes to sediment sources and erosion processes with sediment yield response at the catchment scale. This linkage is essential if downstream impacts on sediment transport after fire are to be understood in the context of fire effects across different forest environments. In this study, we quantify changing source contributions to fine sediment (<63 µm) exported from a eucalypt forest catchment (136 ha) burnt by wildfire. The study catchment is one of a pair of research catchments located in the East Kiewa River valley in southeastern Australia that have been the subject of a research program investigating wildfire effects on runoff, erosion, and catchment sediment/nutrient exports. This previous research provided the opportunity to couple insights gained from a range of measurement techniques with the application of fallout radionuclides 137Cs and 210Pbex to trace sediment sources. It was found that hillslope surface erosion dominated exports throughout the 3·5‐year post‐fire measurement period. During this time there was a pronounced decline in the proportional surface contribution from close to 100% in the first six months to 58% in the fourth year after fire. Over the study period, hillslope surface sources accounted for 93% of the fine sediment yield from the burnt catchment. The largest decline in the hillslope contribution occurred between the first and second years after fire, which corresponded with the previously reported large decline in sediment yield, breakdown of water repellency in burnt soils, substantial reduction in hillslope erodibility, and rapid surface vegetation recovery. Coupling the information on sediment sources with hillslope process measurements indicated that only a small proportion of slopes contributed sediment to the catchment outlet, with material derived from near‐channel areas dominating the post‐fire catchment sediment yield response. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Post‐wildfire runoff and erosion are major concerns in fire‐prone landscapes around the world, but these hydro‐geomorphic responses have been found to be highly variable and difficult to predict. Some variations have been observed to be associated with landscape aridity, which in turn can influence soil hydraulic properties. However, to date there has been no attempt to systematically evaluate the apparent relations between aridity and post‐wildfire runoff. In this study, five sites in a wildfire burnt area were instrumented with rainfall‐runoff plots across an aridity index (AI) gradient. Surface runoff and effective rainfall were measured over 10 months to allow investigation of short‐ (peak runoff) and longer‐term (runoff ratio) runoff characteristics over the recovery period. The results show a systematic and strong relation between aridity and post‐wildfire runoff. The average runoff ratio at the driest AI site (33.6%) was two orders of magnitude higher than at the wettest AI site (0.3%). Peak runoff also increased with AI, with up to a thousand‐fold difference observed during one event between the driest and wettest sites. The relation between AI, peak 15‐min runoff (Q15) and peak 15‐min rainfall intensity (I15) (both in mm h‐1) could be quantified by the equation: Q15 = 0.1086I15 × AI 2.691 (0.65<AI<1.80, 0<I15<45) (adjusted r2 = 0.84). The runoff ratios remained higher at drier AI sites (AI 1.24 and 1.80) throughout the monitoring period, suggesting higher AI also lengthens the window of disturbance after wildfire. The strong quantifiable link which this study has determined between AI and post‐wildfire surface runoff could greatly improve our capacity to predict the magnitude and location of hydro‐geomorphic processes such as flash floods and debris flows following wildfire, and may help explain aridity‐related patterns of soil properties in complex upland landscapes. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
Intense rainfall following wildfire can cause substantial soil and sediment redistribution. With concern for the increasing magnitude and frequency of wildfire events, research needs to focus on hydrogeomorphological impacts of fire, particularly downstream fluxes of sediment and nutrients. Here, we investigate variation in magnetic enhancement of soil by fire in burnt eucalypt forest slopes to explore its potential as a post‐fire sediment tracer. Low‐frequency magnetic susceptibility values (χlf) of <10 µm material sourced from burnt slopes (c. 8·0–10·4 × 10?6 m3 kg?1) are an order of magnitude greater than those of <10 µm material derived from long‐unburnt areas (0·8 × 10?6 m3 kg?1). Susceptibility of anhysteretic remanent magnetization (χARM) and saturation isothermal remanent magnetization (SIRM) values are similarly enhanced. Signatures are strongly influenced by soil and sediment particle size and storage of previously burnt material in footslope areas. Whilst observations indicate that signatures based on magnetic enhancement show promise for post‐fire sediment tracing, problems arise with the lack of dimensionality in such data. Magnetic grain size indicators χfd%, χARM/SIRM and χfd/χARM offer further discrimination of source material but cannot be included in numerical unmixing models owing to non‐linear additivity. This leads to complications in quantitatively ascribing downstream sediment to source areas of contrasting burn severity since sources represent numerical multiples of each other, indicating the need to involve additional indicators, such as geochemical evidence, to allow a more robust discrimination. