首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clinopyroxene/melt and garnet/melt partition coefficients have been determined for Ti, Sr, Y, Zr, Nb, Hf, and rare earth elements from 19 doped experiments on 1921 Kilauea basalt. The experiments were carried out from 2.0 to 3.0 GPa and 1310° to 1470 °C. The purpose was to derive a set of partition coefficients for high-field-strength elements (HFSE) and rare earth elements (REE) in a systematic, linked set of experiments at P and T conditions relevant to basalt petrogenesis. These data are used in melting models to understand the development of negative HFSE anomalies observed in many abyssal peridotite clinopyroxenes. It is shown that melting can account for the observed trace element patterns in some residual peridotites, but that other processes may also be needed to account for most residual mantle compositions in mid-ocean ridge systems. It is also shown that REE are more strongly fractionated by garnet at these P-T conditions than previously thought. Received: 1 July 1997 / Accepted: 11 May 1998  相似文献   

2.
Clinopyroxenes (cpx) in abyssal and ophiolitic peridotites are commonly analyzed for lithophile trace element abundances in order to estimate degrees of melting and porosity conditions during melt extraction, assuming that these data reflect near-solidus conditions. During cooling, however, cpxs always exsolve into parallel lamellae of low-Ca enstatite and high-Ca diopside. This may potentially lead to redistribution of the initial trace element budget. Since orthopyroxene (opx) cannot significantly host most incompatible trace elements, exsolution will lead to an enrichment in the cpx lamellae. In order to address a possibly exsolution-controlled partitioning between cpx and opx, we have obtained major and trace element mineral compositions on 14 plagioclase-free ocean floor mantle rocks. They cover the entire abyssal peridotite compositional spectrum from very fertile to highly depleted compositions. The mean volume proportion of opx lamellae in cpx porphyroclasts lies around 15% of the original cpx. For the light to middle rare earth elements, the enrichment in the measured cpx exsolution is exclusively controlled by these phase proportions. Relative to these highly incompatible trace elements, solely Ti and Yb partition significantly into opx. Lamellar interpyroxene partition coefficients, estimated from NanoSIMS analyses, are around three times as high as the ones for near-solidus bulk pyroxene. The equilibration temperatures for the exsolution lamella are slightly higher than 800°C. The bulk cpx can be reconstructed using the lamellar proportions and their relative partitioning. The implication of such a reconstruction is that the cpx rare earth element patterns shift almost in parallel to lower values. These shifts, however, do not affect mantle melting models proposed thus far for mid-ocean ridges. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

3.
Isobaric and isothermal experiments were performed to investigate the effect of melt composition on the partitioning of trace elements between titanite (CaTiSiO5) and a range of different silicate melts. Titanite-melt partition coefficients for 18 trace elements were determined by secondary ion mass spectrometry (SIMS) analyses of experimental run products. The partition coefficients for the rare earth elements and for Th, Nb, and Ta reveal a strong influence of melt composition on partition coefficients, whereas partition coefficients for other studied monovalent, divalent and most quadrivalent (i.e., Zr, Hf) cations are not significantly affected by melt composition. The present data show that the influence of melt composition may not be neglected when modelling trace element partitioning.It is argued that it is mainly the change of coordination number and the regularity of the coordination space of trace elements in the melt structure that controls partition coefficients in our experiments. Furthermore, our data also show that the substitution mechanism by which trace elements are incorporated into titanite crystals may be of additional importance in this context.  相似文献   

