首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 470 毫秒
1.
A large quantity of submarine groundwater discharge (SGD) of about 1000 m3 day?1 m?1 of the 600‐km‐long shoreline of South Atlantic Bight has been estimated by Moore (Global Biogeochemical Cycles, 2010b, 24, GB4005, doi: 10.1029/2009GB003747 ). However, there is great uncertainty in estimating the percentage of net, land‐originated groundwater recharge of SGD. Moreover, most previous studies considered the homogeneous case for the coastal superficial aquifers. Here, we investigated the terrestrial‐originated SGD through a multilayered submarine aquifer system, which comprises two confined aquifers and two semi‐permeable layers. The inland recharge includes a constant part representing the annual average and a periodical part representing its seasonal variation. An analytical solution was derived and used to analyse the distributions of the terrestrial‐originated SGD from the multilayered aquifers along the Winyah Bay transect, South Atlantic Bight. It is found that the width of the zone of SGD from the upper aquifer ranges from ~0.8 to ~8.0 km depending on the leakance of the seabed semi‐permeable layer. A head of the upper aquifer at a coastline 1.0 m higher than the mean sea level will cause a SGD of 1.82– 18.3 m3 day?1 m?1 from that aquifer as the seabed semi‐permeable layer's leakance varies from 0.001 to 0.1 day?1, providing considerable possibility for considerable land‐originated SGD. Seasonal terrestrial‐originated SGD variations predicted by the analytical model provide consistent explanation of the seasonal variation of 226Ra observed by Moore (Journal of Geophysics, 2007, 112, C10013, doi: 10.1029/2007JC004199 ). The contribution of the lower aquifer to SGD is only 1.2–12% of that of the upper aquifer. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
To investigate the origin and behaviour of nitrate in alluvial aquifers adjacent to Nakdong River, Korea, we chose two representative sites (Wolha and Yongdang) having similar land‐use characteristics but different geology. A total of 96 shallow groundwater samples were collected from irrigation and domestic wells tapping alluvial aquifers. About 63% of the samples analysed had nitrate concentrations that exceeded the Korean drinking water limit (44·3 mg l?1 NO3?), and about 35% of the samples had nitrate concentrations that exceeded the Korean groundwater quality standard for agricultural use (88·6 mg l?1 NO3?). Based on nitrogen isotope analysis, two major nitrate sources were identified: synthetic fertilizer (about 4‰ δ15N) applied to farmland, and animal manure and sewage (15–20‰ δ15N) originating from upstream residential areas. Shallow groundwater in the farmland generally had higher nitrate concentrations than those in residential areas, due to the influence of synthetic fertilizer. Nitrate concentrations at both study sites were highest near the water table and then progressively decreased with depth. Nitrate concentrations are also closely related to the geologic characteristics of the aquifer. In Yongdang, denitrification is important in regulating nitrate chemistry because of the availability of organic carbon from a silt layer (about 20 m thick) below a thin, sandy surface aquifer. In Wolha, however, conservative mixing between farmland‐recharged water and water coming from a village is suggested as the dominant process. Mixing ratios estimated based on the nitrate concentrations and the δ15N values indicate that water originating from the village affects the nitrate chemistry of the shallow groundwater underneath the farmland to a large extent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
A small hillslope was chosen to investigate the role of throughflow as a mechanism responsible for the movement of soil water and solutes towards a saline seep and as a source of recharge to a permanent, regional aquifer at depth. The hydraulic properties, chemical characteristics and physical responses of both systems were studied on a deeply weathered, salt-affected hillslope. Additional data were also obtained from other sites in south-western Australia. Regional groundwater flow occurred in a variably textured, deeply weathered material in which the hydraulic conductivity varied from < 0·001 to 0·14m day?1. Perched groundwater flow (throughflow) occurred in the higher permeability (? 1·5 m day?1), near-surface soil materials. Throughflow occurred throughout winter, contributing approximately 530 m3 of fresh (? 160 mg l?1 Cl) water to a saline seep. By contrast, the deep aquifer discharged approximately 1100 m3 of waters with salt concentrations of 2000–6000 mg l?1 Cl. Recharge and discharge rates to and from the deep aquifer, were estimated to be of the order of 5–20 mm a?1 and 50–300 mm a?1 respectively. Saturated conditions existed throughout winter within the seep and the immediately adjacent non-saline area, with up to 60 per cent of the hillslope soils becoming saturated after major rainfall events ( > 20 mm day?1). In the mid-slopes, in particular along a central depression, saturation of the shallow soils caused macropore channel recharge to take place through the clay-textured subsoils. Water-level responses suggest that approximately 25–30 per cent of annual recharge occurred from one storm studied in September 1984. Recharge through macropore channels is a significant mechanism in the concave slope areas on the hillslope. Throughflow was found to be a major source of water, but not salt, contributing to the saline seep. In general, the contribution of throughflow was found to decrease further inland at other sites studied. However, at inland sites where perennial, perched aquifers have developed in deep sands, saline areas have been caused by throughflow and not by deep aquifer discharge.  相似文献   

4.
