首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. I. PARK  V. P. SINGH 《水文研究》1996,10(9):1155-1171
An investigation into rainfall variability in time and space in the Nam River dam basin of Korea is made with the use of the coefficient of variation and the correlation coefficient. The Nam River dam basin is a small mountainous watershed where wind direction and orography are the dominant influences on the pattern and distribution of rainfall. Rainfall distribution was found to vary with elevation, position, wind direction and distance from a reference station. The results of this study can be used in the design of rain gauge network, hydrological forecasting and for other applications in the Nam River dam basin.  相似文献   

2.
The main objective of this paper is to estimate the error in the rainfall derived from a polarimetric X-band radar, by comparison with the corresponding estimate of a rain gauge network. However the present analysis also considers the errors inherent to rain gauge, in particular instrumental and representativeness errors. A special emphasis is addressed to the spatial variability of the rainfall in order to appreciate the representativeness error of the rain gauge with respect to the 1 km square average, typical of the radar derived estimate. For this purpose the spatial correlation function of the rainfall is analyzed.  相似文献   

3.
Rainfall network design using kriging and entropy   总被引:4,自引:0,他引:4  
The spatial distribution of rainfall is related to meteorological and topographical factors. An understanding of the weather and topography is required to select the locations of the rain gauge stations in the catchment to obtain the optimum information. In theory, a well‐designed rainfall network can accurately represent and provide the needed information of rainfall in the catchment. However, the available rainfall data are rarely adequate in the mountainous area of Taiwan. In order to provide enough rainfall data to assure the success of water projects, the rainfall network based on the existing rain gauge stations has to be redesigned. A method composed of kriging and entropy that can determine the optimum number and spatial distribution of rain gauge stations in catchments is proposed. Kriging as an interpolator, which performs linear averaging to reconstruct the rainfall over the catchment on the basis of the observed rainfall, is used to compute the spatial variations of rainfall. Thus, the rainfall data at the locations of the candidate rain gauge stations can be reconstructed. The information entropy reveals the rainfall information of the each rain gauge station in the catchment. By calculating the joint entropy and the transmitted information, the candidate rain gauge stations are prioritized. In addition, the saturation of rainfall information can be used to add or remove the rain gauge stations. Thus, the optimum spatial distribution and the minimum number of rain gauge stations in the network can be determined. The catchment of the Shimen Reservoir in Taiwan is used to illustrate the method. The result shows that only seven rain gauge stations are needed to provide the necessary information. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
This paper provides a comparison of gauge and radar precipitation data sources during an extreme hydrological event. November–December 2006 was selected as a time period of intense rainfall and large river flows for the Severn Uplands, an upland catchment in the United Kingdom. A comparison between gauge and radar precipitation time‐series records for the event indicated discrepancies between data sources, particularly in areas of higher elevation. The HEC‐HMS rainfall‐runoff model was selected to assess the accuracy of the precipitation to simulate river flows for the extreme event. Gauge, radar and gauge‐corrected radar rainfall were used as model inputs. Universal cokriging was used to geostatistically interpolate gauge data with radar and elevation data as covariates. This interpolated layer was used to calculate the mean‐field bias and correct the radar composites. Results indicated that gauge‐ and gauge‐corrected radar‐driven models replicated flows adequately for the extreme event. Gauge‐corrected flow predictions produced an increase in flow prediction accuracy when compared with the raw radar, yet predictions were comparative in accuracy to those using the interpolated gauge network. Subsequent investigations suggested this was due to an adequate spatial and temporal resolution of the precipitation gauge network within the Severn Uplands. Results suggested that the six rain gauges could adequately represent precipitation variability of the Severn Uplands to predict flows at an approximately equal accuracy to that obtained by radar. Temporally, radar produced an increase in flow prediction accuracy in mountainous reaches once the gauge time step was in excessive of an hourly interval. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Rain‐gauge networks are often used to provide estimates of area average rainfall or point rainfalls at ungauged locations. The level of accuracy a network can achieve depends on the total number and locations of gauges in the network. A geostatistical approach for evaluation and augmentation of an existing rain‐gauge network is proposed in this study. Through variogram analysis, hourly rainfalls are shown to have higher spatial variability than annual rainfalls, with hourly Mei‐Yu rainfalls having the highest spatial variability. A criterion using ordinary kriging variance is proposed to assess the accuracy of rainfall estimation using the acceptance probability defined as the probability that estimation error falls within a desired range. Based on the criterion, the percentage of the total area with acceptable accuracy Ap under certain network configuration can be calculated. A sequential algorithm is also proposed to prioritize rain‐gauges of the existing network, identify the base network, and relocate non‐base gauges. Percentage of the total area with acceptable accuracy is mostly contributed by the base network. In contrast, non‐base gauges provide little contribution to Ap and are subject to removal or relocation. Using a case study in northern Taiwan, the proposed approach demonstrates that the identified base network which comprises of approximately two‐thirds of the total rain‐gauges can achieve almost the same level of performance (expressed in terms of percentage of the total area with acceptable accuracy) as the complete network for hourly Mei‐Yu rainfall estimation. The percentage of area with acceptable accuracy can be raised from 56% to 88% using an augmented network. A threshold value for the percentage of area with acceptable accuracy is also recommended to help determine the number of non‐base gauges which need to be relocated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Rainfall data are a fundamental input for effective planning, designing and operating of water resources projects. A well‐designed rain gauge network is capable of providing accurate estimates of necessary areal average and/or point rainfall estimates at any desired ungauged location in a catchment. Increasing network density with additional rain gauge stations has been the main underlying criterion in the past to reduce error and uncertainty in rainfall estimates. However, installing and operation of additional stations in a network involves large cost and manpower. Hence, the objective of this study is to design an optimal rain gauge network in the Middle Yarra River catchment in Victoria, Australia. The optimal positioning of additional stations as well as optimally relocating of existing redundant stations using the kriging‐based geostatistical approach was undertaken in this study. Reduction of kriging error was considered as an indicator for optimal spatial positioning of the stations. Daily rainfall records of 1997 (an El Niño year) and 2010 (a La Niña year) were used for the analysis. Ordinary kriging was applied for rainfall data interpolation to estimate the kriging error for the network. The results indicate that significant reduction in the kriging error can be achieved by the optimal spatial positioning of the additional as well as redundant stations. Thus, the obtained optimal rain gauge network is expected to be appropriate for providing high quality rainfall estimates over the catchment. The concept proposed in this study for optimal rain gauge network design through combined use of additional and redundant stations together is equally applicable to any other catchment. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

