首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil temperature (T s) and its thermal regime are the most important factors in plant growth, biological activities, and water movement in soil. Due to scarcity of the T s data, estimation of soil temperature is an important issue in different fields of sciences. The main objective of the present study is to investigate the accuracy of multivariate adaptive regression splines (MARS) and support vector machine (SVM) methods for estimating the T s. For this aim, the monthly mean data of the T s (at depths of 5, 10, 50, and 100 cm) and meteorological parameters of 30 synoptic stations in Iran were utilized. To develop the MARS and SVM models, various combinations of minimum, maximum, and mean air temperatures (T min, T max, T); actual and maximum possible sunshine duration; sunshine duration ratio (n, N, n/N); actual, net, and extraterrestrial solar radiation data (R s, R n, R a); precipitation (P); relative humidity (RH); wind speed at 2 m height (u 2); and water vapor pressure (Vp) were used as input variables. Three error statistics including root-mean-square-error (RMSE), mean absolute error (MAE), and determination coefficient (R 2) were used to check the performance of MARS and SVM models. The results indicated that the MARS was superior to the SVM at different depths. In the test and validation phases, the most accurate estimations for the MARS were obtained at the depth of 10 cm for T max, T min, T inputs (RMSE = 0.71 °C, MAE = 0.54 °C, and R 2 = 0.995) and for RH, V p, P, and u 2 inputs (RMSE = 0.80 °C, MAE = 0.61 °C, and R 2 = 0.996), respectively.  相似文献   

2.
This study reveals the impacts of climatic variable trends on drought severity in Xinjiang, China. Four drought indices, including the self-calibrating Palmer drought severity index (sc-PDSI), Erinç’s index (I m), Sahin’s index (I sh), and UNEP aridity index (AI), were used to compare drought severity. The ensemble empirical mode decomposition and the modified Mann-Kendall trend test were applied to analyze the nonlinear components and trends of the climatic variable and drought indices. Four and six climatic scenarios were generated in sc-PDSI, I m, I sh, and AI with different combinations of the observed and detrended climatic variables, respectively. In Xinjiang, generally increasing trends in minimal, average, and maximal air temperature (T min, T ave, T max) and precipitation (P) were found, whereas a decreasing trend in wind speed at 2 m height (U 2) was observed. There were significantly increasing trends in all of the four studied drought indices. Drought relief was more obvious in northern Xinjiang than in southern Xinjiang. The strong influences of increased P on drought relief and the weak influences of increased T min, T ave, and T max on drought aggravation were shown by comparing four drought indices under different climate scenarios. Decreased U 2 had a weak influence on drought, as shown by the AI in different climate scenarios. The weak influences of T and U 2 were considered to be masked by the strong influences of P on droughts. Droughts were expected to be more severe if P did not increase, but were likely milder without an increase in air temperature and with a decrease in U 2.  相似文献   

3.
Urbanization has led to a significant urban heat island (UHI) effect in Beijing in recent years. At the same time, air pollution caused by a large number of fine particles significantly influences the atmospheric environment, urban climate, and human health. The distribution of fine particulate matter (PM2.5) concentration and its relationship with the UHI effect in the Beijing area are analyzed based on station-observed hourly data from 2012 to 2016. We conclude that, (1) in the last five years, the surface concentrations of PM2.5 averaged for urban and rural sites in and around Beijing are 63.2 and 40.7 µg m?3, respectively, with significant differences between urban and rural sites (ΔPM2.5) at the seasonal, monthly and daily scales observed; (2) there is a large correlation between ΔPM2.5 and the UHI intensity defined as the differences in the mean (ΔTave), minimum (ΔTmin), and maximum (ΔTmax) temperatures between urban and rural sites. The correlation between ΔPM2.5 and ΔTminTmax) is the highest (lowest); (3) a Granger causality analysis further shows that ΔPM2.5 and ΔTmin are most correlated for a lag of 1–2 days, while the correlation between ΔPM2.5 and ΔTave is lower; there is no causal relationship between ΔPM2.5 and ΔTmax; (4) a case analysis shows that downwards shortwave radiation at the surface decreases with an increase in PM2.5 concentration, leading to a weaker UHI intensity during the daytime. During the night, the outgoing longwave radiation from the surface decreases due to the presence of daytime pollutants, the net effect of which is a slower cooling rate during the night in cities than in the suburbs, leading to a larger ΔTmin.  相似文献   

