首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Regression-based statistical downscaling is a method broadly used to resolve the coarse spatial resolution of general circulation models. Nevertheless, the assessment of uncertainties linked with climatic variables is essential to climate impact studies. This study presents a procedure to characterize the uncertainty in regression-based statistical downscaling of daily precipitation and temperature over a highly vulnerable area (semiarid catchment) in the west of Iran, based on two downscaling models: a statistical downscaling model (SDSM) and an artificial neural network (ANN) model. Biases in mean, variance, and wet/dry spells are estimated for downscaled data using vigorous statistical tests for 30 years of observed and downscaled daily precipitation and temperature data taken from the National Center for Environmental Prediction reanalysis predictors for the years of 1961 to 1990. In the case of daily temperature, uncertainty is estimated by comparing monthly mean and variance of downscaled and observed daily data at a 95 % confidence level. In daily precipitation, downscaling uncertainties were evaluated from comparing monthly mean dry and wet spell lengths and their confidence intervals, cumulative frequency distributions of monthly mean of daily precipitation, and the distributions of monthly wet and dry days for observed and modeled daily precipitation. Results showed that uncertainty in downscaled precipitation is high, but simulation of daily temperature can reproduce extreme events accurately. Finally, this study shows that the SDSM is the most proficient model at reproducing various statistical characteristics of observed data at a 95 % confidence level, while the ANN model is the least capable in this respect. This study attempts to test uncertainties of regression-based statistical downscaling techniques in a semiarid area and therefore contributes to an improvement of the quality of predictions of climate change impact assessment in regions of this type.  相似文献   

2.
Regression-based statistical downscaling model (SDSM) is an appropriate method which broadly uses to resolve the coarse spatial resolution of general circulation models (GCMs). Nevertheless, the assessment of uncertainty propagation linked with climatic variables is essential to any climate change impact study. This study presents a procedure to characterize uncertainty analysis of two GCM models link with Long Ashton Research Station Weather Generator (LARS-WG) and SDSM in one of the most vulnerable international wetland, namely “Shadegan” in an arid region of Southwest Iran. In the case of daily temperature, uncertainty is estimated by comparing monthly mean and variance of downscaled and observed daily data at a 95 % confidence level. Uncertainties were then evaluated from comparing monthly mean dry and wet spell lengths and their 95 % CI in daily precipitation downscaling using 1987–2005 interval. The uncertainty results indicated that the LARS-WG is the most proficient model at reproducing various statistical characteristics of observed data at a 95 % uncertainty bounds while the SDSM model is the least capable in this respect. The results indicated a sequences uncertainty analysis at three different climate stations and produce significantly different climate change responses at 95 % CI. Finally the range of plausible climate change projections suggested a need for the decision makers to augment their long-term wetland management plans to reduce its vulnerability to climate change impacts.  相似文献   

3.
Six approaches for downscaling climate model outputs for use in hydrologic simulation were evaluated, with particular emphasis on each method's ability to produce precipitation and other variables used to drive a macroscale hydrology model applied at much higher spatial resolution than the climate model. Comparisons were made on the basis of a twenty-year retrospective (1975–1995) climate simulation produced by the NCAR-DOE Parallel ClimateModel (PCM), and the implications of the comparison for a future(2040–2060) PCM climate scenario were also explored. The six approaches were made up of three relatively simple statistical downscaling methods – linear interpolation (LI), spatial disaggregation (SD), and bias-correction and spatial disaggregation (BCSD) – each applied to both PCM output directly(at T42 spatial resolution), and after dynamical downscaling via a Regional Climate Model (RCM – at 1/2-degree spatial resolution), for downscaling the climate model outputs to the 1/8-degree spatial resolution of the hydrological model. For the retrospective climate simulation, results were compared to an observed gridded climatology of temperature and precipitation, and gridded hydrologic variables resulting from forcing the hydrologic model with observations. The most significant findings are that the BCSD method was successful in reproducing the main features of the observed hydrometeorology from the retrospective climate simulation, when applied to both PCM and RCM outputs. Linear interpolation produced better results using RCM output than PCM output, but both methods (PCM-LI and RCM-LI) lead to unacceptably biased hydrologic simulations. Spatial disaggregation of the PCM output produced results similar to those achieved with the RCM interpolated output; nonetheless, neither PCM nor RCM output was useful for hydrologic simulation purposes without a bias-correction step. For the future climate scenario, only the BCSD-method (using PCM or RCM) was able to produce hydrologically plausible results. With the BCSD method, the RCM-derived hydrology was more sensitive to climate change than the PCM-derived hydrology.  相似文献   