4.
Small metagabbro bodies are enclosed in the metasedimentary sequence of NW Sardinia. The metagabbros represent the last magmatic episode before the continent–continent collision that built up the Variscan chain of north Sardinia. The metagabbros are composed of variable proportions of plagioclase and pyroxene igneous relics and metamorphic minerals. Major and trace element data, specifically high TiO2 and P2O5 and low K and Rb contents, as well as light rare‐earth elements, Nb and Ta enrichment, suggest an alkaline affinity for the gabbro and emplacement in a within‐plate tectonic setting. The gabbro was derived from an ocean island alkali basalt‐like asthenospheric mantle source enriched with incompatible elements and uncontaminated by crustal or subducted materials. Non‐modal modelling indicates a 5–7% partial melting of the asthenospheric mantle. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Abundances of rare earth elements, Hf, Sc, Co, Cr and Th in garnet megacrysts and their volcanic hosts or matrices are used to estimate garnet/liquid partition coefficients for these elements. Samples include pyropes from kimberlite and highly alkalic basalts, almandines from basalt andesite, dacite, rhyodacite and rhyolite and a spessartine-almandine from alaskite. The pyrope/host partition coefficients are fairly uniform and agree with experimental data within a factor of 2. The almandine/matrix data show more scatter (due in part to impurities in the garnet separates) but the partition coefficients tend to increase with increasing SiO ratio of the matrix. The almandine/matrix partition coefficients are up to a factor of 10 higher than the pyrope/host partition coefficients. The spessartine-almandine is strongly enriched in heavy rare earths (~ 5000 times chondrites), Y, Sc and Co. The wide variation in garnet/liquid partition coefficients from kimberlites to rhyolites cannot be explained as an effect of temperature and we conclude that a major factor is the composition of the melt from which the garnet crystallized.  相似文献   

6.
Systematic, differences in absolute abundancies and distribution patterns of rare earth elements are shown to exist for the main rock types of the third and final phase of the Tertiary igneous complex of Ardnamurchan. Published partition coefficients of the rare earth elements between crystals and host magmas of extrusive rocks have been used, together with modes of the Ardnamurchan rocks, to estimate the rare earth element patterns of the parent magmas. The results confirm that the basic rocks formed by crystal fractionation but that continued crystal fractionation from a single parent magma could not have formed the intermediate rocks.  相似文献   

7.
A suite of basanitoids and alkali olivine basalts from Grenada, Lesser Antilles were analyzed for rare earth elements. The REE concentrations of these rocks are characterized by a small variation in the heavy REE (7 to 9 times chondrite) and a large variation in the light REE (17 to 93 times chondrite). Among the possible mechanisms to account for the REE variations, fractional crystallization processes at low and high pressures, and partial melting processes (both batch melting and fractional melting) were examined, using the partition relationships of REE among silicate minerals and melts. It is suggested that the observed REE variations are best explained by variable degrees of batch partial melting, in which garnet is present as one of the solid phases through 2 to 17% melting of a garnet lherzolite parent rock.  相似文献   

8.
The distribution of rare earth elements (REE) between clinopyroxene (cpx) and basaltic melt is important in deciphering the processes of mantle melting. REE and Y partition coefficients from a given cpx-melt partitioning experiment can be quantitatively described by the lattice strain model. We analyzed published REE and Y partitioning data between cpx and basaltic melts using the nonlinear regression method and parameterized key partitioning parameters in the lattice strain model (D 0, r 0 and E) as functions of pressure, temperature, and compositions of cpx and melt. D 0 is found to positively correlate with Al in tetrahedral site (Al T ) and Mg in the M2 site (MgM2) of cpx and negatively correlate with temperature and water content in the melt. r 0 is negatively correlated with Al in M1 site (AlM1) and MgM2 in cpx. And E is positively correlated with r 0. During adiabatic melting of spinel lherzolite, temperature, Al T , and MgM2 in cpx all decrease systematically as a function of pressure or degree of melting. The competing effects between temperature and cpx composition result in very small variations in REE partition coefficients along a mantle adiabat. A higher potential temperature (1,400°C) gives rise to REE partition coefficients slightly lower than those at a lower potential temperature (1,300°C) because the temperature effect overwhelms the compositional effect. A set of constant REE partition coefficients therefore may be used to accurately model REE fractionation during partial melting of spinel lherzolite along a mantle adiabat. As cpx has low Al and Mg abundances at high temperature during melting in the garnet stability field, REE are more incompatible in cpx. Heavy REE depletion in the melt may imply deep melting of a hydrous garnet lherzolite. Water-dependent cpx partition coefficients need to be considered for modeling low-degree hydrous melting.  相似文献   