4.
With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ~ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700?μg/m3 under blowing sand weather, 2000?μg/m3 under sand-dust storm weather, and 400?μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z?=?20713.5?M 0.995 under floating dust weather, Z?=?22988.3?M 1.006 under blowing sand weather, and Z?=?24584.2?M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.  相似文献   

5.
Although Brazil is predominantly a tropical country, frosts are observed with relative high frequency in the Center-Southern states of the country, affecting mainly agriculture, forestry, and human activities. Therefore, information about the frost climatology is of high importance for planning of these activities. Based on that, the aims of the present study were to develop monthly meteorological (F MET) and agronomic (F AGR) frost day models, based on minimum shelter air temperature (T MN), in order to characterize the temporal and spatial frost days variability in Center-Southern Brazil. Daily minimum air temperature data from 244 weather stations distributed across the study area were used, being 195 for developing the models and 49 for validating them. Multivariate regression models were obtained to estimate the monthly T MN, once the frost day models were based on this variable. All T MN regression models were statistically significant (p < 0.001), presenting adjusted R 2 between 0.69 and 0.90. Center-Southern Brazil is mainly hit by frosts from mid-fall (April) to mid-spring (October). The period from November to March is considered as frost-free, being very rare a frost day within that period. Monthly F MET and F AGR presented significant sigmoidal relationships with T MN (p < 0.0001), with adjusted R 2 above of 0.82. The residuals of the frost day models were random, which means that the sigmoidal models performed quite well for interpreting the frost day variability throughout the study area. The highlands of Santa Catarina, Rio Grande do Sul, São Paulo, and Minas Gerais had in average more than 25 and 13 frosts per year, respectively, for F MET and F AGR. The F MET and F AGR maps developed in this study for Center-Southern Brazil is a useful tool for farmers, foresters, and researchers, since they contribute to reduce frost spatial and temporal uncertainty, helping in planning project for strategic purposes. Furthermore, the monthly F MET and F AGR maps for this Brazilian region are the first zoning of these variables for the country.  相似文献   

6.
Methyl halides such as methyl chloride (CH3Cl) are known to be important carriers of halogen from the ocean to the atmosphere, and the halogens they release into the stratosphere by photolysis catalyze ozone depletion. Marine phytoplankton have been reported as a source of CH3Cl, but the effects of environmental temperature on the CH3Cl production by phytoplankton have not been investigated. In this study, we investigated the effects of temperature on the production of CH3Cl in the culture of a marine diatom, Phaeodactylum tricornutum CCMP 630, incubated at 10, 15, 20, 25, and 30 °C. CH3Cl concentrations in cultured samples were determined using purge and trap gas chromatograph–mass spectrometry. Phytoplankton growth was monitored by measuring the chlorophyll a concentrations. CH3Cl production was observed for several weeks at four different temperatures ranging from 10 to 25 °C. The CH3Cl production from P. tricornutum was increased with increasing temperature from 10 to 25 °C, and the maximum production rate for CH3Cl was 0.21~0.26 μmol (g chlorophyll a)?1 d?1 at 25 °C, which was several times higher than that at 10 °C (~0.03 μmol (g chlorophyll a)?1 d?1). The Arrhenius equation was successfully used to characterize the effects of temperature on the production rates of CH3Cl in the culture of P. tricornutum. Our results suggest that water temperature directly affects CH3Cl production derived from P. tricornutum and that water temperature would be a significant factor for estimating the emissions of CH3Cl from marine environments.  相似文献   

