首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A catalog for northeast India and the adjoining region for the period 1897–2009 with 4,497 earthquakes events is compiled for homogenization to moment magnitude M w,GCMT in the magnitude range 3–8.7. Relations for conversion of m b and M s magnitudes to M w,GCMT are derived using three different methods, namely, linear standard regression, inverted standard regression (ISR) and orthogonal standard regression (OSR), for different magnitude ranges based on events data for the catalog period 1976–2006. The OSR relations for M s to M w,GCMT conversion derived in this paper have significantly lower errors in regression parameters compared to the relations reported in other studies. Since the number of events with magnitude ≥7 for this region is scanty, we, therefore, considered whole India region to obtain the regression relationships between M w,GCMT and M s,ISC. A relationship between M w,GCMT and M w,NEIC is also obtained based on 17 events for the range 5.2 ≤ magnitude ≤ 6.6. A unified homogeneous catalog prepared using the conversion relations derived in this paper can serve as a reference catalog for seismic hazard assessment studies in northeast India and the adjoining region.  相似文献   

2.
Empirical Global Relations Converting M S and m b to Moment Magnitude   总被引:1,自引:0,他引:1  
The existence of several magnitude scales used by seismological centers all over the world and the compilation of earthquake catalogs by many authors have rendered globally valid relations connecting magnitude scales a necessity. This would allow the creation of a homogeneous global earthquake catalog, a useful tool for earthquake research. Of special interest is the definition of global relations converting different magnitude scales to the most reliable and useful scale of magnitude, the moment magnitude, M W. In order to accomplish this, a very large sample of data from international seismological sources (ISC, NEIC, HRVD, etc.) has been collected and processed. The magnitude scales tested against M W are the surface wave magnitude, M S, the body wave magnitude, m b, and the local magnitude, M L. The moment magnitudes adopted have been taken from the CMT solutions of HRVD and USGS. The data set used in this study contains 20,407 earthquakes, which occurred all over the world during the time period 1.1.1976–31.5.2003, for which moment magnitudes are available. It is shown that well-defined relations hold between M W and m b and M S and that these relations can be reliably used for compiling homogeneous, with respect to magnitude, earthquake catalogs.  相似文献   

3.
Iranian earthquakes, a uniform catalog with moment magnitudes   总被引:3,自引:1,他引:2  
A uniform earthquake catalog is an essential tool in any seismic hazard analysis. In this study, an earthquake catalog of Iran and adjacent areas was compiled, using international and national databanks. The following priorities were applied in selecting magnitude and earthquake location: (a) local catalogs were given higher priority for establishing the location of an earthquake and (b) global catalogs were preferred for determining earthquake magnitudes. Earthquakes that have occurred within the bounds between 23–42° N and 42–65° E, with a magnitude range of M W 3.5–7.9, from the third millennium BC until April 2010 were included. In an effort to avoid the “boundary effect,” since the newly compiled catalog will be mainly used for seismic hazard assessment, the study area includes the areas adjacent to Iran. The standardization of the catalog in terms of magnitude was achieved by the conversion of all types of magnitude into moment magnitude, M W, by using the orthogonal regression technique. In the newly compiled catalog, all aftershocks were detected, based on the procedure described by Gardner and Knopoff (Bull Seismol Soc Am 64:1363–1367, 1974). The seismicity parameters were calculated for the six main tectonic seismic zones of Iran, i.e., the Zagros Mountain Range, the Alborz Mountain Range, Central Iran, Kope Dagh, Azerbaijan, and Makran.  相似文献   