9.
O'HARA  M. J. 《Journal of Petrology》1995,36(4):1111-1132
The mixing (integration) of liquids obtained as different massfractions of partial melting from source material of the samebulk composition, travelling along different mantle flow-linesthrough a melting regime, can result in deficiencies in therelative concentrations of those incompatible elements whosebulk distribution coefficients are numerically approximatelyequal to the average mass fraction of melt extracted from thetotal source material involved in the provision of the mixedmelts. These deficiencies can be very substantial, exceeding50% of the concentration which would have been expected to bepresent in the liquid if that same average mass fraction ofmelt had been extracted from the whole melting regime by simpleequilibrium or accumulated perfect fractional partial melting.The size of the deficit varies with the shape and plan-formof the melting region, and can be greatly reduced by subsequentperfect fractional crystallization of that liquid. Discriminationis increased between all elements whose distribution coefficientsare numerically smaller than the average mass fraction of partialmelt extracted from the whole region. These effects can leadto steepening of chondrite-normalized REE patterns and to apparentselective light rare earth enrichment in liquid and source. KEY WORDS: melt integration; shaped melting regimes; trace elements; numerical modelling  相似文献   

10.
华北板块北缘东段早前寒武纪稀土元素演化特征   总被引:1,自引:0,他引:1  
通过对区内早太古宙深变质地体、晚太古宙花岗岩-绿岩地体,晚太古-早元古宙优地槽和火山岛弧各类变质岩稀土元素的研究,三个时期的稀土元素具大致相似的演化特征,不同时期相同的岩石类型的稀土配分型式也大致相似,反映了它们有着相同源岩。但是,它们又在稀土丰度、Eu异常和轻、重稀土分离程度方面表现出某些差异,表明本区在早前寒武纪的不同时期、不同构造环境中地壳成分的不均一性。不同岩石类型稀土配分的多样性,说明岩浆源不同,至少有超镁铁质、镁铁质和安山质或英云闪长岩-奥长花岗岩三种岩浆源。  相似文献   

11.
Cumulus apatite, sphene, feldspar, amphibole and biotite from the pulaskite of the Kangerdlugssuaq alkaline intrusion have been analysed for rare earth elements (REE) by instrumental neutron activation analysis. The apatite is particularly rich in REE, contains 3.6% Ce and shows a steep, light REE-enriched, chondrite-normalised pattern. The other minerals have light REE enrichment but with sphene showing a peak at Ce on a chondrite-normalised plot. REE partition coefficient values show that the light REE are preferentially accommodated by apatite relative to sphene. The differences in these coefficients result from differences in the co-ordination of the REE in the two minerals.  相似文献   

12.
This experimental study examines the mineral/melt partitioning of Na, Ti, La, Sm, Ho, and Lu among high-Ca clinopyroxene, plagioclase, and silicate melts analogous to varying degrees of peridotite partial melting. Experiments performed at a pressure of 1.5 GPa and temperatures of 1,285 to 1,345 °C produced silicate melts saturated with high-Ca clinopyroxene, plagioclase and/or spinel, and, in one case, orthopyroxene and garnet. Partition coefficients measured in experiments in which clinopyroxene coexists with basaltic melt containing ~18 to 19 wt% Al2O3 and up to ~3 wt% Na2O are consistent with those determined experimentally in a majority of the previous studies, with values of ~0.05 for the light rare earths and of ~0.70 for the heavy rare earths. The magnitudes of clinopyroxene/melt partition coefficients for the rare earth elements correlate with pyroxene composition in these experiments, and relative compatibilities are consistent with the effects of lattice strain energy. Clinopyroxene/melt partition coefficients measured in experiments in which the melt contains ~20 wt% Al2O3 and ~4 to 8 wt% Na2O are unusually large (e.g., values for Lu of up to 1.33±0.05) and are not consistent with the dependence on pyroxene composition found in previous studies. The magnitudes of the partition coefficients measured in these experiments correlate with the degree of polymerization of the melt, rather than with crystal composition, indicating a significant melt structural influence on trace element partitioning. The ratio of non-bridging oxygens to tetrahedrally coordinated cations (NBO/T) in the melt provides a measure of this effect; melt structure has a significant influence on trace element compatibility only for values of NBO/T less than ~0.49. This result suggests that when ascending peridotite intersects the solidus at relatively low pressures (~1.5 GPa or less), the compatibility of trace elements in the residual solid varies significantly during the initial stages of partial melting in response to the changing liquid composition. It is unlikely that this effect is important at higher pressures due to the increased compatibility of SiO2, Na2O, and Al2O3 in the residual peridotite, and correspondingly larger values of NBO/T for small degree partial melts.Editorial responsibility: T.L. Grove  相似文献   