7.
Long-term variation of rainfall erosivity in Calabria (Southern Italy)   总被引:1,自引:0,他引:1  
The changes in rainfall erosivity have been investigated using the rainfall erosivity factor (R) proposed for USLE by Wischmeier and Smith (R W-S ) and some simplified indexes (the Fournier index modified by Arnoldus, F, a regional index spatial independent, R Fr , and a regional index spatial dependent, R Fs ) estimated by indirect approaches. The analysis has been carried out over 48 rainfall stations located in Calabria (Southern Italy) using data collected in the period 1936–2012 and divided in three sub-periods. The series of the erosivity indexes and of some precipitation variables have been analyzed for evidence of trends using standard methods. The simplified indexes suggested a general underestimation of the rainfall erosivity with respect to R W-S . The mean underestimation ranged between 23 and 54 % for R Fr and from 10 to 15 % for R Fs . Both the sign and the magnitude of the trends were different for the different stations depending on the variable and sub-period considered. In general, the erosivity increased during the period 1936–1955 (1st sub-period) and during the more recent sub-period (1992–2012, 3rd sub-period), whereas it decreased during 1958–1977 (2nd sub-period). The evidence of trends was generally higher for R W-S than for R Fr and R Fs . Focusing on the most recent sub-period (3rd sub-period), all the variables analyzed showed mainly increasing trends but with different magnitude. More particularly, R W-S showed a mean increment of 29 %; F, R Fr and R Fs increased by 11, 15 and 18 %, respectively; the maximum intensity of 0.5-h precipitation increased by 5 %; and the annual precipitation increased by 22 %. Consequently, it remains difficult to define which precipitation variable plays the dominant role in the temporal variation of rainfall erosivity in the region. However, the overall results suggest that the indexes estimated by indirect procedures (F, R Fr , and R Fs ) should be used with caution for climate change analysis, despite they are used for practical purposes considering they are based on easily available information.  相似文献   

8.
High temperature accompanied with high humidity may result in unbearable and oppressive weather. In this study, future changes of extreme high temperature and heat stress in mainland China are examined based on daily maximum temperature (Tx) and daily maximum wet-bulb globe temperature (Tw). Tw has integrated the effects of both temperature and humidity. Future climate projections are derived from the bias-corrected climate data of five general circulation models under the Representative Concentration Pathways (RCPs) 2.6 and 8.5 scenarios. Changes of hot days and heat waves in July and August in the future (particularly for 2020–50 and 2070–99), relative to the baseline period (1981–2010), are estimated and analyzed. The results show that the future Tx and Tw of entire China will increase by 1.5–5°C on average around 2085 under different RCPs. Future increases in Tx and Tw exhibit high spatial heterogeneity, ranging from 1.2 to 6°C across different regions and RCPs. By around 2085, the mean duration of heat waves will increase by 5 days per annum under RCP8.5. According to Tx, heat waves will mostly occur in Northwest and Southeast China, whereas based on Tw estimates, heat waves will mostly occur over Southeast China and the mean heat wave duration will be much longer than those from Tx. The total extreme hot days (Tx or Tw > 35°C) will increase by 10–30 days. Southeast China will experience the severest heat stress in the near future as extreme high temperature and heat waves will occur more often in this region, which is particularly true when heat waves are assessed based on Tw. In comparison to those purely temperature-based indices, the index Tw provides a new perspective for heat stress assessment in China.  相似文献   

9.
A possibility is studied of extending the range of action of the simple three-parameter formula (ITS-90 scale) proposed in the previous work of the author [2] for the dependence of saturation vapor pressure E on temperature T within the range of 250 to 490 K. The results demonstrated that the dependence ln[E(T)/E(T bas)] = (T - T bas)[A - B(T - T bas) + C(T - T bas)2]/T with four sets of coefficients A, B, and C obtained using one base temperature Tbas equal to the temperature of triple point of water T t = 273.16 K and two additional base values T bas2 = 473.16 K and T bas3 = 623.16 K makes it possible to approximate rather accurately the initial experimental and computed data in the temperature range from the point of homogeneous freezing of 235 K to the critical temperature of 647 K for liquid water and from 193 K to T t for ice. A procedure used for obtaining the inverse function T(E) by solving the third-degree algebraic equation is validated. A hypothesis is proposed for the physical substantiation of additional base points in the form of “a noticeable appearance of dimers at the point T bas2 and their 100% concentration at the temperature T bas3.”  相似文献   