4.
Aftershocks or swarms indicate increase of the flow intensity in the vicinity of the initial earthquakes. By normalizing their number according to the dynamic range of the standard frequency magnitude distribution the increase or positive aftereffect property of the initial earthquakes can be compared for different magnitude intervals, periods of time or regions. After applying accurate formal algorithm of aftershock identification it is possible to study negative aftereffect of the main events (nonaftershocks) in the catalog.Negative aftereffect means decrease of the probability of successive events in a time-space vicinity of the main event, when the aftershocks are over. The negative effect is the most important part of the seismic cycle and seismic gaps approach. Global statistical test give high confidence level for the relative decrease in intensity of the flow of the events withM7 in the first 20–25 years after the events withM8 in their 1o-vicinities in the total time period under study of approximately 60 years. The decrease approximates 32% of the undisturbed intensity of the flow ofM>7 events in the vicinities.Self-similar negative aftereffect was observed 3–7 years after 6M<7 events, it totals approximately 18% of the undisturbed intensity. Another type of self-similarity of seismic regime, with respect to the negative aftereffect, is the decrease of probabilities of aftershocks with large magnitudes in aftershock sequences. When we have adequate dynamic range in the catalog for the study of this property, for example, for main events withM7 in the catalog with low cut-off limitM=4, the statistical significance of the negative aftereffect is clear. However, the absolute value of the effect is also rather small, about 10%, which means that in 90% of the cases the aftershock sequences do not experience lack of energy due to the main shock energy release and follow a standard magnitude distribution for earthquakes in the entire catalog.The small values of the negative aftereffect apparently indicate partial stress relase by earthquakes and may explain short recurrence time intervals after major earthquakes observed periodically in different places.  相似文献   

5.
The numerical modeling of actually observed events contained in the Baikal earthquake catalog allowed the production of synthetic catalogs. These catalogs reflect real situations that can give rise to heterogeneities in earthquake catalogs acquired by seismological monitoring. For each of the resulting 65 catalogs we calculated the slope γ and seismic activity (so-called in Russian; it is the seismicity rate or the constant term in the frequency-size relation) A 10 in the recurrence relation. We also investigated the effects of changes in estimates of earthquake energy class on the parameters of the recurrence relation. It was shown that the slope γ is not very sensitive, but that the seismic activity A 10 is sensitive, to changes in earthquake energy class and can be used to test an earthquake catalog for heterogeneity. Formulas were derived to relate the parameters of recurrence relations and the scaling factors of two energy scales, which can yield recurrence parameters for one of the scales, provided we know the ratio of the respective scaling factors and the recurrence parameters based on the other scale.  相似文献   

6.
By linear regression and orthogonal regression methods, comparisons are made between different magnitudes (lo-cal magnitude ML, surface wave magnitudes MS and MS7, long-period body wave magnitude mB and short-period body wave magnitude mb) determined by Institute of Geophysics, China Earthquake Administration, on the basis of observation data collected by China Seismograph Network between 1983 and 2004. Empirical relations between different magnitudes have been obtained. The result shows that: 1 As different magnitude scales reflect radiated energy by seismic waves within different periods, earthquake magnitudes can be described more objectively by using different scales for earthquakes of different magnitudes. When the epicentral distance is less than 1 000 km, local magnitude ML can be a preferable scale; In case M<4.5, there is little difference between the magnitude scales; In case 4.5MS, i.e., MS underestimates magnitudes of such events, therefore, mB can be a better choice; In case M>6.0, MS>mB>mb, both mB and mb underestimate the magnitudes, so MS is a preferable scale for deter-mining magnitudes of such events (6.08.5, a saturation phenomenon appears in MS, which cannot give an accurate reflection of the magnitudes of such large events; 2 In China, when the epicentral distance is less than 1 000 km, there is almost no difference between ML and MS, and thus there is no need to convert be-tween the two magnitudes in practice; 3 Although MS and MS7 are both surface wave magnitudes, MS is in general greater than MS7 by 0.2~0.3 magnitude, because different instruments and calculation formulae are used; 4 mB is almost equal to mb for earthquakes around mB4.0, but mB is larger than mb for those of mB≥4.5, because the periods of seismic waves used for measuring mB and mb are different though the calculation formulae are the same.  相似文献   

7.
The possibility of intermediate-term earthquake prediction at Mt. Vesuvius by means of the CN algorithm is explored. CN was originally designed to identify the Times of Increased Probability (TIPs) for the occurrence of strong tectonic earthquakes, with magnitude MM0, within a region a priori delimited. Here the CN algorithm is applied, for the first time, to the analysis of volcanic seismicity. The earthquakes recorded at Mt. Vesuvius during the period from February 1972 to June 2004 are considered, and the magnitude threshold M0 selecting the events to be predicted is varied within the range: 3.0–3.3. Satisfactory prediction results are obtained, by retrospective analysis, when a time scaling is introduced. In particular, when the length of the time windows is reduced by a factor 2.5–3, with respect to the standard version of CN algorithm, more than 90% of the events with MM0 occur within the TIP intervals, with TIPs occupying about 30% of the total time considered. The control experiment ``Seismic History' demonstrates the stability of the obtained results and indicates that the CN algorithm can be applied to monitor the preparation of impending earthquakes with M ≥ 3.0 at Mt. Vesuvius.  相似文献   

