首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Municipalities and agencies use green infrastructure to combat pollution and hydrological impacts (e.g., flooding) related to excess stormwater. Bioretention cells are one type of infiltration green infrastructure intervention that infiltrate and redistribute otherwise uncontrolled stormwater volume. However, the effects of these installations on the rest of the local water cycle is understudied; in particular, impacts on stormwater return flows and groundwater levels are not fully understood. In this study, full water cycle monitoring data were used to construct and calibrate a two‐dimensional Richards equation model (HYDRUS‐2D/3D) detailing hydrological implications of an unlined bioretention cell (Cleveland, Ohio) that accepts direct runoff from surrounding impervious surfaces. Using both preinstallation and postinstallation data, the model was used to (a) establish a mass balance to determine reduction in stormwater return flow, (b) evaluate green infrastructure effects on subsurface water dynamics, and (c) determine model sensitivity to measured soil properties. Comparisons of modelled versus observed data indicated that the model captured many hydrological aspects of the bioretention cell, including subsurface storage and transient groundwater mounding. Model outputs suggested that the bioretention cell reduced stormwater return flows into the local sewer collection system, though the extent of this benefit was attenuated during high inflow events that may have exhausted detention capacity. The model also demonstrated how, prior to bioretention cell installation, surface and subsurface hydrology were largely decoupled, whereas after installation, exfiltration from the bioretention cell activated a new groundwater dynamic. Still, the extent of groundwater mounding from the cell was limited in spatial extent and did not threaten other subsurface infrastructure. Finally, the sensitivity analysis demonstrated that the overall hydrological response was regulated by the hydraulics of the bioretention cell fill material, which controlled water entry into the system, and by the water retention parameters of the native soil, which controlled connectivity between the surface and groundwater.  相似文献   

2.
Bioretention flow-through planters manage stormwater with smaller space requirements or structural constraints associated with other forms of green infrastructure. This project monitored the hydrology of four bioretention planters at Stevens Institute of Technology to evaluate the system's ability to delay runoff and fully capture small rain events. The water depth in the outflow and the volumetric water content near the inflow were measured continuously over 15 months. Rainfall characteristics were documented from an on-site rain gauge. This monitoring determined the time from the start of a rain event to the onset of outflow from each planter, which was defined as the lag. The initial moisture deficit (difference between pre-event volumetric water content and maximum measured volumetric water content), approximate runoff volume, and approximate runoff volume in the first half hour were analysed to determine their effect on runoff capture and lag. During the monitoring period, 38% of observations did not produce measurable outflow. Logistic regression determined that the initial moisture deficit and approximate runoff volume were statistically significant in contributing to a fully captured storm. Despite the large hydraulic loading rate and concrete bottom, the planters demonstrate effective discharge lag, ranging from 5 to 1,841 min with a median of 77.5 min. Volumetric water content of the media and inlet runoff volume in the first half hour were significant in modelling the lag duration. These results represent a combination of controllable and uncontrollable aspects of green infrastructure: media design and rainfall.  相似文献   

3.
Using water budget data from published literature, we demonstrate how hydrologic processes govern the function of various stormwater infrastructure technologies. Hydrologic observations are displayed on a Water Budget Triangle, a ternary plot tool developed to visualize simplified water budgets, enabling side‐by‐side comparison of green and grey approaches to stormwater management. The tool indicates ranges of hydrologic function for green roofs, constructed wetlands, cisterns, bioretention, and other stormwater control management structures. Water budgets are plotted for several example systems to provide insight on structural and environmental design factors, and seasonal variation in hydrologic processes of stormwater management systems. Previously published water budgets and models are used to suggest appropriate operational standards for several green and grey stormwater control structures and compare between conventional and low‐impact development approaches. We compare models, characterize and quantify water budgets and expected ranges for green and grey infrastructure systems, and demonstrate how the Water Budget Triangle tool may help users to develop a data‐driven approach for understanding design and retrofit of green stormwater infrastructure.  相似文献   