7.
This paper presents the results of an analysis of the daily rainfall of 329 rain gauge stations data over Maharashtra, a state in India, during the summer monsoon season, June to September, for the 11?year period from 1998 to 2008. Mesoscale analysis of the daily rainfall data is performed by converting the station rainfall data into gridded format with 15?km resolution. Various statistics have been carried out over 35 districts of four meteorological subdivisions of the Maharashtra state to understand the spatio-temporal variability of rainfall. Variation of monthly mean rainfall for the four monsoon months and a season as whole is analyzed for different rainfall statistics such as mean rainfall, rainfall variability, rainy days, maximum daily rainfall and classification of rainy days. Seasonal rainfall is maximum over the Konkan region followed by the eastern Vidharbha region whereas Madhya Maharashtra as a rain shadow region receives less rainfall. The rainfall is highly variable over all of Maharashtra with the coefficient of variability of the daily rainfall varying between 100 and 300%. Seasonal distribution of the number of rainy days shows 90–100 over southern Konkan, 80–90 over northern Konkan, 50–60 over eastern Vidharbha, and the southeast Madhya Maharashtra has the lowest number of about 15–20 rainy days. The highest values of maximum daily rainfall are located over the Sindhudurg, Ratnagiri, Raigadh, Mumbai and Thane districts of the Konkan region followed by that over eastern Vidharbha. The rainfall data have been divided into three categories (moderate rainfall, heavy rainfall and extreme heavy rainfall) based upon seven categories used by the India Meteorological Department. Heavy rainfall zones lie over the southern Konkan region, whereas extreme heavy rainfalls occur over northern latitudes. The data used in this study is having high resolution and district wise analysis over Maharashtra state is extremely beneficial.  相似文献   