5.
Xun Zhou 《水文研究》2008,22(16):3176-3180
Measurements of the tide and groundwater levels in coastal zones are of importance in determining the properties of coastal aquifers. The solution to a one‐dimensional unsteady groundwater flow model in a coastal confined aquifer with sinusoidal fluctuation of the tide shows that the tidal efficiency decreases exponentially with distance and the time lag increases linearly with distance from the coast. The aquifer property described by the ratio of storage coefficient to transmissivity is determined if the damping constant of the tidal efficiency or the slope of the time lag with distance are obtained on the basis of tidal measurements. Hourly observations of the tide and groundwater levels at 10 wells on the northern coast near Beihai, China show that with distance from the coast, tidal efficiency decreases roughly exponentially and the time lag increases roughly linearly. The estimated ratio of storage coefficient to transmissivity of the confined aquifer ranges from 1·169 × 10?6 d m?2 to 1·83 × 10?7 d m?2. For a given transmissivity of 750 m2 d?1, the storage coefficient of the aquifer is 8·7675 × 10?4 with the tidal efficiency method and 1·3725 × 10?4 with the time lag method. The damping constant of the tidal efficiency with distance can be defined as the tidal propagation coefficient. The value of the confined aquifer is determined as 0·0018892 m?1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
In coastal rivers, tides can propagate for tens to hundreds of kilometres inland beyond the saltwater line. Yet the influence of tides on river–aquifer connectivity and solute transport in tidal freshwater zones (TFZs) is largely unknown. We estimate that along the TFZ of White Clay Creek (Delaware, USA), 11% of river water exchanges through tidal bank storage zones. Additional hyporheic processes such as flow through bedforms likely contribute even more exchange. The turnover length associated with tidal bank storage is 150 km, on the order of turnover lengths for all hyporheic exchange processes in non‐tidal rivers of similar size. Based on measurements at a transect of piezometers located 17 km from the coast, tides exchange 0.36 m3 of water across the banks and 0.86 m3 across the bed per unit river length. Exchange fluxes range from ?1.66 to 2.26 m day?1 across the bank and ?0.84 to 1.88 m day?1 across the bed. During rising tide, river water infiltrates into the riparian aquifer, and the downstream transport rate in the channel is low. During falling tide, stored groundwater is released to the river, and the downstream transport rate in the channel increases. Tidal bank storage zones may remove nutrients or other contaminants from river water and attenuate nutrient loads to coasts. Alternating expansion and contraction of aerobic zones in the riparian aquifer likely influence contaminant removal along flow paths. A clear need exists to understand contaminant removal and other ecosystem services in TFZs and adopt best management practices to promote these ecosystem services. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer‐lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater‐borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer‐lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater‐borne P loads vary from 0.74 to 2900 mg PO4‐P m?2 year?1; for N, these loads vary from 0.001 to 640 g m?2 year?1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The Dakar region is a mega city with multiple contaminant sources from urban expansion as well as industrial and agricultural activities. The major part of the region is underlain by unconfined sandy aquifer, which is vulnerable to contaminants derived from human land use. At present, the contaminated groundwater which extends over a large area in the suburban zone of Thiaroye poses a threat to the future of this valuable resource, and more specifically, a health threat. This study focuses on nitrate pollution occurrences and associated processes using nitrate isotope data (15NNO3, 18ONO3) combined with environmental isotopic tracers (18O, 2H, and 3H). Samples from 36 wells were collected to determine the level, distribution, and