4.
Joint variable spatial downscaling   总被引:1,自引:0,他引:1  
Joint Variable Spatial Downscaling (JVSD), a new statistical technique for downscaling gridded climatic variables, is developed to generate high resolution gridded datasets for regional watershed modeling and assessments. The proposed approach differs from previous statistical downscaling methods in that multiple climatic variables are downscaled simultaneously and consistently to produce realistic climate projections. In the bias correction step, JVSD uses a differencing process to create stationary joint cumulative frequency statistics of the variables being downscaled. The functional relationship between these statistics and those of the historical observation period is subsequently used to remove GCM bias. The original variables are recovered through summation of bias corrected differenced sequences. In the spatial disaggregation step, JVSD uses a historical analogue approach, with historical analogues identified simultaneously for all atmospheric fields and over all areas of the basin under study. Analysis and comparisons are performed for 20th Century Climate in Coupled Models (20C3M), broadly available for most GCMs. The results show that the proposed downscaling method is able to reproduce the sub-grid climatic features as well as their temporal/spatial variability in the historical periods. Comparisons are also performed for precipitation and temperature with other statistical and dynamic downscaling methods over the southeastern US and show that JVSD performs favorably. The downscaled sequences are used to assess the implications of GCM scenarios for the Apalachicola-Chattahoochee-Flint river basin as part of a comprehensive climate change impact assessment.  相似文献   

5.
De Li Liu  Heping Zuo 《Climatic change》2012,115(3-4):629-666
This paper outlines a new statistical downscaling method based on a stochastic weather generator. The monthly climate projections from global climate models (GCMs) are first downscaled to specific sites using an inverse distance-weighted interpolation method. A bias correction procedure is then applied to the monthly GCM values of each site. Daily climate projections for the site are generated by using a stochastic weather generator, WGEN. For downscaling WGEN parameters, historical climate data from 1889 to 2008 are sorted, in an ascending order, into 6 climate groups. The WGEN parameters are downscaled based on the linear and non-linear relationships derived from the 6 groups of historical climates and future GCM projections. The overall averaged confidence intervals for these significant linear relationships between parameters and climate variables are 0.08 and 0.11 (the range of these parameters are up to a value of 1.0) at the observed mean and maximum values of climate variables, revealing a high confidence in extrapolating parameters for downscaling future climate. An evaluation procedure is set up to ensure that the downscaled daily sequences are consistent with monthly GCM output in terms of monthly means or totals. The performance of this model is evaluated through the comparison between the distributions of measured and downscaled climate data. Kruskall-Wallis rank (K-W) and Siegel-Tukey rank sum dispersion (S-T) tests are used. The results show that the method can reproduce the climate statistics at annual, monthly and daily time scales for both training and validation periods. The method is applied to 1062 sites across New South Wales (NSW) for 9 GCMs and three IPCC SRES emission scenarios, B1, A1B and A2, for the period of 1900–2099. Projected climate changes by 7 GCMs are also analyzed for the A2 emission scenario based on the downscaling results.  相似文献   

6.
High resolution gridded mean daily temperature datasets are valuable for research and applications in agronomy, meteorology, hydrology, ecology, and many other disciplines depending on weather or climate. The gridded datasets and the models used for their estimation are being constantly improved as there is always a need for more accurate datasets as well as for datasets with a higher spatial and temporal resolution. We developed a spatio-temporal regression kriging model for Croatia at 1 km spatial resolution by adapting the spatio-temporal regression kriging model developed for global land areas. A geometrical temperature trend, digital elevation model, and topographic wetness index were used as covariates together with measurements from the Croatian national meteorological network for the year 2008. This model performed better than the global model and previously developed models for Croatia, based on MODIS land surface temperature images. The R2 was 97.8% and RMSE was 1.2 °C for leave-one-out and 5-fold cross-validation. The proposed national model still has a high level of uncertainty at higher altitudes leaving it suitable for agricultural areas that are dominant in lower and medium altitudes.  相似文献   