4.
Land cover changes associated with urbanization have negative effects on downstream ecosystems. Contemporary urban development attempts to mitigate these effects by designing stormwater infrastructure to mimic predevelopment hydrology, but their performance is highly variable. This study used in situ monitoring of recently built neighbourhoods to evaluate the catchment‐scale effectiveness of landscape decentralized stormwater control measures (SCMs) in the form of street connected vegetated swales for reducing runoff volumes and flow rates relative to curb‐and‐gutter infrastructure. Effectiveness of the SCMs was quantified by monitoring runoff for 8 months at the outlets of 4 suburban catchments (0.76–5.25 ha) in Maryland, USA. Three “grey” catchments installed curb‐and‐gutter stormwater conveyances, whereas the fourth “green” catchment built parcel‐level vegetated swales. The catchment with decentralized SCMs reduced runoff, runoff ratio, and peak runoff compared with the grey infrastructure catchments. In addition, the green catchment delayed runoff, resulting in longer precipitation–runoff lag times. Runoff ratios across the monitoring period were 0.13 at the green catchment and 0.37, 0.35, and 0.18 at the 3 grey catchments. Runoff only commenced after 6 mm of precipitation at the decentralized SCM catchment, whereas runoff occurred even during the smallest events at the grey catchments. However, as precipitation magnitudes reached 20 mm, the green catchment runoff characteristics were similar to those at the grey catchments, which made up 37% of the total precipitation in only 10 of 72 events. Therefore, volume‐based reduction goals for stormwater using decentralized SCMs such as vegetated swales require additional redundant SCMs in a treatment train as source control and/or end‐of‐pipe detention to capture a larger fraction of runoff and more effectively mimic predevelopment hydrology for the relatively rare but larger precipitation events.  相似文献   

5.
The processes that control run‐off quantity and quality in urban watersheds are complex and not well understood. Although impervious surface coverage has traditionally been used to examine altered hydrologic response in urban watersheds, several studies suggest that other elements of the urban landscape, particularly those associated with urban infrastructure and the drainage system, play an equally important role. The relative importance of impervious surfaces, stormwater ponds, expansion of the drainage network, and drainage network structures in controlling hydrologic response was examined in the subwatersheds of the Kromma Kill, an urban watershed located in Albany County, NY. In this study, geographic information systems was used to compute geospatial land surface and drainage network properties of 5 Kromma Kill subwatersheds. In these same subwatersheds, water quantity (rainfall and run‐off) and quality (macroinvertebrates, nitrate, total nitrogen, dissolved oxygen, total dissolved solids, and nonpurgable organic carbon) parameters were measured. Strong and significant correlations were identified between land surface and drainage network properties and field observations. Causal relationships were then tested using the Environmental Protection Agency's Stormwater Management Model. Field and model analyses suggest that whereas percent imperviousness is a dominant control on water quality, drainage density and slope are equally important. However, for water quantity, whereas imperviousness is positively correlated with increased run‐off volumes, drainage network properties and slope are the dominant controls on run‐off volumes. Results have important implications for stormwater management plans, especially those aimed at reducing the effective impervious surface coverage of urban watersheds. Reducing the percentage of effective imperviousness in a watershed is not a “one size fits all” solution and can help to meet some management objectives, such as reducing nitrogen concentrations and improving water quality, but may not serve as the most effective, and therefore economical, solution for every management objective including reducing run‐off volumes.  相似文献   

6.
Deleterious effects of urban stormwater are widely recognized. In several countries, regulations have been put into place to improve the conditions of receiving water bodies, but planning and engineering of stormwater control is typically carried out at smaller scales. Quantifying cumulative effectiveness of many stormwater control measures on a watershed scale is critical to understanding how small‐scale practices translate to urban river health. We review 100 empirical and modelling studies of stormwater management effectiveness at the watershed scale in diverse physiographic settings. Effects of networks with stormwater control measures (SCMs) that promote infiltration and harvest have been more intensively studied than have detention‐based SCM networks. Studies of peak flows and flow volumes are common, whereas baseflow, groundwater recharge, and evapotranspiration have received comparatively little attention. Export of nutrients and suspended sediments have been the primary water quality focus in the United States, whereas metals, particularly those associated with sediments, have received greater attention in Europe and Australia. Often, quantifying cumulative effects of stormwater management is complicated by needing to separate its signal from the signal of urbanization itself, innate watershed characteristics that lead to a range of hydrologic and water quality responses, and the varying functions of multiple types of SCMs. Biases in geographic distribution of study areas, and size and impervious surface cover of watersheds studied also limit our understanding of responses. We propose hysteretic trajectories for how watershed function responds to increasing imperviousness and stormwater management. Even where impervious area is treated with SCMs, watershed function may not be restored to its predevelopment condition because of the lack of treatment of all stormwater generated from impervious surfaces; non‐additive effects of individual SCMs; and persistence of urban effects beyond impervious surfaces. In most cases, pollutant load decreases largely result from run‐off reductions rather than lowered solute or particulate concentrations. Understanding interactions between natural and built landscapes, including stormwater management strategies, is critical for successfully managing detrimental impacts of stormwater at the watershed scale.  相似文献   