sources of contamination in relation to land use. Results indicate that shallow groundwater in the urbanized area of Thiaroye shows distinct evidence of surface contamination with nitrate as much as 300 mg/l NO3?. In rural area not serviced by water supply distribution network, much higher NO3? contents were found in few wells due to household and livestock feedlots. In most groundwater samples δ15N values ranged from + 10 to + 22‰, indicative of predominantly human and animal wastes. This was confirmed by environmental isotope data which suggest a mixture of polluted recharge waters. By using the dual δ15N vs δ18O as well as δ15N vs NO3? approach, denitrification may occur to some extent but it is blurred by mixing with new infiltrated nitrates and cycling derived from continuous leaky septic system. Results suggest that nitrate contamination of the aquifer is a consequence of unregulated urbanisation (homemade latrines), continuing contaminant transfer in shallow water depth where aerobic conditions prevail. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Alan R. Hill 《水文研究》2012,26(20):3135-3146
The effect of preferential flow in soil pipes on nitrate retention in riparian zones is poorly understood. The characteristics of soil pipes and their influence on patterns of groundwater transport and nitrate dynamics were studied along four transects in a 1‐ to >3‐m deep layer of peat and marl overlying an oxic sand aquifer in a riparian zone in southern Ontario, Canada. The peat‐marl deposit, which consisted of several horizontal layers with large differences in bulk density, contained soil pipes that were generally 0.1 to 0.2 m in diameter and often extended vertically for 1 to >2 m. Springs that produced overland flow across the riparian area occurred at some sites where pipes extended to the peat surface. Concentrations of NO3?–N (20–30 mg L?1) and dissolved oxygen (DO) (4–6 mg L?1) observed in peat pipe systems and surface springs were similar to values in the underlying sand aquifer, indicating that preferential flow transported groundwater with limited nitrate depletion. Low NO3?–N concentrations of <5 mg L?1 and enriched δ15N values indicated that denitrification was restricted to small areas of the peat where pipes were absent. Groundwater DO concentrations declined rapidly to <2 mg L?1 in the peat matrix adjacent to pipes, whereas high NO3?–N concentrations of >15 mg L?1 extended over a larger zone. Low dissolved organic carbon values at these locations suggest that supplies of organic carbon were not sufficient to support high rates of denitrification, despite low DO conditions. These data indicate that it is important to develop a greater understanding of pipes in peat deposits, which function as sites where the transport of large fluxes of water with low biogeochemical reaction rates can limit the nitrate removal capacity of riparian zones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Monitoring of a well‐defined septic system groundwater plume and groundwater discharging to two urban streams located in southern Ontario, Canada, provided evidence of natural attenuation of background low level (ng/L) perchlorate (ClO4?) under denitrifying conditions in the field. The septic system site at Long Point contains ClO4? from a mix of waste water, atmospheric deposition, and periodic use of fireworks, while the nitrate plume indicates active denitrification. Plume nitrate (NO3?‐N) concentrations of up to 103 mg/L declined with depth and downgradient of the tile bed due to denitrification and anammox activity, and the plume was almost completely denitrified beyond 35 m from the tile bed. The ClO4? natural attenuation occurs at the site only when NO3?‐N concentrations are <0.3 mg/L, after which ClO4? concentrations decline abruptly from 187 ± 202 to 11 ± 15 ng/L. A similar pattern between NO3?‐N and ClO4? was found in groundwater discharging to the two urban streams. These findings suggest that natural attenuation (i.e., biodegradation) of ClO4? may be commonplace in denitrified aquifers with appropriate electron donors present, and thus, should be considered as a remediation option for ClO4? contaminated groundwater.  相似文献   

11.