8.
利用模板匹配方法对2015年11月23日青海省祁连县M_S5.2地震进行遗漏地震检测研究,由于主震后短时间内目录中遗漏事件较多,故对主震后1天的连续波形进行检测。主震后1天内青海测震台网记录到的余震个数(包括单台)共62个,选取主震后M_L1.0以上余震30个作为模板事件,通过匹配滤波的方式扫描出遗漏地震31个,约为台网目录给出的0.5倍。基于包络差峰值振幅与震级的线性关系估测检测事件的震级参数,最后将检测后的余震目录与台网余震目录在主震后1天内的最小完备震级进行对比分析,结果发现检测后最小完备震级从M_L1.2降到了M_L0.7,得到青海测震台网在祁连地区最小完整性震级为M_L0.7。  相似文献   

9.
China’s seas and adjacent regions are affected by interactions among the Eurasian plate, the western Pacific plate, and the Philippine Sea plate. Both intraplate and plate-edge earthquakes have occurred in these regions and the seismic activities are frequent. The coastal areas of China are economically developed and densely populated. With the development and utilization of marine energy and resources along with the development of national economy, the types and quantity of construction projects in the marine and coastal areas have increased, once an earthquake happens, it will cause huge damage and loss to these areas, therefore, the earthquake-related research for these sea areas cannot be ignored and the need for study on these areas is increasingly urgent. One type of essential basic data for marine seismic research is a complete, unified earthquake catalog, which is an important database for seismotectonics, seismic zoning, earthquake prediction, earthquake prevention, and disaster reduction. Completeness and reliability analysis of an earthquake catalog is one of the fundamental research topics in seismology.
At present, four editions of earthquake catalogs have been officially published in China, as well as the earthquake catalogue compiled in the national fifth-generation earthquake parameter zoning map, these catalogs are based on historical data, seismic survey investigations, and various instrumental observations. However, these catalogs have earlier data deadlines and contain the earthquake records for only the offshore regions of China, which are extensions of coastal land. Distant sea regions, subduction zones, and adjacent sea regions have not been included in these catalogs. Secondly, there were no cross-border areas involved in the compilation of earthquake catalogs in the past. It was not required to use magnitudes measured by other countries’ seismic networks and observation agencies to develop an earthquake catalog with a uniform magnitude scale, moreover, there was no formula suitable for the conversion of magnitude scale in China’s seas areas and adjacent regions. Little research has been conducted to compile and analyze the completeness of a unified earthquake catalog for China’s seas and adjacent regions. Therefore, in this study, we compiled earthquake data from the seismic networks of China and other countries for China’s seas and adjacent regions. The earthquake-monitoring capabilities of different sea areas at different time periods were evaluated, and the temporal and spatial distribution characteristics of epicentral location accuracy for China’s seas and adjacent regions were analyzed. We used the orthogonal regression method to obtain conversion relationships between the surface wave magnitude, body wave magnitude, and moment magnitude for China’s seas and adjacent regions, and established magnitude conversion formulae between the China Seismic Network and the ML magnitude of the Taiwan Seismic Network and the MS magnitude of the Philippine Seismic Network. Finally, we developed an earthquake catalog with uniform magnitude scales for China’s seas and adjacent regions.
On the basis of the frequency-magnitude distribution obtained from the magnitude-cumulative frequency relationship (N-T) and the Gutenberg-Richter(GR)law, we conducted a completeness analysis of the unified earthquake catalog for China’s seas and adjacent regions, Then, we identified the beginning years of each magnitude interval at different focal depth ranges and different seismic zones in the earthquake catalog.
This study marks the first time that a unified earthquake catalog has been compiled for China’s seas and adjacent regions, based on the characteristics of seismicity in the surrounding sea regions, which fills the gap in the compilation of the earthquake catalogue of China’s seas and adjacent areas. The resulting earthquake catalog provides a basis for seismotectonics, seismicity study, and seismic hazard analysis for China’s seas and adjacent regions. The catalog also provides technical support for the preparation of seismic zoning maps as well as for earthquake prevention and disaster reduction in project planning and engineering construction in the sea regions. In addition, by evaluating the earthquake-monitoring capability of the seismic networks in China’s seas and adjacent regions and analyzing the completeness of the compiled unified earthquake catalog, this study provides a scientific reference to improve the earthquake-monitoring capability and optimizing the distribution of the seismic networks in these regions.  相似文献   