7.
A new method is proposed to compile 1 km grid data of monthly mean air temperature by dynamically downscaling general circulation model (GCM) data with a regional climate model (RCM). The downscaling method used is a technique referred to as the pseudoglobal warming method to reduce GCM bias. For the grid data, RCM data were corrected with data from an existing meteorological network. The correction model for the RCM bias was developed by stepwise multiple regression analysis using the difference in the monthly mean air temperatures between the observation and RCM output as a dependent variable and the geographical factors as independent variables. Our method corrected the RCM bias from 1.69°C to 0.58°C for the month of August in the 1990s (1990–1999).  相似文献   

8.
The current study examines the recently proposed “bias correction and stochastic analogues” (BCSA) statistical spatial downscaling technique and attempts to improve it by conditioning coarse resolution data when generating replicates. While the BCSA method reproduces the statistical features of the observed fine data, this existing model does not replicate the observed coarse spatial pattern, and subsequently, the cross-correlation between the observed coarse data and downscaled fine data with the model cannot be preserved. To address the dissimilarity between the BCSA downscaled data and observed fine data, a new statistical spatial downscaling method, “conditional stochastic simulation with bias correction” (BCCS), which employs the conditional multivariate distribution and principal component analysis, is proposed. Gridded observed climate data of mean daily precipitation (mm/day) covering a month at 1/8° for a fine resolution and at 1° for a coarse resolution over Florida for the current and future periods were used to verify and cross-validate the proposed technique. The observed coarse and fine data cover the 50-year period from 1950 to1999, and the future RCP4.5 and RCP8.5 climate scenarios cover the 100-year period from 2000 to 2099. The verification and cross-validation results show that the proposed BCCS downscaling method serves as an effective alternative means of downscaling monthly precipitation levels to assess climate change effects on hydrological variables. The RCP4.5 and RCP8.5 GCM scenarios are successfully downscaled.  相似文献   

9.
The spatial resolution gap between global or regional climate models and the requirements for local impact studies motivates the need for climate downscaling. For impact studies that involve glacier modelling, the sparsity or complete absence of climate monitoring activities within the regions of interest presents a substantial additional challenge. Downscaling methods for this application must be independent of climate observations and cannot rely on tuning to station data. We present new, computationally-efficient methods for downscaling precipitation and temperature to the high spatial resolutions required to force mountain glacier models. Our precipitation downscaling is based on an existing linear theory for orographic precipitation, which we modify for large study regions by including moist air tracking. Temperature is downscaled using an interpolation scheme that reconstructs the vertical temperature structure to estimate surface temperatures from upper air data. Both methods are able to produce output on km to sub-km spatial resolution, yet do not require tuning to station measurements. By comparing our downscaled precipitation (1 km resolution) and temperature (200 m resolution) fields to station measurements in southern British Columbia, we evaluate their performance regionally and through the annual cycle. Precipitation is improved by as much as 30% (median relative error) over the input reanalysis data and temperature is reconstructed with a mean bias of 0.5°C at locations with high vertical relief. Both methods perform best in mountainous terrain, where glaciers tend to be concentrated.  相似文献   

10.
统计降尺度法对华北地区未来区域气温变化情景的预估   总被引:31,自引:1,他引:31  
迄今为止,大部分海气耦合气候模式(AOGCM)的空间分辨率还较低,很难对区域尺度的气候变化情景做合理的预测。降尺度法已广泛用于弥补AOGCM在这方面的不足。作者采用统计降尺度方法对1月和7月华北地区49个气象观测站的未来月平均温度变化情景进行预估。采用的统计降尺度方法是主分量分析与逐步回归分析相结合的多元线性回归模型。首先,采用1961~2000年的 NCEP再分析资料和49个台站的观测资料建立月平均温度的统计降尺度模型,然后把建立的统计降尺度模型应用于HadCM3 SRES A2 和 B2 两种排放情景, 从而生成各个台站1950~2099年1月份和7月份温度变化情景。结果表明:在当前气候条件下,无论1月还是7月,统计降尺度方法模拟的温度与观测的温度有很好的一致性,而且在大多数台站,统计降尺度模拟气温与观测值相比略微偏低。对于未来气候情景的预估方面,无论1月还是7月,也无论是HadCM3 SRES A2 还是B2排放情景驱动统计模型,结果表明大多数的站点都存在温度的明显上升趋势,同时7月的上升趋势与1月相比偏低。  相似文献   