The hyporheic zone of riverbed sediments has the potential to attenuate nitrate from upwelling, polluted groundwater. However, the coarse‐scale (5–10 cm) measurement of nitrogen biogeochemistry in the hyporheic zone can often mask fine‐scale (<1 cm) biogeochemical patterns, especially in near‐surface sediments, leading to incomplete or inaccurate representation of the capacity of the hyporheic zone to transform upwelling NO3?. In this study, we utilised diffusive equilibrium in thin‐films samplers to capture high resolution (cm‐scale) vertical concentration profiles of NO3?, SO42?, Fe and Mn in the upper 15 cm of armoured and permeable riverbed sediments. The goal was to test whether nitrate attenuation was occurring in a sub‐reach characterised by strong vertical (upwelling) water fluxes. The vertical concentration profiles obtained from diffusive equilibrium in thin‐films samplers indicate considerable cm‐scale variability in NO3? (4.4 ± 2.9 mg N/L), SO42? (9.9 ± 3.1 mg/l) and dissolved Fe (1.6 ± 2.1 mg/l) and Mn (0.2 ± 0.2 mg/l). However, the overall trend suggests the absence of substantial net chemical transformations and surface‐subsurface water mixing in the shallow sediments of our sub‐reach under baseflow conditions. The significance of this is that upwelling NO3?‐rich groundwater does not appear to be attenuated in the riverbed sediments at <15 cm depth as might occur where hyporheic exchange flows deliver organic matter to the sediments for metabolic processes. It would appear that the chemical patterns observed in the shallow sediments of our sub‐reach are not controlled exclusively by redox processes and/or hyporheic exchange flows. Deeper‐seated groundwater fluxes and hydro‐stratigraphy may be additional important drivers of chemical patterns in the shallow sediments of our study sub‐reach. © 2015 The Authors. Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

12.
Three main reservoirs were identified that contribute to the shallow subsurface flow regime of a valley drained by a fourth‐order stream in Brittany (western France). (i) An upland flow that supplied a wetland area, mainly during the high‐water period. It has high N‐NO3? and average Cl? concentrations. (ii) A deep confined aquifer characterized by low nitrate and low chloride concentrations that supplied the floodplain via flow upwelling. (iii) An unconfined aquifer under the riparian zone with high Cl? and low N‐NO3? concentrations where biological processes removed groundwater nitrate. This aquifer collected the upland flow and supplied a relict channel that controlled drainage from the whole riparian zone. Patterns of N‐NO3? and Cl? concentrations along riparian transects, together with calculated high nitrate removal, indicate that removal occurred mainly at the hillslope–riparian zone interface (i.e. first few metres of wetland), whereas dilution occurred in lower parts of the transects, especially during low‐water periods and at the beginning of recharge periods. Stream flow was modelled as a mixture of water from the three reservoirs. An estimation of these contributions revealed that the deep aquifer contribution to stream flow averaged 37% throughout the study period, while the contribution of the unconfined reservoir below the riparian zone and hillslope flow was more variable (from ca 6 to 85%) relative to rainfall events and the level of the riparian water table. At the entire riparian zone scale, NO3? removal (probably from denitrification) appeared most effective in winter, despite higher estimated upland NO3? fluxes entering the riparian zone during this period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Groundwater circulation is known to be one of the agents responsible for the redistribution of geothermal energy by acting as a source or sink in the course of its movement through porous media. Heat transport in groundwater systems is considered to be a coupled process and the theory based on this was used to analyse temperature profiles of 30 thermally stable observation wells in a deep, semi-confined aquifer system in the Tokyo Metropolitan area. Vertical water fluxes in the semi-confined aquifers and the associated upward heat fluxes were estimated from a heat flux equation that describes convection and conduction processes of heat transport in one dimension. The vertical downward water fluxes in Shitamachi lowland, Musashino and Tachikawa terraces were 0.69.26.91 × 10?9, 1.46-70.92 × 10?9 and 2.61.2204 × 10?9 m/s, respectively. A vertical upward water flux of 1.80-33.60 × 10?9 m/s was estimated in Shitamachi lowland. The water flux generally decreased with increasing depth for observation wells which intercepted more than one semi-confining layer. The estimated upward heat fluxes for Shitamachi lowland, Musashino and Tachikawa terraces were 0.32-1.12, 0.49-1.21 and 1.00-11.62 W/m2, respectively. The heat flux was highest in Tachikawa terrace where a major fault, the Tachikawa fault, is located. Generally, the estimated heat flux was higher in the semi-confining layers than in the aquifers. Areas with heat sources and sinks as well as groundwater flow patterns in the semi-confined aquifers were revealed by heat flux and temperature distributions in the study area.  相似文献   

14.