7.
Permeable pavements are implemented to provide at-source treatment of urban stormwater runoff while supporting vehicular and pedestrian use. Studies on these systems have mainly focused on those treating only direct rainfall and installed atop well-drained soils which typically provide substantial hydrologic mitigation through exfiltration that may not be representative of more hydrologically taxing conditions. A single lane parking area retrofitted with permeable interlocking concrete pavement in Vermilion, OH, USA was monitored over a 15-month period to quantify its hydrologic performance under such conditions. The 470 m2 permeable pavement was underlain by silt loam soils and a shallow bedrock layer and treated run-on from the adjacent 324 m2 asphalt drive lane. Observed data were compared to a calibrated SWMM model developed to simulate the pre-retrofit conditions of the site (i.e., a completely impervious parking lot). Cumulative runoff volumes were reduced by 43% across all events in the monitoring period compared to a fully impervious parking lot. While median peak flows were reduced by 75%, substantial mitigation was limited to smaller, lower intensity events with longer antecedent dry periods (i.e., non-flood producing events). The permeable pavement significantly delayed the occurrence of peak flows from the site following peak rainfall intensity by a median 29 min. Results from this study demonstrate that permeable pavements which receive run-on from adjacent imperious cover and are installed atop poorly drained soils can significantly reduce runoff volumes and peak flow rates and delay the occurrence of peak discharge. The modelling approach implemented can provide a better estimation of diffuse inflows to green infrastructure stormwater controls and aid in refining design features which enhance the hydrologic performance in systems underlain by poorly drained soils.  相似文献   

8.
To mitigate the impacts of impervious surfaces in urban areas, structures such as bioretention systems and permeable pavements have been installed to enhance infiltration in many countries. However, relatively little knowledge is available regarding the performance of such infiltration‐based structures in humid tropical and highly urbanized areas. This study investigates the feasibility of enhancing the infiltration of stormwater in tropical urbanized areas using Singapore as a case study. It first shows that the rainfall depth and intensity are both high, but the time interval between consecutive rainfall event is long in Singapore. It then numerically simulates single‐event local infiltration and finds that the fraction of infiltrated rainfall is actually high. It finally performs catchment‐scale simulations and finds that bioretention systems can enhance infiltration and groundwater recharge particularly during wet periods. However, local mounding of groundwater can be significant and can hinder the performance of those structures. Furthermore, with 5% of catchment area being converted to such structures, the infiltration of the entire catchment is enhanced but still not yet up to the natural level. To increase the overall effectiveness, future studies can look into bioretention systems with underdrain systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Sustainable strategies such as green roofs have been implemented as stormwater management tools to mitigate disturbance of the hydrologic cycle resulting from urbanization. Green roofs, also referred to as vegetated roofs, can improve the urban landscape by reducing heat island effects, providing ecosystem services, and facilitating the retention and treatment of stormwater. Green roofs have received particular attention because they do not require acquisition and development of land and represent an application of biomimicry in design and construction. In this paper, we evaluate the effects of precipitation, evapotranspiration (ET), antecedent dry period (ADP), and seasonal variation on the run‐off quantity and distribution of an extensive, sedum covered, green roof on a commercial building in Syracuse, NY, USA. The green roof greatly facilitated retention of precipitation events without significant changes over the 4‐year study. The green roof retained on average 95.9 ± 3.6% (6.5 ± 5.6 mm) per rainfall event, with a range from 75% to 99.6% (33.2 to 3.3 mm). However, as precipitation quantity increased, the retention of water decreased. This high water retention capacity was the result of the combined effects of ET, stormwater storage (plants, growth media, and stormwater retention layer), and limited surface run‐off from the roof deck due to variation in the sloping of the green roof and the tapered insulation to the deck drains. The water retention capacity of the green roof did not change significantly between growing and nongrowing seasons. Slightly greater precipitation during the growing season coincided with increased ET. Average potential ET during the growing season was approximately 3 times greater than during the nongrowing season. The hydrologic performance of the green roof was not significantly impacted by an ADP greater than 2 days.  相似文献   