11.
We present a 1-km2 gridded German dataset of hourly surface climate variables covering the period 1995 to 2012. The dataset comprises 12 variables including temperature, dew point, cloud cover, wind speed and direction, global and direct shortwave radiation, down- and up-welling longwave radiation, sea level pressure, relative humidity and vapour pressure. This dataset was constructed statistically from station data, satellite observations and model data. It is outstanding in terms of spatial and temporal resolution and in the number of climate variables. For each variable, we employed the most suitable gridding method and combined the best of several information sources, including station records, satellite-derived data and data from a regional climate model. A module to estimate urban heat island intensity was integrated for air and dew point temperature. Owing to the low density of available synop stations, the gridded dataset does not capture all variations that may occur at a resolution of 1 km2. This applies to areas of complex terrain (all the variables), and in particular to wind speed and the radiation parameters. To achieve maximum precision, we used all observational information when it was available. This, however, leads to inhomogeneities in station network density and affects the long-term consistency of the dataset. A first climate analysis for Germany was conducted. The Rhine River Valley, for example, exhibited more than 100 summer days in 2003, whereas in 1996, the number was low everywhere in Germany. The dataset is useful for applications in various climate-related studies, hazard management and for solar or wind energy applications and it is available via doi: 10.5676/DWD_CDC/TRY_Basis_v001.  相似文献   

12.
The growing interest in and emphasis on high spatial resolution estimates of future climate has demonstrated the need to apply regional climate models (RCMs) to that problem. As a consequence, the need for validation of these models, an assessment of how well an RCM reproduces a known climate, has also grown. Validation is often performed by comparing RCM output to gridded climate datasets and/or station data. The primary disadvantage of using gridded climate datasets is that the spatial resolution is almost always different and generally coarser than climate model output. We have used a Bayesian statistical model derived from observational data to validate RCM output. We used surface air temperature (SAT) data from 109 observational stations in California, all with records of approximately 50 years in length, and created a statistical model based on this data. The statistical model takes into account the elevation of the station, distance from coastline, and the NOAA climate region in which the station resides. Analysis indicates that the statistical model provides reliable estimates of the mean monthly SAT at any given station. In our method, the uncertainty in the estimates produced by the statistical model are directly determined by obtaining probability density functions for predicted SATs. This statistical model is then used to estimate average SATs corresponding to each of the climate model grid cells. These estimates are compared to the output of the RCM to assess how well the RCM matches the observed climate as defined by the statistical model. Overall, the match between the RCM output and the statistical model is good, with some deficiencies likely due in part to the representation of topography in the RCM.  相似文献   

13.
Seasonally predicted precipitation at a resolution of 2.5° was statistically downscaled to a fine spatial scale of ~20 km over the southeastern United States. The downscaling was conducted for spring and summer, when the fine-scale prediction of precipitation is typically very challenging in this region. We obtained the global model precipitation for downscaling from the National Center for Environmental Prediction/Climate Forecast System (NCEP/CFS) retrospective forecasts. Ten member integration data with time-lagged initial conditions centered on mid- or late February each year were used for downscaling, covering the period from 1987 to 2005. The primary techniques involved in downscaling are Cyclostationary Empirical Orthogonal Function (CSEOF) analysis, multiple regression, and stochastic time series generation. Trained with observations and CFS data, CSEOF and multiple regression facilitated the identification of the statistical relationship between coarse-scale and fine-scale climate variability, leading to improved prediction of climate at a fine resolution. Downscaled precipitation produced seasonal and annual patterns that closely resemble the fine resolution observations. Prediction of long-term variation within two decades was improved by the downscaling in terms of variance, root mean square error, and correlation. Relative to the coarsely resolved unskillful CFS forecasts, the proposed downscaling drove a significant reduction in wet biases, and correlation increased by 0.1–0.5. Categorical predictability of seasonal precipitation and extremes (frequency of heavy rainfall days), measured with the Heidke skill score (HSS), was also improved by the downscaling. For instance, domain averaged HSS for two category predictability by the downscaling are at least 0.20, while the scores by the CFS are near zero and never exceed 0.1. On the other hand, prediction of the frequency of subseasonal dry spells showed limited improvement over half of the Georgia and Alabama region.  相似文献   