10.
The phenology of many ecological processes including pollination service is modulated by surface air temperature, making them potentially sensitive to climatic change. The Japanese hornfaced bee, Osmia cornifrons (Hymenoptera: Megachilidae), was introduced into the USA in the 1970s and has been used as a key pollinator of spring blooming fruit crops such as apple and blueberry. This study examined the effects of future climate change on three key phenological events of O. cornifrons: date for adult emergence (female and male) in spring, date for completion of egg and larval development, and duration for the development in the Eastern USA. We used daily temperature data obtained from 21 models in Coupled Model Intercomparison Project Phase 5 for 2006–2100 under the two future climate scenarios of Representative Concentration Pathways (RCPs 4.5 and 8.5). We estimated the Julian dates (JDs) of spring emergence and development of O. cornifrons using the phenological parameters derived from temperature-dependent biophysical models. The JDs for the bee emergence and development are projected to be significantly advanced in the Eastern USA under the RCP 4.5 and 8.5 scenarios. The number of days for bee development is projected to be longer in the southern region (+?0.57 days/decade) and shorter in the central (??0.27 days/decade) and northern (??0.65 days/decade) regions of the Eastern USA (all the p values <?0.01). The significantly longer duration of bee development under future climate change could pose a risk to the bee due to the longer period of being exposed to its pests. Implications for management of O. cornifrons population were discussed in this article.  相似文献   

11.
The occurrence of flood and drought frequency is highly correlated with the temporal fluctuations of streamflow series; understanding of these fluctuations is essential for the improved modeling and statistical prediction of extreme changes in river basins. In this study, the complexity of daily streamflow fluctuations was investigated by using multifractal detrended fluctuation analysis (MF-DFA) in a large heterogeneous lake basin, the Poyang Lake basin in China, and the potential impacts of human activities were also explored. Major results indicate that the multifractality of streamflow fluctuations shows significant regional characteristics. In the study catchment, all the daily streamflow series present a strong long-range correlation with Hurst exponents bigger than 0.8. The q-order Hurst exponent h(q) of all the hydrostations can be characterized well by only two parameters: a (0.354 ≤ a ≤ 0.384) and b (0.627 ≤ b ≤ 0.677), with no pronounced differences. Singularity spectrum analysis pointed out that small fluctuations play a dominant role in all daily streamflow series. Our research also revealed that both the correlation properties and the broad probability density function (PDF) of hydrological series can be responsible for the multifractality of streamflow series that depends on watershed areas. In addition, we emphasized the relationship between watershed area and the estimated multifractal parameters, such as the Hurst exponent and fitted parameters a and b from the q-order Hurst exponent h(q). However, the relationship between the width of the singularity spectrum (Δα) and watershed area is not clear. Further investigation revealed that increasing forest coverage and reservoir storage can effectively enhance the persistence of daily streamflow, decrease the hydrological complexity of large fluctuations, and increase the small fluctuations.  相似文献   

12.
Western China experienced an extreme hot summer in 2015, breaking a number of temperature records. The summer mean surface air temperature (SAT) anomaly was twice the interannual variability. The hottest daytime temperature (TXx) and warmest night-time temperature (TNx) were the highest in China since 1964. This extreme hot summer occurred in the context of steadily increasing temperatures in recent decades. We carried out a set of experiments to evaluate the extent to which the changes in sea surface temperature (SST)/sea ice extent (SIE) and anthropogenic forcing drove the severity of the extreme summer of 2015 in western China. Our results indicate that about 65%–72% of the observed changes in the seasonal mean SAT and the daily maximum (Tmax) and daily minimum (Tmin) temperatures over western China resulted from changes in boundary forcings, including the SST/SIE and anthropogenic forcing. For the relative role of individual forcing, the direct impact of changes in anthropogenic forcing explain about 42% of the SAT warming and 60% (40%) of the increase in TNx and Tmin (TXx and Tmax) in the model response. The changes in SST/SIE contributed to the remaining surface warming and the increase in hot extremes, which are mainly the result of changes in the SST over the Pacific Ocean, where a super El Niño event occurred. Our study indicates a prominent role for the direct impact of anthropogenic forcing in the severity of the extreme hot summer in western China in 2015, although the changes in SST/SIE, as well as the internal variability of the atmosphere, also made a contribution.  相似文献   