10.
Urban development significantly alters the landscape by introducing widespread impervious surfaces, which quickly convey surface run‐off to streams via stormwater sewer networks, resulting in “flashy” hydrological responses. Here, we present the inadequacies of using raster‐based digital elevation models and flow‐direction algorithms to delineate large and highly urbanized watersheds and propose an alternative approach that accounts for the influence of anthropogenically modified land cover. We use a semi‐automated approach that incorporates conventional drainage networks into overland flow paths and define the maximal run‐off contributing area. In this approach, stormwater pipes are clustered according to their slope attributes, which define flow direction. Land areas drained by each cluster and contributing (or exporting) flow to a topographically delineated catchment were determined. These land masses were subsequently added or removed from the catchment, modifying both the shape and the size. Our results in a highly urbanized Toronto, Canada, area watershed indicate a moderate net increase in the directly connected watershed area by 3% relative to a topographically forced method; however, differences across three smaller scale subcatchments are greater. Compared to topographic delineation, the directly connected watershed areas of both the upper and middle subcatchments decrease by 5% and 8%, respectively, whereas the lower subcatchment area increases by 15%. This is directly related to subsurface storm sewer pipes that cross topographic boundaries. When directly connected subcatchment area is plotted against total streamflow and flashiness indices using this method, the coefficients of variation are greater (0.93 to 0.97) compared to the use of digital elevation model‐derived subcatchment areas (0.78 to 0.85). The accurate identification of watershed and subcatchment boundaries should incorporate ancillary data such as stormwater sewer networks and retention basin drainage areas to reduce water budget errors in urban systems.  相似文献   

11.
Urban stormwater run‐off degrades the ecological condition of streams. The use of rainwater tanks to supplement water supply can reduce the frequency and volume of urban stormwater run‐off that is otherwise conveyed directly to streams via conventional stormwater drainage systems. Few studies, however, have examined the use of tanks in the context of managing flow regimes for stream protection, with most focussed uniquely on their water conservation benefits. We used measured tank water level data to assess the performance of 12 domestic rainwater tanks against the dual criteria of their ability to (i) reduce potable mains water usage and (ii) retain run‐off from rainfall events and thus reduce the volume and frequency of stormwater run‐off. We found that five households relied almost entirely on tank water. Three of the tanks achieved stormwater retention performance approaching that of the same area of pre‐developed land, although nine did not – a consequence of limited demand and small tank capacity. Our results suggest that tank water usage can result in substantial reductions in mains water use, if regular and sufficiently large domestic demands are connected to tanks. In many cases, such demands will also result in the best stormwater retention performance. Our results highlight an opportunity to design tank systems to achieve multiple objectives. Application of similar analyses in different locations will help to optimize tanks for simultaneous water supply and stormwater retention purposes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Green stormwater infrastructure implementation in urban watersheds has outpaced our understanding of practice effectiveness on streamflow response to precipitation events. Long-term monitoring of experimental suburban watersheds in Clarksburg, Maryland, USA, provided an opportunity to examine changes in event-based streamflow metrics in two treatment watersheds that transitioned from agriculture to suburban development with a high density of infiltration-focused stormwater control measures (SCMs). Urban Treatment 1 has predominantly single family detached housing with 33% impervious cover and 126 SCMs. Urban Treatment 2 has a mix of single family detached and attached housing with 44% impervious cover and 219 SCMs. Differences in streamflow-event magnitude and timing were assessed using a before-after-control-reference-impact design to compare urban treatment watersheds with a forested control and an urban control with detention-focused SCMs. Streamflow and precipitation events were identified from 14 years of sub-daily monitoring data with an automated approach to characterize peak streamflow, runoff yield, runoff ratio, streamflow duration, time to peak, rise rate, and precipitation depth for each event. Results indicated that streamflow magnitude and timing were altered by urbanization in the urban treatment watersheds, even with SCMs treating 100% of the impervious area. The largest hydrologic changes were observed in streamflow magnitude metrics, with greater hydrologic change in Urban Treatment 2 compared with Urban Treatment 1. Although streamflow changes were observed in both urban treatment watersheds, SCMs were able to mitigate peak flows and runoff volumes compared with the urban control. The urban control had similar impervious cover to Urban Treatment 2, but Urban Treatment 2 had more than twice the precipitation depth needed to initiate a flow response and lower median peak flow and runoff yield for events less than 20 mm. Differences in impervious cover between the Urban Treatment watersheds appeared to be a large driver of differences in streamflow response, rather than SCM density. Overall, use of infiltration-focused SCMs implemented at a watershed-scale did provide enhanced attenuation of peak flow and runoff volumes compared to centralized-detention SCMs.  相似文献   