14.
Climate data of mean monthly temperature and total monthly precipitation compiled from different sources in northern Patagonia were interpolated to 20-km resolution grids over the period 1997–2010. This northern Patagonian climate grid (NPCG) improves upon previous gridded products in terms of its spatial resolution and number of contributing stations, since it incorporates 218 and 114 precipitation and temperature records, respectively. A geostatistical method using surface elevation from a Digital Elevation Model (DEM) as the ancillary variable was used to interpolate station data into even spaced points. The maps provided by NPCG are consistent with the broad spatial and temporal patterns of the northern Patagonian climate, showing a comprehensive representation of the latitudinal and altitudinal gradients in temperature and precipitation, as well as their related patterns of seasonality and continentality. We compared the performance of NPCG and various other datasets available to the climate community for northern Patagonia. The grids used for the comparison included those of the Global Precipitation Climatology Project, ERAInterim, Climate Research Unit (University of East Anglia), and University of Delaware. Based on three statistics that quantitatively assess the spatial coherence of gridded data against available observations (bias, MAE, and RMSE), NPCG outperforms other global grids. NPCG represents a useful tool for understanding climate variability in northern Patagonia and a valuable input for regional models of hydrological and ecological processes. Its resolution is optimal for validating data from the general circulation models and working with raster data derived from remote sensing, such as vegetation indices.  相似文献   

15.
The Xin'anjiang Model is used as the basic model to develop a monthly grid-based macroscalehydrological model for the assessment of the effects of climate change on water resources.Themonthly discharge from 1953 through 1985 in the Huaihe River Basin is simulated.The sensitivityanalysis on runoff is made under assumed climatic scenarios.There is a good agreement betweenthe observed and simulated runoff.Due to the increase of time interval and decrease ofprecipitation intensity on monthly time scale,there is no monthly runoff in some model girds as themomhly hydrological model is applied to the Huaihe River Basin.Two methods of downscalingmonthly precipitation to daily resolution are validated by running the Xin'anjiang model withmonthly data at a daily time step.and the model outputs are more realistic than the monthlyhydrological model.The metbods of downscaling of monthly precipitation to daily resolution mayprovide an idea in solving the problem of the shortage of daily data.In the research of the climatechange on water resources,the daily hydrological model can be used instead of the monthly one.  相似文献   

16.
Summary A lack of information for surface water vapor pressure (WVP) represents a major impediment to model-assisted ecosystem analysis for understanding plant-environment interactions or for projecting biospheric responses to global climate change. This paper reports on a generic algorithm that captures global variation in monthly WVP. The algorithm solves WVP in terms of reduction from saturation WVP as a negative exponential function of potential evapotranspiration; the reduction rate per unit potential evapotranspiration in turn varies with monthly precipitation and a series of variables that distinguish local climate regimes. Data input to the algorithm is limited to monthly air temperature and precipitation, plus latitude, longitude and elevation. The algorithm is specified through regression fitting to monthly climate normal data from 852 stations around the world. It accounts for 96% of the variance in the WVP data, with a root mean square error of 0.17 kPa, or 12% of the data mean. The algorithm closely reproduces five-year sequential monthly WVP data for each of five selected United States locations representitative of diverse climate regimes: the average error generally falls within ±12% of the data mean, and the absolute error within ±0.2 kPa. Its projections also compare favorably against the WVP output from the General Circulation Models for temperature and precipitation conditions under the scenario of a doubled atmospheric carbon-dioxide concentration: the two fall within ±10% of each other for 75% of a total 264 data cases, or within ±20% for 94% of the cases. These statistics suggest that the spatially-based algorithm is useful for projecting temporal variation in WVP, and for extrapolative applications beyond the fluctuation range of present climate. Received March 4, 1999  相似文献   