We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3? and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3?, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18O? δ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3?. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Knowledge on groundwater–surface water interaction and especially on exchange fluxes between streams and aquifers is an important prerequisite for the study of transport and fate of contaminants and nutrients in the hyporheic zone. One possibility to quantify groundwater–surface water exchange fluxes is by using heat as an environmlental tracer. Modern field equipment including multilevel temperature sticks and the novel open‐source analysis tool LPML make this technique ever more attractive. The recently developed LPML method solves the one‐dimensional fluid flow and heat transport equation by combining a local polynomial method with a maximum likelihood estimator. In this study, we apply the LPML method on field data to quantify the spatial and temporal variability of vertical fluxes and their uncertainties from temperature–time series measured in a Belgian lowland stream. Over several months, temperature data were collected with multilevel temperature sticks at the streambed top and at six depths for a small stream section. Long‐term estimates show a range from gaining fluxes of ?291 mm day?1 to loosing fluxes of 12 mm day?1; average seasonal fluxes ranged from ?138 mm day?1 in winter to ?16 mm day?1 in summer. With our analyses, we could determine a high spatial and temporal variability of vertical exchange fluxes for the investigated stream section. Such spatial and temporal variability should be taken into account in biogeochemical cycling of carbon, nutrients and metals and in fate analysis of contaminant plumes. In general, the stream section was gaining during most of the observation period. Two short‐term high stream stage events, seemingly caused by blockage of the stream outlet, led to a change in flow direction from gaining to losing conditions. We also found more discharge occurring at the outer stream bank than at the inner one indicating a local flow‐through system. With the conducted analyses, we were able to advance our understanding of the regional groundwater flow system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The hydraulic properties of aquitards are not easily obtained because monitoring wells are usually installed in aquifers for groundwater resources management. Earthquake‐induced crust stress (strain) triggers groundwater level variations over a short period of time in a large area. These groundwater anomalies can be used to investigate aquifer systems. This study uses a poroelastic model to fit the postseismic variations of groundwater level triggered by the Chi‐Chi earthquake to evaluate the hydraulic properties of aquitards in the Jhoushuei River alluvial fan (JRAF), Taiwan. Six of the adopted eight wells with depths of 70 to 130 m showed good agreement with the recovery theory. The mean hydraulic conductivities (K) of the aquifers for the eight wells are 1.62 × 10?4 to 9.06 × 10?4 m/s, and the thicknesses are 18.8 to 46.1 m. The thicknesses of the aquitards are 11.3 to 42.0 m. Under the isotropic assumption for K, the estimated values of K for the aquitards are 3.0 × 10?8 to 2.1 × 10?6 m/s, corresponding to a silty medium. The results match the values obtained for the geological material of the drilling core and those reported in previous studies. The estimated values were combined with those given in previous studies to determine the distribution of K in the first two aquitards in the JRAF. The distribution patterns of the aquitards reflect the sedimentary environments and fit the geological material. The proposed technique can be used to evaluate the K value of aquitards using inverse methods. The inversion results can be used in hydrogeological analyses, contaminant modeling, and subsidence evaluation.  相似文献   

17.
The aim of this study is to evaluate the impact of the application of industrial fertilizers and liquid swine manure in groundwater in two pilot agricultural areas, San Pedro and Pichidegua, which have been under long‐term historic use of fertilizers. A comprehensive hydrogeological investigation was carried out to define the geology and the groundwater flow system. Chemical and isotopic tools were used to evaluate the distribution and behavior of the nitrate in the groundwater. The isotopic tools included δ18O, δ2H, and 3H, which provide information about the origin and residence time of the groundwater; δ15N‐NO3? and δ18O‐NO3?, which provide information about nitrate sources and processes that can affect nitrate along the groundwater flow system. The application rate of liquid manure and other fertilizers all together with land uses was also evaluated. The hydrogeological investigation identified the presence of a confined aquifer underneath a thick low‐permeability aquitard, whose extension covers most of the two study areas. The nitrate concentration data, excepting a few points in zones located near recharge areas in the upper part of the basins and lower areas at the valley outlets (San Pedro), showed nitrate concentration below 10 mgN/L at the regional scale. The isotope data for nitrate showed no influence of the liquid swine manure in the groundwater at the regional scale, except for the high part of the basins and the outlet of the San Pedro valley, which are areas fertilized by manure. This data showed that the regional aquifer on both pilot study areas is protected by the thick low‐permeability aquitard, which is playing an important role on nitrate attenuation. Evidence of denitrification was also found on both shallow and deep groundwater in the Pichidegua site. This study showed that a comprehensive hydrogeological characterization complemented by chemical and isotope data is key for understanding nitrate distribution and concentration in aquifers from areas with intensive agriculture activities.  相似文献   

18.