13.
D. Ramier  E. Berthier  H. Andrieu 《水文研究》2011,25(14):2161-2178
Runoff on impervious surfaces (roads, roofs, etc.) raises a number of environmental and road safety‐related problems. The primary objective of this research effort is to improve our knowledge of the hydrological behaviour of impervious urban surfaces in order to better assess runoff on these surfaces and its subsequent consequences. This article will focus on two street stretches studied over a 38‐month period. Measurements of rainfall and runoff discharge on these stretches have made it possible to estimate runoff losses as well as to constitute a database for modelling purposes. On the basis of these data, two models have been used, one simple the other more detailed and physically based. For both models, runoff discharges at a 3‐min time step are well reproduced, although runoff coefficients and runoff losses are still poorly estimated. Detailed analyses of experimental data and model output, however, indicate that runoff losses could be quite high on such ‘impervious surfaces’ (between 30 and 40% of total rainfall, depending on the street stretch) and that these losses are mainly because of evaporation and infiltration inside the road structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The response time (lag time) between rainfall input and run‐off output in headwater catchments is a key parameter for flood prediction. Lag times are expected to be controlled by run‐off processes, both on hillslopes and in channels. To demonstrate these effects on peak lag times within a 4.5‐km2 catchment, we measured stream water levels at up to 16 channel locations at 1‐min intervals and compared the lag times with topographic indices describing the length and gradient of the hillslope and channel flow path. We captured storm events with a total precipitation of 38–198 mm and maximum hourly precipitation intensity of 9–90 mm/hr. There were positive relationships between lag time and flow path length as well as the ratio of the flow path length and the square root of the gradient of channels for the most intense storms, demonstrating that channel flow paths generally defined the variation in lag times. Topographic analysis showed that hillslope flow path lengths were similar among locations, whereas channel flow path length increased almost one order of magnitude with a 100‐fold increase in catchment area. Thus, the relative importance of hillslope flow path decreased with increasing catchment area. Our results indicate that the variation in lag times is small when hillslopes are sufficiently wet; thus, catchment‐scale variation in lag times can be explained almost entirely by channel processes. Detailed topographic channel information can improve prediction of flood peak timing, whereas hillslopes can be treated as homogeneous during large flood events.  相似文献   

15.
Knowledge of the effective impervious area (EIA) or the degree to which impervious surfaces are hydraulically connected to the drainage system is useful for improving hydrological and environmental models and assessing the effectiveness of green stormwater infrastructure in urban watersheds. The goal of this research is to develop a method to estimate EIA fraction in urban watersheds using readily available data. Since EIA is dependent on rainfall–runoff response and cannot be solely determined based on the physical characteristics of a watershed, the EIA is linked with the asymptotic curve number (CN), a watershed index that represents runoff characteristics. In order for the method to be applicable to ungauged watersheds, the asymptotic CN is predicted using land cover and soil data from 35 urban catchments in Minnesota and Texas, USA. Similar data from 11 other urban catchments in Wisconsin and Texas, USA, are used to validate the results. A set of runoff depth versus EIA fraction curves is also developed to assess the impact of EIA reduction on discharge from an urban watershed in land-use planning studies.  相似文献   