13.
Higher Himalayan Crystalline (HHC) complex of the Sikkim Himalaya predominantly consists of high-grade pelitic migmatites. In this study, reaction textures, mineral/bulk rare earth elements (REE), trace element partition coefficients and trace element zoning profiles in garnet are used to demonstrate a complex petrogenetic process during crustal anatexis. With the help of equilibrium REE and trace element partitioning model, it is shown that strong enrichment of Effective Bulk Composition (EBC) is responsible for the zoning in garnet in these rocks. The data strongly support disequilibrium element partitioning and suggest that the anatectic melts associated with mafic selvedges are likely produced by disequilibrium melting because of fast melt segregation process.  相似文献   

14.
Partition coefficients for La, Sm, Ho and Lu (REE) between synthetic zircon and felsic, peralkaline liquid were determined at 800°C and 2 kbar water pressure by adding small amounts of REE to experimental charges and analyzing zircons in the quenched runs with an electron microprobe. The preferred zircon/liquid partition coefficients obtained by this method are: La, 1.4–2.1; Sm, 26–40; Ho, 340+; Lu, 72–126. These results confirm the strong heavy rare earth enrichment discovered by Nagasawa (1970) in zircon separates from dacites and granites, but they also introduce a modification to the supposed zircon/liquid partition coefficient pattern. The heavy REE end of the pattern is concave downward, in qualitative resemblance to some garnet/liquid and hornblende/liquid REE partitioning patterns.  相似文献   

15.
The Lesser Qinling carbonatite dykes are mainly composed of calcites. They are characterized by unusually high heavy rare earth element concentrations (HREE; e.g. Yb > 30 ppm) and flat to weakly light rare earth element (LREE) enriched chondrite-normalized patterns (La/Ybn = 1.0–5.5), which is in marked contrast with all other published carbonatite data. The trace element contents of calcite crystals were measured in situ by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Some crystals show reduced LREE from core to rim, whereas their HREE compositions are relatively constant. The total REE contents and chondrite-normalized REE patterns from the cores of carbonate crystals are similar to those of the whole rock. The carbon and oxygen isotopic compositions of calcites fall within the range of primary, mantle-derived carbonatites. The initial Sr isotopic compositions (0.70480–0.70557) of calcites are consistent with an EM1 source or mixing between HIMU and EM1 mantle sources. However these sources cannot produce carbonatite parental magmas with a flat or slightly LREE enrichment pattern by low degrees of partial melting. Analyses of carbonates from other carbonatites show that carbonates have nearly flat REE pattern if they crystallize from a LREE enriched carbonatite melt. This implies that when carbonates crystallize from a carbonatite melt the calcite/melt partition coefficients (D) for HREE are much greater than the D for the LREE. The nearly flat REE patterns of the Lesser Qinling carbonatites can be explained if they are carbonate cumulates that contain little trapped carbonatite melt. Strong enrichment of HREE in the carbonatites may require their derivation by small degrees of melting from a garnet-poor source.  相似文献   