17.
The uncertainties in the regional climate models (RCMs) are evaluated by analyzing the driving global data of ERA40 reanalysis and ECHAM5 general circulation models, and the downscaled data of two RCMs (RegCM4 and PRECIS) over South-Asia for the present day simulation (1971–2000) of South-Asian summer monsoon. The differences between the observational datasets over South-Asia are also analyzed. The spatial and the quantitative analysis over the selected climatic regions of South-Asia for the mean climate and the inter-annual variability of temperature, precipitation and circulation show that the RCMs have systematic biases which are independent from different driving datasets and seems to come from the physics parameterization of the RCMs. The spatial gradients and topographically-induced structure of climate are generally captured and simulated values are within a few degrees of the observed values. The biases in the RCMs are not consistent with the biases in the driving fields and the models show similar spatial patterns after downscaling different global datasets. The annual cycle of temperature and rainfall is well simulated by the RCMs, however the RCMs are not able to capture the inter-annual variability. ECHAM5 is also downscaled for the future (2071–2100) climate under A1B emission scenario. The climate change signal is consistent between ECHAM5 and RCMs. There is warming over all the regions of South-Asia associated with increasing greenhouse gas concentrations and the increase in summer mean surface air temperature by the end of the century ranges from 2.5 to 5 °C, with maximum warming over north western parts of the domain and 30 % increase in rainfall over north eastern India, Bangladesh and Myanmar.  相似文献   

18.
This paper describes the construction of a 0.5°×0.5°daily temperature dataset for the period of 1961- 2005 over mainland China for the purpose of climate model validation. The dataset is based on the in- terpolation from 751 observing stations in China and comprises 3 variables: daily mean,minimum,and maximum temperature.The"anomaly approach"is applied in the interpolation.The gridded climatology of 1971-2000 is first calculated and then a gridded daily anomaly for 1961-2005 is added to the climatologY to o...  相似文献   

19.
Coupled atmosphere-ocean general circulation models (GCMs) simulate different realizations of possible future climates at global scale under contrasting scenarios of land-use and greenhouse gas emissions. Such data require several additional processing steps before it can be used to drive impact models. Spatial downscaling, typically by regional climate models (RCM), and bias-correction are two such steps that have already been addressed for Europe. Yet, the errors in resulting daily meteorological variables may be too large for specific model applications. Crop simulation models are particularly sensitive to these inconsistencies and thus require further processing of GCM-RCM outputs. Moreover, crop models are often run in a stochastic manner by using various plausible weather time series (often generated using stochastic weather generators) to represent climate time scale for a period of interest (e.g. 2000 ± 15 years), while GCM simulations typically provide a single time series for a given emission scenario. To inform agricultural policy-making, data on near- and medium-term decadal time scale is mostly requested, e.g. 2020 or 2030. Taking a sample of multiple years from these unique time series to represent time horizons in the near future is particularly problematic because selecting overlapping years may lead to spurious trends, creating artefacts in the results of the impact model simulations. This paper presents a database of consolidated and coherent future daily weather data for Europe that addresses these problems. Input data consist of daily temperature and precipitation from three dynamically downscaled and bias-corrected regional climate simulations of the IPCC A1B emission scenario created within the ENSEMBLES project. Solar radiation is estimated from temperature based on an auto-calibration procedure. Wind speed and relative air humidity are collected from historical series. From these variables, reference evapotranspiration and vapour pressure deficit are estimated ensuring consistency within daily records. The weather generator ClimGen is then used to create 30 synthetic years of all variables to characterize the time horizons of 2000, 2020 and 2030, which can readily be used for crop modelling studies.  相似文献   

20.
Methods are proposed to estimate the monthly relative humidity and wet bulb temperature based on observations from a dynamical downscaling coupled general circulation model with a regional climate model (RCM) for a quantitative assessment of climate change impacts. The water vapor pressure estimation model developed was a regression model with a monthly saturated water vapor pressure that used minimum air temperature as a variable. The monthly minimum air temperature correction model for RCM bias was developed by stepwise multiple regression analysis using the difference in monthly minimum air temperatures between observations and RCM output as a dependent variable and geographic factors as independent variables. The wet bulb temperature was estimated using the estimated water vapor pressure, air temperature, and atmospheric pressure at ground level both corrected for RCM bias. Root mean square errors of the data decreased considerably in August.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号