16.
Run‐off transmission loss into karstified consolidated aquifer bedrock below ephemeral streams (wadis) has rarely been described nor quantified. This study presents unique data of long‐term high‐resolution field measurements and field observations in a semiarid to subhumid Mediterranean carbonatic mountainshed. The catchment with a 103 km2 surface area is subdivided into 5 subcatchments. Coupled run‐off measurements were made in the different stream sections (reaches), and transmission loss calculated from differences in discharge. Rainfall and run‐off observations from 9 automated precipitation gauging stations and 5 pressure transducers for automatic water level recording are complemented by manual measurements during 34 run‐off events covering a total measurement period of 8 consecutive years. Run‐off generation is strongly event based depending on rainfall intensities and depths. Both, run‐off generation and transmission losses are related to spatial patterns of bedrock lithologies (and hydrostratigraphy). Transmission losses range between 62% and 80% of generated run‐off, with most of the smaller events showing 100% transmission loss. Therefore, although event run‐off coefficients in the mountains can reach up to 22%, only 0.11% of total annual precipitation leaves the catchment as run‐off. Most run‐off infiltrates directly into the regional karst aquifers (Upper Cretaceous carbonate series), with transmission loss intensities of up to 40 mm/h below the stream channels. The factors determining run‐off—such as geology, pedology, vegetation cover and land use, relief and morphology, the semiarid to subhumid Mediterranean climate with a strong elevation gradient, and the patchiness of individual storm events distributed over the winter seasons—as well as the lithology and epikarst features of the bedrock are all characteristic for larger areas in the Mediterranean region. Therefore, we expect that our findings can be generalized to a large extent.  相似文献   

17.
Surface hydrological behaviour is important in drylands because it affects the distribution of soil moisture and vegetation and the hydrological functioning of slopes and catchments. Microplot scale run‐off can be relatively easily measured, i.e. by rainfall simulations. However, slope or catchment run‐off cannot be deduced from microplots, requiring long‐time monitoring, because run‐off coefficients decrease with increasing drainage area. Therefore, to determine the slope length covered by run‐off (run‐off length) is crucial to connect scales. Biological soil crusts (BSCs) are good model systems, and their hydrology at slope scale is insufficiently known. This study provides run‐off lengths from BSCs, by field factorial experiments using rainfall simulation, including two BSC types, three rain types, three antecedent soil moistures and four plot lengths. Data were analysed by generalized linear modelling, including vascular plant cover as covariates. Results were the following: (i) the real contributing area is almost always much smaller than the topographical contributing area; (ii) the BSC type is key to controlling run‐off; run‐off length reached 3 m on cyanobacterial crust, but hardly over 1 m on lichen crust; this pattern remained through rain type or soil moisture; (iii) run‐off decreased with BSC development because soil sealing disappears; porosity, biomass and roughness increase and some changes occur in the uppermost soil layer; and (iv) run‐off flow increased with both rain type and soil moisture but run‐off coefficient only with soil moisture (as larger rains increased both run‐off and infiltration); vascular plant cover had a slight effect on run‐off because it was low and random. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Shang Gao  Zheng N. Fang 《水文研究》2019,33(21):2729-2744
A synthetic storm generator—Dynamic Moving Storm (DMS)—is developed in this study to represent spatio‐temporal variabilities of rainfall and storm movement in synthetic storms. Using an urban watershed as the testbed, the authors investigate the hydrologic responses to the DMS parameters and their interactions. In order to reveal the complex nature of rainfall–run‐off processes, previously simplified assumptions are relaxed in this study regarding (a) temporal variability of rainfall intensity and (b) time‐invariant flow velocity in channel routing. The results of this study demonstrate the significant contribution of storm moving velocity to the variation of peak discharge based on a global sensitivity analysis. Furthermore, a pairwise sensitivity analysis is conducted to elucidate not only the patterns in individual contributions from parameters to hydrologic responses but also their interactions with storm moving velocity. The intricacies of peak discharges resulting from sensitivity analyses are then dissected into independent hydrologic metrics, that is, run‐off volume and standard deviation of run‐off timings, for deeper insights. It is confirmed that peak discharge is increased when storms travel downstream along the main channel at the speed that corresponds to a temporal superposition of run‐off. Spatial concentration of catchment rainfall is found to be a critical linkage through which characteristics of moving storms affect peak discharges. In addition, altering peak timing of rainfall intensity in conjunction with storm movement results in varied storm core locations in the channel network, which further changes the flow attenuation effects from channel routing. For future directions, the DMS generator will be embedded in a stochastic modelling framework and applied in rainfall/flow frequency analysis.  相似文献   