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Stream water quality can change substantively during diurnal cycles, discrete flow events, and seasonal time scales. In this study, we assessed event responses in surface water nutrient concentrations and biogeochemical parameters through the deployment of continuous water quality sensors from March to October 2011 in the East Fork Jemez River, located in northern New Mexico, USA. Events included two pre‐fire non‐monsoonal precipitation events in April, four post‐fire precipitation events in August and September (associated with monsoonal thunderstorms), and two post‐fire non‐monsoonal precipitation events in October. The six post‐fire events occurred after the Las Conchas wildfire burned a significant portion of the contributing watershed (36%) beginning in June 2011. Surface water nitrate (NO3? N) concentrations increased by an average of 50% after pre‐fire and post‐fire non‐monsoonal precipitation events and were associated with small increases in turbidity (up to 15 NTU). Beginning 1 month after the start of the large regional wildfire, monsoonal precipitation events resulted in large multi‐day increases in dissolved NO3? N (6 × background levels), dissolved phosphate (100 × background levels), specific conductance (5 × background levels), and turbidity (>100 × background levels). These periods also corresponded with substantial sags in dissolved oxygen (<4 mg l?1) and pH (<6.5). The short duration and rapid rates of change during many of these flow events, particularly following wildfire, highlight the importance of continuous water quality monitoring to quantify the timing and magnitude of event responses in streams and to examine large water quality excursions linked to catchment disturbance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We evaluate the validity of the beaver‐meadow complex hypothesis, used to explain the deposition of extensive fine sediment in broad, low‐gradient valleys. Previous work establishes that beaver damming forms wet meadows with multi‐thread channels and enhanced sediment storage, but the long‐term geomorphic effects of beaver are unclear. We focus on two low‐gradient broad valleys, Beaver Meadows and Moraine Park, in Rocky Mountain National Park (Colorado, USA). Both valleys experienced a dramatic decrease in beaver population in the past century and provide an ideal setting for determining whether contemporary geomorphic conditions and sedimentation are within the historical range of variability of valley bottom processes. We examine the geomorphic significance of beaver‐pond sediment by determining the rates and types of sedimentation since the middle Holocene and the role of beaver in driving floodplain evolution through increased channel complexity and fine sediment deposition. Sediment analyses from cores and cutbanks indicate that 33–50% of the alluvial sediment in Beaver Meadows is ponded and 28–40% was deposited in‐channel; in Moraine Park 32–41% is ponded sediment and 40–52% was deposited in‐channel. Radiocarbon ages spanning 4300 years indicate long‐term aggradation rates of ~0.05 cm yr‐1. The observed highly variable short‐term rates indicate temporal heterogeneity in aggradation, which in turn reflects spatial heterogeneity in processes at any point in time. Channel complexity increases directly downstream of beaver dams. The increased complexity forms a positive feedback for beaver‐induced sedimentation; the multi‐thread channel increases potential channel length for further damming, which increases the potential area occupied by beaver ponds and the volume of fine sediment trapped. Channel complexity decreased significantly as surveyed beaver population decreased. Beaver Meadows and Moraine Park represent settings where beaver substantially influence post‐glacial floodplain aggradation. These findings underscore the importance of understanding the historical range of variability of valley bottom processes, and implications for environmental restoration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Extreme hydrologic responses following wildfires can lead to floods and debris flows with costly economic and societal impacts. Process-based hydrologic and geomorphic models used to predict the downstream impacts of wildfire must account for temporal changes in hydrologic parameters related to the generation and subsequent routing of infiltration-excess overland flow across the landscape. However, we lack quantitative relationships showing how parameters change with time-since-burning, particularly at the watershed scale. To assess variations in best-fit hydrologic parameters with time, we used the KINEROS2 hydrological model to explore temporal changes in hillslope saturated hydraulic conductivity (Ksh) and channel hydraulic roughness (nc) following a wildfire in the upper Arroyo Seco watershed (41.5 km2), which burned during the 2009 Station fire in the San Gabriel Mountains, California, USA. This study explored runoff-producing storms between 2008 and 2014 to infer watershed hydraulic properties by calibrating the model to observations at the watershed outlet. Modelling indicates Ksh is lowest in the first year following the fire and then increases at an average rate of approximately 4.2 mm/h/year during the first 5 years of recovery. The estimated values for Ksh in the first year following the fire are similar to those obtained in previous studies on smaller watersheds (<1.5 km2) following the Station fire, suggesting hydrologic changes detected here can be applied to lower-order watersheds. Hydraulic roughness, nc, was lowest in the first year following the fire, but increased by a factor of 2 after 1 year of recovery. Post-fire observations suggest changes in nc are due to changes in grain roughness and vegetation in channels. These results provide quantitative constraints on the magnitude of fire-induced hydrologic changes following severe wildfires in chaparral-dominated ecosystems as well as the timing of hydrologic recovery.  相似文献   

7.