10.
Introduction Gutenberg (1945a, b) introduced body wave magnitude based on P, PP and S waves (with a period of 0.5~12.0 s) of teleseismic events. Body wave magnitude includes mb determined with short-period seismograph and mB determined with middle- and long-period seismographs. Some-times it is written as m, which is referred to as unified earthquake magnitude. mb represents earth-quake magnitude measured with body wave amplitude around 1 s, while mB represents earthquake magnitude measured …  相似文献   

11.
IntroductionMany anomalies due to earthquake have been recorded in observation of earth-resistivity for30 years and over, which showed that there objectively existed the anomalies of each-resistivity.The crustal strUcture and medium conditions are quite complex, so the complexity of the temporal,spatial and intensive development of the anomalies is inevitable. Both of time and amplitUde ofanomalies among some stations near an epicenter are different (even among different observational directi…  相似文献   

12.
Data from 753 earthquakes are used to determine a relationship between surface-wave magnitude (M s) and bodywave magnitude (m b), and from 541 earthquakes to determine a relationship between surface-wave magnitude (M s) and local magnitude (M L) for China and vicinity: M s=0.9883 m b-0.0420, M s=0.9919 M L-0.1773. The relationship of M s versus m b is obtained for 292 events occurred in the Chinese mainland in the time period from 1964 to 1996, 291 events occurred in Taiwan in the time period from 1964 to 1995 and 170 events occurred in the surrounding area. Standard deviation of the fitting is 0.445. Relationship of M s versus M L is obtained for 36 events occurred in the Chinese mainland, 293 events occurred in Taiwan, China and 212 events occurred in the surrounding area. The total amount is 541 events. Standard deviation of the fitting is 0.4673. The uncertainties of the converted M s in different magnitude intervals can be estimated using complementary cumulative distribution function (CCDF). In the relationship of M s versus m b, taking ±0.25 as a range of uncertainties, in magnitude interval m b 4.0–4.9, the probabilities for the converted M s taken value less than (M s-0.25) and more than (M s+0.25) are 17% and 27% respectively. Similarly, we have probabilities for m b 5.0–5.9 are 34% and 20% and that for m b 6.0–6.9 are 11% and 47%. In the relationship of M s versus M L, if the range of uncertainties is still taken as ±0.25, the corresponding probabilities for magnitude interval M L 4.0–4.9 are 22% and 38%, for M L 5.0–5.9 are 20% and 15% and for magnitude interval M L 6.0–6.9, are 15% and 29%, respectively. The relationships developed in this paper can be used for the conversion of one magnitude scale into another magnitude scales conveniently. The estimation of uncertainties described in this paper is more accurate and more objective than the usual estimation expressed by deviation. The estimations described in this paper indicate various dispersions in different magnitude intervals of original data. The estimations of uncertainties described by probabilities can be well connected with the total estimations of uncertainties in seismic hazard assessment.  相似文献   

13.
Two empirical magnitude scaling relationships, predominant period (tpmax{\tau _p^{\max}}) and peak ground displacement (Pd) magnitudes, were investigated for the first 3 s after P-wave arrivals using 1,412 vertical waveforms recorded by the Korea National Seismic Network (KNSN) between 2001 and 2007. To evaluate the accuracy of the derived magnitude relationships, we simulated off-line ElarmS tests using 65 events occurring inside the KNSN. While the average magnitude error was ∼0.70 magnitude units when using only the closest station to the epicentre, the error dropped to ∼0.62 and ∼0.42 magnitude units when using the closest two and closest four stations, respectively. For events M L ≥ 3.0, the average magnitude error was ∼0.33 and showed stable values when the closest four stations were available. Our magnitude scaling relationships may be useful for initial work in developing an earthquake early warning system in South Korea.  相似文献   