13.
A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate \(\epsilon \), the length scale of energy-containing eddies \(\mathcal {L}\), a turbulence anisotropy parameter \(\varGamma \), the Richardson number Ri, and the normalized rate of destruction of temperature variance \(\eta _\theta \equiv \epsilon _\theta /\epsilon \). Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin–Obukhov similarity theory, where z is the height above the Earth’s surface, and L is the Obukhov length corresponding to \(\{Ri,\eta _\theta \}\). Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale \(\sim \) 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.  相似文献   

14.
Based on the data of deep-ocean ship observations of temperature T and salinity S, analysis is carried out of the fields of pair correlation coefficients between T and S at different depths as an additional characteristic of water masses in the layer 0–1000 m in the North Atlantic. As a result of analysis, surface, subsurface, and the upper part of North Atlantic intermediate waters are classified according to a degree of correlation between temperature and salinity. The emphasis was given to regions with low correlations, because they indicate the prevalence of the interaction processes that differ most from the typical mixing of two water masses with entirely different characteristics.  相似文献   

15.
We used wind-tunnel experiments to investigate velocity-field adjustment and scalar diffusion behaviour in and above urban canopies located downwind of various roughness elements. Staggered arrays of rectangular blocks of various heights H and plan area ratios λp were used to model the urban canopies. The velocity field in the roughness sublayer (height \({z \lesssim 2H}\)) reached equilibrium at distances proportional to \({\sqrt{L_{\rm c}H}}\) where L c is the canopy-drag length scale determined as a function of λp and the block side length L. A distance of about \({20\sqrt{L_{\rm c}H}}\) was required for adjustment at z = H/2 (in the canopy), and a distance of about \({10\sqrt{L_{\rm c}H}}\) was required at z = 2H (near the top of the roughness sublayer). Diffusion experiments from a ground emission source revealed that differences in upwind roughness conditions had negligible effects on the plume growth near the source (up to a few multiples of L from the source) if the source was located at a fetch F larger than about \({10\sqrt{L_{\rm c}H}}\) from the upwind edge of the canopy. However, at locations farther downwind (more than several multiples of L from the source), upwind conditions had considerable effects on the plume growth. For a representative urban canopy, it was shown that a much larger fetch than required for velocity-field adjustment in the roughness sublayer was necessary to eliminate the effects of upwind conditions on plume widths at 24L downwind from the source.  相似文献   

16.
A new method for calculating evaporation is proposed, using the Penman–Monteith (P-M) model with remote sensing. This paper achieved the effective estimation to daily evapotranspiration in the Ziya river catchment by using the P-M model based on MODIS remote sensing leaf area index and respectively estimated plant transpiration and soil evaporation by using coefficient of soil evaporation. This model divided catchment into seven different sub-regions which are prairie, meadow, grass, shrub, broad-leaved forest, cultivated vegetation, and coniferous forest through thoroughly considering the vegetation diversity. Furthermore, optimizing and calibrating parameters based on each sub-region and analyzing spatio-temporal variation rules of the model main parameters which are coefficient of soil evaporation f and maximum stomatal conductance g sx . The results indicate that f and g sx calibrated by model are basically consistent with measured data and have obvious spatio-temporal distribution characteristics. The monthly average evapotranspiration value of simulation is 37.96 mm/mon which is close to the measured value with 33.66 mm/mon and the relative error of simulation results in each subregion are within 11 %, which illustrates that simulated values and measured values fit well and the precision of model is high. In addition, plant transpiration and soil evaporation account for about 84.64 and 15.36 % respectively in total evapotranspiration, which means the difference between values of them is large. What is more, this model can effectively estimate the green water resources in basin and provide effective technological support for water resources estimation.  相似文献   