8.
Extreme rainfall events are of particular importance due to their severe impacts on the economy, the environment and the society. Characterization and quantification of extremes and their spatial dependence structure may lead to a better understanding of extreme events. An important concept in statistical modeling is the tail dependence coefficient (TDC) that describes the degree of association between concurrent rainfall extremes at different locations. Accurate knowledge of the spatial characteristics of the TDC can help improve on the existing models of the occurrence probability of extreme storms. In this study, efficient estimation of the TDC in rainfall is investigated using a dense network of rain gauges located in south Louisiana, USA. The inter-gauge distances in this network range from about 1 km to 9 km. Four different nonparametric TDC estimators are implemented on samples of the rain gauge data and their advantages and disadvantages are discussed. Three averaging time-scales are considered: 1 h, 2 h and 3 h. The results indicate that a significant tail dependency may exist that cannot be ignored for realistic modeling of multivariate rainfall fields. Presence of a strong dependence among extremes contradicts with the assumption of joint normality, commonly used in hydrologic applications.  相似文献   

9.
The dependence between variables plays a central role in multivariate extremes. In this paper, spatial dependence of Madeira Island's rainfall data is addressed within an extreme value copula approach through an analysis of maximum annual data. The impact of altitude, slope orientation, distance between rain gauge stations and distance from the stations to the sea are investigated for two different periods of time. The results obtained highlight the influence of the island's complex topography on the spatial distribution of extreme rainfall in Madeira Island.  相似文献   

10.
11.
Intense Mediterranean precipitation can generate devastating flash floods. A better understanding of the spatial structure of intense rainfall is critical to better identify catchments that will produce strong hydrological responses. We focus on two intense Mediterranean rain events of different types that occured in 2002. Radar and rain gauge measurements are combined to have a data set with a high spatial (1 × 1 km2) and temporal (5 min) resolution. Two thresholds are determined using the quantiles of the rain rate values, corresponding to the precipitating system at large and to the intense rain cells. A method based on indicator variograms associated with the thresholds is proposed in order to automatically quantify the spatial structure at each time step during the entire rain events. Therefore, its variability within intense rain events can be investigated. The spatial structure is found to be homogeneous over periods that can be related to the dynamics of the events. Moreover, a decreasing time resolution (i.e., increasing accumulation period) of the rain rate data will stretch the spatial structure because of the advection of rain cells by the wind. These quantitative characteristics of the spatial structure of intense Mediterranean rainfall will be useful to improve our understanding of the dynamics of flash floods.  相似文献   

12.
In this study, change in rainfall, temperature and river discharge are analysed over the last three decades in Central Vietnam. Trends and rainfall indices are evaluated using non‐parametric tests at different temporal levels. To overcome the sparse locally available network, the high resolution APHRODITE gridded dataset is used in addition to the existing rain gauges. Finally, existing linkages between discharge changes and trends in rainfall and temperature are explored. Results are indicative of an intensification of rainfall (+15%/decade), with more extreme and longer events. A significant increase in winter rainfall and a decrease in consecutive dry days provides strong evidence for a lengthening wet season in Central Vietnam. In addition, trends based on APHRODITE suggest a strong orographic signal in winter and annual trends. These results underline the local variability in the impacts of climatic change at the global scale. Consequently, it is important that change detection investigations are conducted at the local scale. A very weak signal is detected in the trend of minimum temperature (+0.2°C/decade). River discharge trends show an increase in mean discharge (31 to 35%/decade) over the last decades. Between 54 and 74% of this increase is explained by the increase in precipitation. The maximum discharge also responds significantly to precipitation changes leading to a lengthened wet season and an increase in extreme rainfall events. Such trends can be linked with a likely increase in floods in Central Vietnam, which is important for future adaptation planning and management and flood preparedness in the region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Soil erosion by water is one of the main environmental concerns in the drought‐prone Eastern Africa region. Understanding factors such as rainfall and erosivity is therefore of utmost importance for soil erosion risk assessment and soil and water conservation planning. In this study, we evaluated the spatial distribution and temporal trends of rainfall and erosivity for the Eastern Africa region during the period 1981–2016. The precipitation concentration index, seasonality index, and modified Fournier index have been analysed using 5 × 5‐km resolution multisource rainfall product (Climate Hazards Group InfraRed Precipitation with Stations). The mean annual rainfall of the region was 810 mm ranging from less than 300 mm in the lowland areas to over 1,200 mm in the highlands being influenced by orography of the Eastern Africa region. The precipitation concentration index and seasonality index revealed a spatial pattern of rainfall seasonality dependent on latitude, with a more pronounced seasonality as we go far from the equator. The modified Fournier index showed high spatial variability with about 55% of the region subject to high to very high rainfall erosivity. The mean annual R‐factor in the study region was calculated at 3,246 ± 1,895 MJ mm ha?1 h?1 yr?1, implying a potentially high water erosion risk in the region. Moreover, both increasing and decreasing trends of annual rainfall and erosivity were observed but spatial variability of these trends was high. This study offers useful information for better soil erosion prediction as well as can support policy development to achieve sustainable regional environmental planning and management of soil and water resources.  相似文献   