14.
The purpose of this work is to highlight some methodological aspects related to the observation of possible anomalies in the temporal decay of aftershocks temporal series following a mainshock with magnitude M ≥ 7.0. In this paper we present the results for the Taiwan seismic sequence started on 20 September 1999 (M = 7.7) by tuning some seismic parameters that show considerable variations during the aftershock decay process. In here we also present the results obtained using a fractal approach for the seismic sequence. Earthquakes belong to a class of phenomena known as multifractals. In general it is important to define the fractal dimension D, but sometimes is not useful if we are describing a natural phenomenon; so it is necessary to define D 0 called box-counting dimension and D 2 called correlation dimension, usually D 0D 2. In the elaborations of the fractal dimensions, for this sequence, we have obtained values lesser than 1, with a greater tendency of aftershocks to clusterize in time before a large aftershock. This is coherent with the possible existence of seismic anomalies, that could occur before the large aftershock. We also report the results obtained by using the delta/sigma method described firstly in [Caccamo et al., 2005] and later applied to different seismic sequence. The observed temporal series of the aftershocks per day can be considered as a sum of a deterministic and a stochastic contribution. If the decay can be modeled as a non-stationary Poissonian process, the number of aftershocks in a small time interval Δt is the mean value n(t) Δt, with a standard deviation (δ = √n(tt. Investigating both aftershock behavior and a wide spectrum of parameters may find the key to explain better the mechanism of seismicity as a whole.  相似文献   

15.
The logical tree methods are used for evaluate quantitatively relationship between frequency and magnitude, and deduce uncertainties of annual occurrence rate of earthquakes in the periods of lower magnitude earthquake. The uncertainties include deviations from the self-similarity of frequency-magnitude relations, different fitting methods, different methods obtained the annual occurrence rate, magnitude step used in fitting, start magnitude, error of magnitude and so on. Taking Xianshuihe River source zone as an example, we analyze uncertainties of occurrence rate of earthquakes M ≥ 4, which is needed in risk evaluation extrapolating from frequency-magnitude relations of stronger earthquakes. The annual occurrence rate of M ≥ 4 is usually required for seismic hazard assessment. The sensitivity analysis and examinations indicate that, in the same frequency-magnitude relations fitting method, the most sensitive factor is annual occurrence rate, the second is magnitude step and the following is start magnitude. Effect of magnitude error is rather small. Procedure of estimating the uncertainties is as follows: (1) Establishing a logical tree described uncertainties in frequency-magnitude relations by available data and knowledge about studied region. (2) Calculating frequency-magnitude relations for each end branches. (3) Examining sensitivities of each uncertainty factors, amending structure of logical tree and adjusting original weights. (4) Recalculating frequency-magnitude relations of end branches and complementary cumulative distribution function (CCDF) in each magnitude intervals. (5) Obtaining an annual occurrence rate of M ≥ 4 earthquakes under given fractiles. Taking fractiles as 20% and 80%, annual occurrence rate of M ≥ 4 events in Xianshuihe seismic zone is 0.643 0. The annual occurrence rate is 0.631 8 under fractiles of 50%, which is very close to that under fractiles 20% and 80%.  相似文献   

16.
Introduction Stress release model (SRM) was proposed by Vere-Jones (1978) for statistical study of seismicity. Physically it is a stochastic version of the elastic rebound theory of earthquake genesis. The classical elastic rebound model suggests that the stress has been slowly accumulating until the burst of an earthquake occurrence for stress release. This can be simulated by the jump Markov process in stochastic field, and SRM was developed on the basis of Knopoff (s Markov model (Knop…  相似文献   

17.
IllustrationAll the data in this catalog are chosen from the (Preliminary Seismological Report of Chinese Seismic Stations( (Its abbreviation is (Monthly Report(). The catalog includes the events of M(4.7 in and near China and M(6 all over the world. The (Monthly Report( is monthly compiled by the Ninth Section of Institute of Geophysics, CSB.The origin times of earthquakes in the catalog adopt coordinated universal time (UTC) in accordance with international convention. The location…  相似文献   