In much of western United States destructive floods after wildfire are frequently caused by localized, short‐duration convective thunderstorms; however, little is known about post‐fire flooding from longer‐duration, low‐intensity mesoscale storms. In this study we estimate and compare peak flows from convective and mesoscale floods following the 2012 High Park Fire in the ungaged 15.5 km2 Skin Gulch basin in the northcentral Colorado Front Range. The convective storm on 6 July 2012 came just days after the wildfire was contained. Radar data indicated that the total rainfall was 20–47 mm, and the maximum rainfall intensities (upwards of 50 mm h?1) were concentrated over portions of the watershed that burned at high severity. The mesoscale storm on 9–15 September 2013 produced 220–240 mm of rain but had maximum 15‐min intensities of only 25–32 mm h?1. Peak flows for each flood were estimated using three independent techniques. Our best estimate using a 2D hydraulic model was 28 m3 s?1 km?2 for the flood following the convective storm, placing it among the largest rainfall‐runoff floods per unit area in the United States. In contrast, the flood associated with the mesoscale flood was only 6 m3 s?1 km?2, but the long‐duration flood caused extensive channel incision and widening, indicating that this storm was much more geomorphically effective. The peak flow estimates for the 2013 flood had a higher relative uncertainty and this stemmed from whether we used pre‐ or post‐flood channel topography. The results document the extent to which a high and moderate severity forest fire can greatly increase peak flows and alter channel morphology, illustrate how indirect peak flow estimates have larger errors than is generally assumed, and indicate that the magnitude of post‐fire floods and geomorphic change can be affected by the timing, magnitude, duration, and sequence of rainstorms. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Fire severity is recognized as a key factor in explaining post‐fire soil erosion. However, the relationship between soil burn severity and soil loss has not been fully established until now. Sediment availability may also affect the extent of post‐fire soil erosion. The objective of this study was to determine whether soil burn severity, estimated by an operational classification system based on visual indicators, can significantly explain soil loss in the first year after wildfire in shrubland and other areas affected by crown fires in northwest (NW) Spain. An additional aim was to establish indicators of sediment availability for use as explanatory variables for post‐fire soil loss. For these purposes, we measured hillslope‐scale sediment production rates and site characteristics during the first year after wildfire in 15 experimental sites using 65 plots. Sediment yields varied from 0.2 Mg ha?1 to 50.1 Mg ha?1 and soil burn severity ranged from low (1.8) to very high (4.5) in the study period. A model that included soil burn severity, annual precipitation and a land use factor (as a surrogate for sediment availability) as explanatory variables reasonably explained the erosion losses measured during the first year after fire. Model validation confirmed the usefulness of this empirical model. The proposed empirical model could be used by forest managers to help evaluate erosion risks and to plan post‐fire stabilization activities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In July 2013, a wildfire severely affected the western part of the island of Mallorca (Spain). During the first three post‐fire hydrological years, when the window of disturbance tends to be more open, the hydrological and sediment delivery processes and dynamics were assessed in a representative catchment intensively shaped by terracing that covered 37% of its surface area. A nested approach was applied with two gauging stations (covering 1.2 km2 and 4.8 km2) built in September 2013 that took continuous measurements of rainfall, water and sediment yield. Average suspended sediment concentration (1503 mg L?1) and the maximum peak (33 618 mg L?1) were two orders of magnitude higher than those obtained in non‐burned terraced catchments of Mallorca. This factor may be related to changes in soils and the massive incorporation of ash into the suspended sediment flux during the most extreme post‐fire event; 50 mm of rainfall in 15 min, reaching an erosivity of 2886 MJ mm ha?1 h?1. Moreover, hysteretic counter‐clockwise loops were predominant (60%), probably related to the increased sensitivity of the landscape after wildfire perturbation. Though the study period was average in terms of total annual precipitation (even higher in intensities), minimal runoff (2%) and low sediment yield (6.3 t km?2 y?1) illustrated how the intrinsic characteristics of the catchment, i.e. calcareous soils, terraces and the application of post‐fire measures, limited the hydrosedimentary response despite the wildfire impact. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Post‐fire runoff and erosion from wildlands has been well researched, but few studies have researched the degree of control exerted by fire on rangeland hydrology and erosion processes. Furthermore, the spatial continuity and temporal persistence of wildfire impacts on rangeland hydrology and erosion are not well understood. Small‐plot rainfall and concentrated flow simulations were applied to unburned and severely burned hillslopes to determine the spatial continuity and persistence of fire‐induced impacts on runoff and erosion by interrill and rill processes on steep sagebrush‐dominated sites. Runoff and erosion were measured immediately following and each of 3 years post‐wildfire. Spatial and temporal variability in post‐fire hydrologic and erosional responses were compared with runoff and erosion measured under unburned conditions. Results from interrill simulations indicate fire‐induced impacts were predominantly on coppice microsites and that fire influenced interrill sediment yield more than runoff. Interrill runoff was nearly unchanged by burning, but 3‐year cumulative interrill sediment yield on burned hillslopes (50 g m?2) was twice that of unburned hillslopes (25 g m?2). The greatest impact of fire was on the dynamics of runoff once overland flow began. Reduced ground cover on burned hillslopes allowed overland flow to concentrate into rills. The 3‐year cumulative runoff from concentrated flow simulations on burned hillslopes (298 l) was nearly 20 times that measured on unburned hillslopes (16 l). The 3‐year cumulative sediment yield from concentrated flow on burned and unburned hillslopes was 20 400 g m?2 and 6 g m?2 respectively. Fire effects on runoff generation and sediment were greatly reduced, but remained, 3 years post‐fire. The results indicate that the impacts of fire on runoff and erosion from severely burned steep sagebrush landscapes vary significantly by microsite and process, exhibiting seasonal fluctuation in degree, and that fire‐induced increases in runoff and erosion may require more than 3 years to return to background levels. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

11.
We derived a high‐resolution, spatially continuous map of erosion and deposition associated with the debris‐laden flows triggered by the 2011 Las Conchas wildfire and subsequent rainstorms over a 197 km2 area in New Mexico, USA. This map was produced using airborne‐LiDAR‐derived bare‐earth digital elevation models (DEMs) acquired approximately one year before and one year after the wildfire. Differencing of the pre‐wildfire and post‐wildfire‐and‐rainstorm bare‐earth DEMs yielded a DEM‐of‐difference (DoD) map that quantifies the magnitude of ground‐surface elevation changes due to erosion/deposition within each 1 m2 pixel. We applied a 0.3 m threshold filter to our DoD to remove changes that could have been due to artifacts and/or imperfect georeferencing. The 0.3 m value for the threshold filter was chosen based on the stated accuracy of the LiDAR as well as a comparison of areas of significant topographic change mapped in aerial photographs with those predicted using a range of candidate threshold values for the DoD filter. We developed an automated procedure that accepts the DoD map as input and computes, for every pixel in the DEM, the net sediment volume exported through each pixel by colluvial and/or fluvial processes using a digital routing algorithm. An analysis of the resulting sediment volume map for the Las Conchas fire demonstrates that sediment volume is proportional to upstream contributing area. After normalized by contributing area, the average sediment yield (defined as the sediment volume divided by the contributing area) increases as a power‐law functions of the average terrain slope and soil burn severity class (SBSC) with exponents equal to approximately 1.5. Our analysis quantifies the relationships among sediment yield, average terrain slope, and average soil burn severity class at the watershed scale and should prove useful for predicting the geomorphic response of wildfire‐affected drainage basins. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The distribution, transport, and accumulation of wildfire‐generated pyrogenic carbon (PyC) has important consequences for contaminant transport and carbon cycling, but a conceptual model for PyC accumulation and loss that includes geomorphic processes is lacking. In this study we quantified PyC concentration in soil samples collected from the Jemez Mountains of New Mexico before and after the 2013 Thompson Ridge (TR) fire, and developed a conceptual model describing PyC redistribution. Pre‐fire samples were fortuitously collected 4 years before the TR burn and post‐fire samples were collected at the same locations 15 months following the TR fire. Samples were collected from the O and A horizon, with sites representing a range of slope angle, aspect, burn severity, and geomorphic setting. PyC was determined by a modified chemo‐thermal oxidation method to compare PyC to total organic carbon (TOC). The mean PyC/TOC ratio was significantly higher post‐fire than pre‐fire (0.14 vs 0.12), indicating increased PyC sequestration. O horizon PyC concentrations were more variable and more responsive to fire than the A horizon. Soil horizon, watershed, and geomorphic setting proved to be the most influential factors in predicting PyC concentration changes. PyC concentrations increased most on hillslopes and in low‐severity burn areas, suggesting higher rates of PyC production or post‐fire accumulation. Burn patchiness appears to facilitate PyC accumulation, with lower severity patches trapping PyC mobilized from high severity patches. While PyC content had greater point scale variance following the fire, the fire also homogenized pre‐fire PyC differences between soil horizons and among watersheds within the burn perimeter, differences that appear to develop over time between fires. The O horizon is a larger sink for PyC in the short term following fire, but based on pre‐fire concentrations the A horizon appears to be a more stable sink for PyC. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
H. Marttila  B. Kløve 《水文研究》2014,28(17):4756-4765
Lowland catchments in Finland are intensively managed, promoting erosion and sedimentation that negatively affects aquatic environments. This study quantified fine‐grained bed sediment in the main channel and upstream headwaters of the River Sanginjoki (399.93 km2) catchment, Northern Finland, using remobilization sediment sampling during the ice‐free period (May 2010–December 2011). Average bed sediment storage in river was 1332 g m?2. Storage and seasonal variations were greater in small headwater areas (total bed sediment storage mean 1527 g m?2, range 122–6700 g m?2 at individual sites; storage of organic sediment: mean 414 g m?2, range 27–3159 g m?2) than in the main channel (total bed sediment storage: mean 1137 g m?2, range 61–4945 g m?2); storage of organic sediment: mean 329 g m?2, range 13–1938 g m?2). Average reach‐specific bed sediment storage increased from downstream to upstream tributaries. In main channel reaches, mean specific storage was 8.73 t km?1, and mean specific storage of organic sediment 2.45 t km?1, whereas in tributaries, it was 126.94 and 34.05 t km?1, respectively. Total fine‐grained bed sediment storage averaged 563 t in the main channel and 6831 t in the catchment. The proportion of mean organic matter at individual sites was 15–47% and organic carbon 4–455 g C m?2, with both being highest in small headwater tributaries. Main channel bed sediment storage comprised 52% of mean annual suspended sediment flux and stored organic carbon comprised 7% of mean annual total organic carbon load. This indicates the importance of small headwater brooks for temporary within‐catchment storage of bed sediment and organic carbon and the significance of fine‐grained sediment stored in channels for the suspended sediment budget of boreal lowland rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Wildfires in the sub‐alpine belt of the Austrian Limestone Alps sometimes cause severe vegetation and soil destruction with increased danger of secondary natural hazards such as avalanches and debris flows. Some of the affected areas remain degraded to rocky slopes even decades after the fire, raising the question as to whether the ecosystems will ever be able to recover. The mean fire interval, the duration of recovery and the role of geomorphic processes for vegetation regeneration are so far unknown. These questions were tackled in a broad research approach including investigation of historical archives to determine the frequency of historical wildfires, mapping vegetation regeneration on 20 slopes of different post‐fire ages, and soil erosion measurements on two slopes. To date, > 450 historical wildfires have been located in the study area. The mean fire interval per square kilometre is c. 750 years, but can be as low as 200–500 years on south‐facing slopes. Vegetation regeneration takes an extremely long time under unfavourable conditions; the typical window of disturbance is between 50 and 500 years, which is far longer than in any other wildfire study known to us. Soil erosion constantly increases in the years after the fires and the elevated intensity can be maintained for decades. A two‐part vegetation regeneration model is proposed depending upon the degree of soil loss. In the case of moderate soil erosion, spreading grassland communities can slow down shrub re‐colonization. In contrast, after severe soil destruction the slopes may remain degraded for a century or longer, before rather rapid regeneration occurs. The reasons are not fully understood but are probably governed by geomorphic process intensity. The interdependence of vegetation regeneration and geomorphic processes is a paradigm of ecology–geomorphology interaction, and is a unique example of a very long‐lasting disturbance response caused by wildfire in a non‐resilient ecosystem. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Wildfire denudes vegetation and impacts chemical and physical soil properties, which can alter hillslope erosion rates. Post‐wildfire erosion can also contribute disproportionately to long‐term erosion rates and landscape evolution. Post‐fire hillslope erosion rates remain difficult to predict and document at the hillslope scale. Here we use 210Pbaex (lead‐210 mineral‐adsorbed excess) inventories to describe net sediment erosion on steep, convex hillslopes in three basins (unburned, moderately and severely burned) in mountainous central Idaho. We analyzed nearly 300 soil samples for 210Pbaex content with alpha spectrometry and related net sediment erosion to burn severity, aspect, gradient, curvature and distance from ridgetop. We also tested our data against models for advective, linear and non‐linear diffusive erosion. Statistically lower net soil losses on north‐ versus south‐facing unburned hillslopes suggest that greater vegetative cover and soil cohesion on north‐facing slopes decrease erosion. On burned hillslopes, erosion differences between aspects were less apparent and net erosion was more variable, indicating that vegetation influences erosion magnitude and fire drives erosion variability. We estimated net soil losses throughout the length of unburned hillslopes, including through a footslope transition to concave form. In contrast, on burned hillslopes, the subtle shift from convex to concave form was associated with deposition of a post‐fire erosion pulse. Such overall patterns of erosion and deposition are consistent with predictions from a non‐linear diffusion equation. This finding also suggests that concave sections of overall convex hillslopes affect post‐disturbance soil erosion and deposition. Despite these patterns, no strong relationships were evident between local net soil losses and gradient, curvature, distance from ridgetop, or erosion predicted with advection or diffusion equations. The observed relationship between gradient and erosion is therefore likely more complex or stochastic than often described theoretically, especially over relatively short timescales (60–100 years). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Post‐wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire‐affected soils to predict time‐to‐start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil‐water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one‐dimensional post‐wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high‐resolution (1 mm) estimates of the soil‐water profile and water fluxes within the unsaturated zone. Field and model estimates of the wetting‐front depth indicated that post‐wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h?1. Because of the relatively small values of Ks, the time‐to‐start of runoff (measured from the start of rainfall), tp, was found to depend only on the initial soil‐water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that tp in fire‐affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil‐water saturation deficit than by soil hydraulic properties. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

17.
Floods are an important geomorphic agent that accelerate sediment supply from bank failures. The quantitative proportions supplied by lateral inputs and the transport conditions of the channel can create local or extended accumulation zones within the channel reaches. These accumulation zones play an important role in the geomorphic regime of the stream. Knowledge of long‐term history of sediment supply is necessary to determine how these input and deposition forms developed. This study introduces a new approach for the quantification of past sediment supply via lateral erosion (incised banks and individual bank failures), using a case study of the confluence of three partial tributaries in the accumulation zone in the Outer Western Carpathians. For each tributary, as well as the channel reach downstream of the confluence zone, we calculated the mean of the largest bed particles and the unit stream power as indicators of transport capacity. We found that two of the tributaries supply significant amounts of sediment to the accumulation zone because of their higher unit stream power related to their higher transport potential, and observed coarser bed sediment. Seventy‐three bank failures with a total volume 395.5 m3 were mapped, and the sediment supply volume was dated using dendrogeomorphic analysis of 114 scarred tree roots (246 samples). The total volume of the dated sediment supply in the individual tributaries was 193.9 m3, whereas the volume of erosion in the accumulation zone was only 4.9 m3 for a period of approximately 30 years. The period represented by the dated tree roots included 12 years in which erosion events occurred and impacted the total sediment budget in the study area. Although sediment supply was greater than erosion in the accumulation zone, there are no present‐day signs of accretion. The rupture of a dam in an old pond (which is situated approximately 50 m below the accumulation zone) probably increased the transport conditions in the accumulation zone so that it balanced the high sediment supply from individual tributaries. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