17.
The study investigates the reliable computation time (RCT, termed as T c) by applying a double-precision computation of a variable parameters logistic map (VPLM). Firstly, by using the proposed method, we obtain the reliable solutions for the logistic map. Secondly, we construct 10,000 samples of reliable experiments from a time-dependent non-stationary parameters VPLM and then calculate the mean T c. The results indicate that, for each different initial value, the T cs of the VPLM are generally different. However, the mean T c trends to a constant value when the sample number is large enough. The maximum, minimum, and probable distribution functions of T c are also obtained, which can help us to identify the robustness of applying a nonlinear time series theory to forecasting by using the VPLM output. In addition, the T c of the fixed parameter experiments of the logistic map is obtained, and the results suggest that this T c matches the theoretical formula-predicted value.  相似文献   

18.
As photosynthetically active radiation (PAR) variability and PAR estimating methods play an important role in climate change and ecological process research, PAR variation trends and broadband global solar radiation (R s ) ratios (PAR/R s ) in the North China Plain (NCP) are examined using in situ PAR and R s observed data for 2005 to 2011. The annual average PAR value found in the NCP is 22.9 mol m?2 d?1. The highest and lowest values were recorded at Changwu and Luancheng sites, respectively. The highest PAR/R s value was found in Jiaozhouwan due to large water vapor volumes present in this area. PAR/R s levels have increased in the NCP due to a decrease in fine aerosols and increase in water vapor concentration. From these analysis results, a parameterization model that can be applied to all sky conditions was checked. Empirical estimation model comparisons for obtaining PAR values indicate that model was least accurate when R s was used independently. When the model included R s, the clearness index (K s) and the solar zenith angle, the model estimated PAR values with acceptable accuracy. A parameterization model was constructed by considering K s and attenuation factors of PAR under clear weather conditions (ρ clear). The improved parameterization model more accurately predicts values for local sites and for various observation sites.  相似文献   

19.
Results of field measurements of the swell-induced undulation of the wind speed taken from a Black Sea platform are presented. The wind speed and its fluctuations were measured at several heights between 1.3 and 21 m above the mean sea level under various wind and swell conditions. Parameters of the swell-induced undulations were derived from cross spectra of the wind-speed fluctuations and the sea-surface displacement. As found, the phase and the amplitude of the wind speed undulation in the layer from k p z = 0.1 to k p z = 3 (k p is the swell wavenumber) are in good agreement with the theory of inviscid shear flow over a wavy surface. The main feature of the vertical profile of the swell-induced undulation is the exponential attenuation of its amplitude with height typical for the potential flow over the fast running waves. At the lowest levels the potential undulations are significantly distorted by the wind-speed variations caused by the vertical displacements of the shear airflow relative to a fixed sensor. No direct impact of swell on the mean properties of the turbulent boundary layer at k p z > 0.1 is revealed. In particular, the mean wind-speed profile and spectra of the horizontal velocity in the inertial subrange obey Monin-Obukhov similarity theory.  相似文献   

20.
A new instrument (LOPAP: LOng Path liquid Absorption Photometer) for the sensitive detection of nitric acid (HNO3) in the atmosphere is described. HNO3 is sampled in a temperature controlled stripping coil mounted in an external sampling module to minimize sampling artefacts in sampling lines. After conversion into a strongly absorbing dye, HNO3 is detected in long path absorption in special Teflon® AF 2400 tubes used as liquid core wave guides. For the correction of some interferences, due to for example HONO and particle nitrate, two channels are used in series. The interferences from several potential interfering compounds including particle nitrate were quantified in the laboratory and in a large outdoor simulation chamber. With the exception of the interference caused by N2O5, which is quantitatively measured by the instrument, all tested interferences can be corrected under atmospheric conditions. Thus, in the instrument only the sum of N(V) from HNO3 and N2O5 is determined, which is expected to be a common problem of wet chemical HNO3 instruments. The instrument has a detection limit of 5–30 pptv for a time response of 6–2 min, respectively and was validated against the FTIR technique in a large outdoor simulation chamber. In addition, the applicability of the instrument was demonstrated in a field campaign.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号