14.
Rainfall is a phenomenon difficult to model and predict, for the strong spatial and temporal heterogeneity and the presence of many zero values. We deal with hourly rainfall data provided by rain gauges, sparsely distributed on the ground, and radar data available on a fine grid of pixels. Radar data overcome the problem of sparseness of the rain gauge network, but are not reliable for the assessment of rain amounts. In this work we investigate how to calibrate radar measurements via rain gauge data and make spatial predictions for hourly rainfall, by means of Monte Carlo Markov Chain algorithms in a Bayesian hierarchical framework. We use zero-inflated distributions for taking zero-measurements into account. Several models are compared both in terms of data fitting and predictive performances on a set of validation sites. Finally, rainfall fields are reconstructed and standard error estimates at each prediction site are shown via easy-to-read spatial maps.  相似文献   

15.
Despite the importance of mountain ranges as water providers, knowledge of their climate variability is still limited, mostly due to a combination of data scarcity and heterogeneous orography. The tropical Andes share many of the main features of mountain ranges in general, and are subject to several climatic influences that have an effect on rainfall variability. Although studies have addressed the large-scale variation, the basin scale has received little attention. Thus, the purpose of this study was to obtain a better understanding of rainfall variability in the tropical Andes at the basin scal, utilizing the Paute River basin of southern Ecuador as a case study. Analysis of 23 rainfall stations revealed a high spatial variability in terms of: (i) large variations of mean annual precipitation in the range 660–3400 mm; (ii) the presence of a non-monotonic relation between annual precipitation and elevation; and (iii) the existence of four, sometimes contrasting, rainfall regimes. Data from seven stations for the period 1964–1998 was used to study seasonality and trends in annual, seasonal and monthly precipitation. Seasonality is less pronounced at higher elevations, confirming that in the páramo region, the main water source for Andean basins, rainfall is well distributed year round. Additionally, during the period of record, no station has experienced extreme concentrations of annual rainfall during the wet season, which supports the concept of mountains as reliable water providers. Although no regional or basin-wide trends are found for annual precipitation, positive (negative) trends during the wet (dry) season found at four stations raises the likelihood of both water shortages and the risk of precipitation-triggered disasters. The study demonstrates how variable the precipitation patterns of the Andean mountain range are, and illustrates the need for improved monitoring. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
There is a significant spatial sampling mismatch between radar and rain gauge data. The use of rain gauge data to estimate radar-rainfall error variance requires partitioning of the variance of the radar and rain gauge difference to account for the sampling mismatch. A key assumption in the literature pertaining to the error variance separation method used to partition the variance is that the covariance between radar-rainfall error and the error of rain gauges in representing radar sampling domain is negligible. Our study presents the results of an extensive test of this assumption. The test is based on empirical data and covers temporal scales ranging from 0.25 to 24 h and spatial scales ranging from 1 to 32 km. We used a two-year data set from two high quality and high density rain gauge networks in Oklahoma and excluded the winter months. The results obtained using a resampling procedure show that covariance can be considerable at large scales due to the significant variability. As the variability of the covariance rapidly increases with larger spatial and shorter temporal scales, applications of the error variance separation method at those scales require more caution. The variability of the covariance and one of its constituting variables, the variance ratio of radar and gauge errors, shows simple scaling behavior well characterized by a power-law.  相似文献   