19.
Theodore Chao Lim 《水文研究》2016,30(25):4799-4814
Many studies have empirically confirmed the relationship between urbanization and changes to the hydrologic cycle and degraded aquatic habitats. While much of the literature focuses on extent and configuration of impervious area as a causal determinant of degradation, in this article, I do not attribute causes of decreased watershed storage on impervious area a priori. Rather, adapting the concept of variable source area (VSA) and its relationship to incremental storage to the particular conditions of urbanized catchments, I develop a statistically robust linear regression‐based methodology to detect evidence of VSA‐dominant response. Using the physical and meteorological characteristics of the catchments as explanatory variables, I then use logistic regression to statistically analyze significant predictors of the VSA classification. I find that the strongest predictor of VSA‐type response is the percent of undeveloped area in the catchment. Characteristics of developed areas, including total impervious area, percent‐developed open space and the type of drainage infrastructure, do not add to the explanatory power of undeveloped land in predicting VSA‐type response. Within only developed areas, I find that total impervious area and percent‐developed open space both decrease the odds of a catchment exhibiting evidence of VSA‐type response and the effect of developed open space is more similar to that of total impervious area than undeveloped land in predicting VSA response. Different types of stormwater management infrastructure, including combined sewer systems and infiltration, retention and detention infrastructure are not found to have strong statistically significant effects on probability of VSA‐type response. VSA‐type response is also found to be stronger during the growing season than the dormant season. These findings are consistent across a national cross‐section of urbanized watersheds, a higher resolution dataset of Baltimore Metropolitan Area watersheds and a subsample of watersheds confirmed not to be served by (combined sewer systems). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Urban growth is a global phenomenon, and the associated impacts on hydrology from land development are expected to increase, especially in peri‐urban catchments. It is well understood that greater peak flows and higher stream flashiness are associated with increased surface imperviousness and storm location. However, the effect of the distribution of impervious areas on runoff peak flow response and stream flashiness of peri‐urban catchments has not been well studied. In this study, a new geometric index, Relative Nearness of Imperviousness to the Catchment Outlet (RNICO), is defined to correlate imperviousness distribution of peri‐urban catchments with runoff peak flows and stream flashiness. Study sites include 21 suburban catchments in New York representing a range of drainage area from 5 to 189 km2 and average imperviousness from 10% to 48%. On the basis of RNICO, all development patterns are divided into 3 classes: upstream, centralized, and downstream. Results showed an obvious increase in runoff peak flows and decrease in time to peak when moving from upstream to centralized and downstream urbanization classes. This indicates that RNICO is an effective tool for classifying urban development patterns and for macroscale understanding of the hydrologic behavior of small peri‐urban catchments, despite the complexity of urban drainage systems. We also found that the impact of impervious distribution on runoff peak flows and stream flashiness decreases with catchment scale. For small catchments (A < 40 km2), RNICO was strongly correlated with the average (R2 = .95) and maximum (R2 = .91) gaged peak flows due to the relatively efficient subsurface routing through stormwater and sewer networks. Furthermore, the Richards–Baker stream flashiness index in small catchments was positively correlated with fractional impervious area (R2 = .84) and RNICO (R2 = .87). For large catchments (A > 40 km2), the impact of impervious surface distribution on peak flows and stream flashiness was negligible due to the complex drainage network and great variability in travel times. This study emphasizes the need for greater monitoring of discharge in small peri‐urban catchments to support flood prediction at the local scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号