Oceanic tidal fluctuations which propagate long distances up coastal rivers can be exploited to constrain hydraulic properties of riverbank aquifers. These estimates, however, may be sensitive to degree of aquifer confinement and aquifer anisotropy. We analyzed the hydraulic properties of a tidally influenced aquifer along the Meghna River in Bangladesh using: (1) slug tests combined with drilling logs and surface resistivity to estimate Transmissivity (T); (2) a pumping test to estimate T and Storativity (S) and thus Aquifer Diffusivity (DPT); and (3) the observed reduction in the amplitude and velocity of a tidal pulse to calculate D using the Jacob‐Ferris analytical solution. Average Hydraulic Conductivity (K) and T estimated with slug tests and borehole lithology were 27.3 m/d and 564 m2/d, respectively. Values of T and S determined from the pumping test ranged from 400 to 500 m2/d and 1 to 5 × 10?4, respectively with DPT ranging from 9 to 40 × 105 m2/d. In contrast, D estimated from the Jacob‐Ferris model ranged from 0.5 to 9 × 104 m2/d. We hypothesized this error resulted from deviations of the real aquifer conditions from those assumed by the Jacob‐Ferris model. Using a 2D numerical model tidal pulses were simulated across a range of conditions and D was calculated with the Jacob‐Ferris model. Moderately confined (Ktop/Kaquifer < 0.01) or anisotropic aquifers (Kx/Kz > 10) yield D within a factor of 2 of the actual value. The order of magnitude difference in D between pumping test and Jacob‐Ferris model at our site argues for little confinement or anisotropy.  相似文献   

19.
This article investigates the quantity of submarine groundwater discharge (SGD) from a coastal multi‐layered aquifer system in response to constant rainfall infiltration. The system comprises an unconfined aquifer, a leaky confined aquifer and an aquitard between them and terminates at the coastline. An approximate analytical solution is derived based on the following assumptions: (i) flow is horizontal in the aquifers and vertical in the aquitard, and (ii) flow in the unconfined aquifer is described by nonlinear Boussinesq equation. The analytical solution is compared with numerical solutions of the strictly two‐dimensional nonlinear model to validate the model assumptions used for the analytical solution. The SGD from the leaky confined aquifer increases with the inland rainfall infiltration recharge and the specific leakage of aquitard. The maximum SGD ranges from 1·87 to 10·37 m3 per day per meter of shoreline when rainfall infiltration ranges from 18·2 to 182 mm/year and the specific leakage of aquitard varies from 10?9 to 10?1 l/day. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
ABSTRACT

Groundwater is used by 3?million inhabitants in the coastal urban city of Douala, Cameroon, but comprehensive data are too sparse for it to be managed in a sustainable manner. Hence this study aimed to (1) assess the potability of the groundwater; (2) evaluate the spatial variation of groundwater composition; and (3) assess the interaction and recharge mechanisms of different water bodies. Hydrogeochemical tools and methods revealed the following results in the Wouri and Nkappa formations of the Douala basin, which is beneath Douala city: 30% of water samples from hand-dug wells in the shallow Pleistocene alluvium aquifer were saline and highly mineralized. However, water from boreholes in the deeper (49–92 m depth) Palaeocene aquifer was saline-free, less mineralized and potable. Water in the shallow aquifer (0.5–22 m depth) was of Na+-K+-Cl?-NO3? type and not potable due to point source pollution, whereas Ca+-HCO3? unpolluted water dominates in the deeper aquifer. Water in the deep and shallow aquifers indicates the results of preferential flow pass and evaporative recharge, respectively. Possible hydrogeochemical processes include point source pollution, reverse ion exchange, remote recharge areas and mixing of waters with different chemical signatures.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号