17.
Rainfall data in continuous space provide an essential input for most hydrological and water resources planning studies. Spatial distribution of rainfall is usually estimated using ground‐based point rainfall data from sparsely positioned rain‐gauge stations in a rain‐gauge network. Kriging has become a widely used interpolation method to estimate the spatial distribution of climate variables including rainfall. The objective of this study is to evaluate three geostatistical (ordinary kriging [OK], ordinary cokriging [OCK], kriging with an external drift [KED]), and two deterministic (inverse distance weighting, radial basis function) interpolation methods for enhanced spatial interpolation of monthly rainfall in the Middle Yarra River catchment and the Ovens River catchment in Victoria, Australia. Historical rainfall records from existing rain‐gauge stations of the catchments during 1980–2012 period are used for the analysis. A digital elevation model of each catchment is used as the supplementary information in addition to rainfall for the OCK and kriging with an external drift methods. The prediction performance of the adopted interpolation methods is assessed through cross‐validation. Results indicate that the geostatistical methods outperform the deterministic methods for spatial interpolation of rainfall. Results also indicate that among the geostatistical methods, the OCK method is found to be the best interpolator for estimating spatial rainfall distribution in both the catchments with the lowest prediction error between the observed and estimated monthly rainfall. Thus, this study demonstrates that the use of elevation as an auxiliary variable in addition to rainfall data in the geostatistical framework can significantly enhance the estimation of rainfall over a catchment.  相似文献   

18.
Weather radar systems provide detailed information on spatial rainfall patterns known to play a significant role in runoff generation processes. In the current study, we present an innovative approach to exploit spatial rainfall information of air mass thunderstorms and link it with a watershed hydrological model. Observed radar data are decomposed into sets of rain cells conceptualized as circular Gaussian elements and the associated rain cell parameters, namely, location, maximal intensity and decay factor, are input into a hydrological model. Rain cells were retrieved from radar data for several thunderstorms over southern Arizona. Spatial characteristics of the resulting rain fields were evaluated using data from a dense rain gauge network. For an extreme case study in a semi-arid watershed, rain cells were derived and fed as input into a hydrological model to compute runoff response. A major factor in this event was found to be a single intense rain cell (out of the five cells decomposed from the storm). The path of this cell near watershed tributaries and toward the outlet enhanced generation of high flow. Furthermore, sensitivity analysis to cell characteristics indicated that peak discharge could be a factor of two higher if the cell was initiated just a few kilometers aside.  相似文献   

19.
This study quantifies the influence of rainfall on surface evaporation in the Sahel. A numerical model of the surface is used to extend the observations taken during the HAPEX–Sahel project, and is forced by 2 years of rain‐gauge data. The model is applied to the Southern Super Site (SSS), which covers an area of less than 100 km2. The effects of rainfall variability (spatial and temporal) on soil moisture, vegetation growth and evaporation are explored. Contrasting rainfall conditions between the two years produce observed differences in the timing of the seasonal growth cycle. This correlates well with modelled root‐zone moisture deficits, and exerts a modest influence on transpiration rates. The evolution of surface evaporation is dominated, however, by the bare soil contribution in the day or two after a storm. This component also exerts a strong influence on the spatial variability of fluxes across the SSS, particularly when rain falls only in part of the area. In these cases, differences in evaporation between recently wetted and dry areas can reach 3\5 mm day−1. Observations indicate that during a period of persistent rainfall gradients across the SSS, the lower atmosphere maintained a ‘memory’ of past rainfall patterns through humidity contrasts. These were the result of gradients in surface soil moisture, and therefore evaporation. The model results therefore support the possibility of a positive surface feedback mechanism affecting rainfall patterns in the region. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Limited availability of surface‐based rainfall observations constrains the evaluation of satellite rainfall products over many regions. Observations are also often not available at time scales to allow evaluation of satellite products at their finest resolutions. In the present study, we utilized a 3‐month rainfall data set from an experimental network of eight automatic gauges in Gilgel Abbay watershed in Ethiopia to evaluate the 1‐hourly, 8 × 8‐km Climate Prediction Center morphing technique (CMORPH) rainfall product. The watershed is situated in the Lake Tana basin which is the source of the Blue Nile River. We applied a suite of statistical metrics that included mean difference, bias, standard deviation of differences and measures of association. Our results indicate that the accuracy of the CMORPH product shows a significant variation across the basin area. Its estimates are mostly within ±10 mm h?1 of the gauge rainfall observations; however, the product does not satisfactorily capture the rainfall temporal variability and is poorly correlated (<0.27) to gauge observations. Its poor rain detection capability led to significant underestimation of the seasonal rainfall depth (total bias reaches up to ?52%) with large amounts of hit rain bias as well as missed rain and false rain biases. In the future refinement of CMORPH algorithm, more attention should be given to reducing missed rain bias over the mountains of Gilgel Abbay, whereas equal attention should be given to hit, missed rain and false rain biases over other parts of the watershed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号