We exploit a natural experiment caused by an extreme flood (~500 year recurrence interval) and sediment pulse derived from more than 2500 concurrent landslides to explore the influence of valley‐scale geomorphic controls on sediment slug evolution and the impact of sediment pulse passage and slug deposition and dispersion on channel stability and channel form. Sediment slug movement is a crucial process that shapes gravel‐bed rivers and alluvial valleys and is an important mechanism of downstream bed material transport. Further, increased bed material transport rates during slug deposition can trigger channel responses including increases in lateral mobility, channel width, and alluvial bar dominance. Pre‐ and post‐flood LiDAR and aerial photographs bracketing the 2007 flood on the Chehalis River in south‐western Washington State, USA, document the channel response with high spatial and temporal definition. The sediment slug behaved as a Gilbert Wave, with both channel aggradation and sequestration of large volumes of material in floodplains of headwaters' reaches and reaches where confined valleys enter into broad alluvial valleys. Differences between the valley form of two separate sub‐basins impacted by the pulse highlight the important role channel and channel‐floodplain connectivity play in governing downstream movement of sediment slug material. Finally, channel response to the extreme flood and sediment pulse illustrate the connection between bed material transport and channel form. Specifically, the channel widened, lateral channel mobility increased, and the proportion of the active channel covered by bars increased in all reaches in the study area. The response scaled tightly with the relative amount of bed material sediment transport through individual reaches, indicating that the amount of morphological change caused by the flood was conditioned by the simultaneous introduction of a sediment pulse to the channel network. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A field study was conducted to analyze root throw and associated sediment transport in Hawk Creek Watershed, Canadian Rockies. A large crown fire in 2003 allowed the opportunity to study pre‐fire and post‐fire root throw. Based on field data, a significant relation was found between gradient and root plate volume, as well as individual root plate dimensions. Given that tree diameters increase as trees age and that a relation in the field data was found between tree diameter and root plate volumes, sediment transport due to root throw is expected to change in response to forest disturbance and stand age. Sediment disturbance, which is the amount of sediment upheaved during tree topple and does not take into account transport distance, shows higher values on steeper gradients. Sediment transport was notable for the steepest plots, with pre‐fire values of 0·016 cmcm–1 a–1 and post‐fire values of 0·18 cmcm–1 a–1. A tree population dynamics model is then integrated with a root throw transport model calibrated for the Canadian Rockies to examine the temporal dynamics of sediment transport. Fire is incorporated as a disturbance that initiates development of a new forest, with the model cycling through generations of forest. Trees fall according to an exponential rate that is based on time since death, resulting in a time lag between tree mortality and sediment transport. When values of time‐since‐previous‐fire are short, trees are generally <13 cm, and minimal sediment is upheaved during toppling. If trees reach a critical diameter at breast height (dbh) at time of fire, a pulse of sediment occurs in the immediate post‐fire years due to falling of killed trees, with tree fall rates decreasing exponentially with time‐since‐fire. A second pulse of root throw begins at about 50 years after the previous fire, once new recruits reach a critical dbh and with initiation of competition‐induced mortality. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Wildfire has been shown to increase erosion by several orders of magnitude, but knowledge regarding short‐term variations in post‐fire sediment transport processes has been lacking. We present a detailed analysis of the immediate post‐fire sediment dynamics in a semi‐arid basin in the southwestern USA based on suspended sediment rating curves. During June and July 2003, the Aspen Fire in the Coronado National Forest of southern Arizona burned an area of 343 km2. Surface water samples were collected in an affected watershed using an event‐based sampling strategy. Sediment rating parameters were determined for individual storm events during the first 18 months after the fire. The highest sediment concentrations were observed immediately after the fire. Through the two subsequent monsoon seasons there was a progressive change in rating parameters related to the preferential removal of fine to coarse sediment. During the corresponding winter seasons, there was a lower supply of sediment from the hillslopes, resulting in a time‐invariant set of sediment rating parameters. A sediment mass‐balance model corroborated the physical interpretations. The temporal variability in the sediment rating parameters demonstrates the importance of storm‐based sampling in areas with intense monsoon activity to characterize post‐fire sediment transport accurately. In particular, recovery of rating parameters depends on the number of high‐intensity rainstorms. These findings can be used to constrain rapid assessment fire‐response models for planning mitigation activities. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号