18.
It has been the belief among Earth scientists that the Peninsular Shield is aseismic, as the region attained stability long ago. However, the earthquake at Koyna (10 December 1967), Bhadrachalam (13 April 1969), Broach (23 March 1970), Hyderabad (30 June 1983), Khillari (30 September 1993), Jabalpur (22 May 1997), Gujarat (26 January 2001), and additional ones of smaller magnitudes, altered this concept. This area has experienced many widely distributed shallow earthquakes, some of them having large magnitudes. It is now widely accepted that seismic activity still continues with moderate events. Therefore, a need has arisen to take into consideration recent seismological data to assess the future seismic status of Peninsular India. Earthquake generation model has been studied to develop the statistical relations with surface wave magnitude (M S ≥ 4.5). Five seismogenic sources showing clustering of earthquakes and including at least three main shocks of magnitude 4.5 ≤ M S ≤ 6.5 giving two repeat times, have been identified. It is mainly based on the so-called “regional time-predictable model”. For the considered region it is observed that the time interval between two consecutive main shocks depends on the preceding main shock magnitude (M p ) not on the following main shocks magnitude M f suggesting the validity of time predictable model in the region.  相似文献   

19.
Kutch region of Gujrat is one of the most seismic prone regions of India. Recently, it has been rocked by a large earthquake (M w = 7.7) on January 26, 2001. The probabilities of occurrence of large earthquake (M≥6.0 and M≥5.0) in a specified interval of time for different elapsed times have been estimated on the basis of observed time-intervals between the large earthquakes (M≥6.0 and M≥5.0) using three probabilistic models, namely, Weibull, Gamma and Lognormal. The earthquakes of magnitude ≥5.0 covering about 180 years have been used for this analysis. However, the method of maximum likelihood estimation (MLE) has been applied for computation of earthquake hazard parameters. The mean interval of occurrence of earthquakes and standard deviation are estimated as 20.18 and 8.40 years for M≥5.0 and 36.32 and 12.49 years, for M≥6.0, respectively, for this region. For the earthquakes M≥5.0, the estimated cumulative probability reaches 0.8 after about 27 years for Lognormal and Gamma models and about 28 years for Weibull model while it reaches 0.9 after about 32 years for all the models. However, for the earthquakes M≥6.0, the estimated cumulative probability reaches 0.8 after about 47 years for all the models while it reaches 0.9 after about 53, 54 and 55 years for Weibull, Gamma and Lognormal model, respectively. The conditional probability also reaches about 0.8 to 0.9 for the time period of 28 to 40 years and 50 to 60 years for M≥5.0 and M≥6.0, respectively, for all the models. The probability of occurrence of an earthquake is very high between 28 to 42 years for the magnitudes ≥5.0 and between 47 to 55 years for the magnitudes ≥6.0, respectively, past from the last earthquake (2001).  相似文献   

20.
We investigated whether accelerated seismic strain release precedes large earthquakes occurring in and around the Sistan Suture Zone, Eastern Iran. Online catalogs of teleseismic events occurring post-1960 within the region 27.0°–37.0°N, 55.0°–65.0°E, report five M w > 7.0 earthquakes, namely, 1968 Dasht-e-Bayaz, 1978 Tabas, 1979 Khuli-Buniabad, 1981 Sirch and 1997 Zirkuh-e-Q’aenat events. We defined four earthquake test episodes, 1968–1978, 1978–1981, 1979–1981, and 1981–1997, with all catalogued intermediate events having magnitudes within 2.0 units that of the final large event. Using the 1968 event as the starting point, we investigated possible increased moderate earthquake activity patterns prior to the large events of 1978, 1981 and 1997 by examining if the cumulative Benioff strain released from such preceding events followed a power law time-to-failure. Our investigation seem to suggest that the 1978, 1981 and 1997 events (i) followed a period of accelerated moderate earthquake activity and (ii) the radius of their optimal critical region, R, scaled with their magnitude, M, according to the scaling law log R ∝ 0.36 M. Our suggestions conform to those proposed by similar investigations in varied seismotectonic regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号