16.
Trace element partitioning between apatite and silicate melts   总被引:7,自引:0,他引:7  
We present new experimental apatite/melt trace element partition coefficients for a large number of trace elements (Cs, Rb, Ba, La, Ce, Pr, Sm, Gd, Lu, Y, Sr, Zr, Hf, Nb, Ta, U, Pb, and Th). The experiments were conducted at pressures of 1.0 GPa and temperatures of 1250 °C. The rare earth elements (La, Ce, Pr, Sm, Gd, and Lu), Y, and Sr are compatible in apatite, whereas the larger lithophile elements (Cs, Rb, and Ba) are strongly incompatible. Other trace elements such as U, Th, and Pb have partition coefficients close to unity. In all experiments we found DHf > DZr, DTa ≈ DNb, and DBa > DRb > DCs. The experiments reveal a strong influence of melt composition on REE partition coefficients. With increasing polymerisation of the melt, apatite/melt partition coefficients for the rare earth elements increase for about an order of magnitude. We also present some results in fluorine-rich and water-rich systems, respectively, but no significant influence of either H2O or F on the partitioning was found. Furthermore, we also present experimentally determined partition coefficients in close-to natural compositions which should be directly applicable to magmatic processes.  相似文献   

17.
重庆市南川武隆铝土矿是黔中渝南铝土矿成矿带的重要组成部分。为初步查明重庆地区铝土矿稀土元素的地质意义,弥补重庆铝土矿成因研究的不足,笔者以重庆南川武隆铝土矿含矿岩系为研究对象,分析稀土元素(REE)的地球化学特征。通过研究发现,稀土元素总量较高,多数样品轻稀土富集,重稀土不同程度亏损。由于含矿岩系中的REE含量在沉积后只有极微弱的变化,因此利用稀土元素的特征及有关参数对铝土矿含矿岩系的形成环境及其物质来源进行了初步判断:Eu中等负异常,含矿岩系以陆相沉积为主,部分为海相沉积;从含矿岩系样品稀土元素总和、Ce异常、Eu 异常情况来看,含矿岩系形成的古水介质呈弱酸性,含矿岩系主要形成于氧化环境中,氧化能力增强时有利于铝土矿的形成;含矿岩系物质来源具有多样性,志留系韩家店组粉砂质页岩与石炭系黄龙组灰岩均可能为物质来源。  相似文献   

18.
陈登 《地质与勘探》2023,59(4):691-703
为分析贵州遵义二叠纪锰矿的沉积环境,对谢家坝锰矿床进行常量元素、微量和稀土元素地球化学研究。研究认为:谢家坝锰矿赋存于茅口组顶部含锰岩系中,可分为下矿层豆状、角砾状菱锰矿、似层状菱锰矿,以及上矿层碎屑状、块状菱锰矿的二元结构矿石类型组合,可广泛代表遵义锰矿的矿石特征。谢家坝锰矿上下矿层之间主量元素和稀土元素含量差异较大,常量元素SiO2、TiO2、S、Fe2O3含量上矿层均大于下矿层,MnO、MgO与 Al2O3之间均呈负相关关系;上矿层Fe/Mn值较高,属高Fe低P型锰矿,而下矿层Fe/Mn值较低,属中低Fe低P型锰矿。上矿层稀土元素PAAS标准化配分后呈现较明显的重稀土亏损、弱的轻稀土富集、右倾配分的特征,具有弱的Ce正异常,类似海底铁锰结核稀土元素特征;下矿层呈现弱的中稀土富集,轻、重稀土亏损,弱的帽式分配特征,具明显的Ce负异常,类似典型深部海水沉积稀土元素特征。微量元素Th/U、Ni/Co、V/Cr、V/(V+Ni)、AU等沉积环境古氧相分析指标和稀土元素PAAS标准化配分模式指示,谢家坝锰矿下矿层是在贫氧-厌氧条件下Mn2+与CO32-直接形成菱锰矿,上矿层在常氧-贫氧环境下Mn3+、Mn4+以氧化物或氢氧化物形式沉淀。  相似文献   

19.
The abundances of rare earth elements in 5 each of aphyric volcanic rocks of pigeonitic and hypersthenic rock series from Izu-Hakone region have been determined by neutron activation analysis. Pigeonitic rock series show rare earth patterns with relative depletion of lighter rare earths (low lanthanum type) and large increase in rare earth abundances with differentiation. Hypersthenic rock series show higher lanthanum abundances (high lanthanum type) compared with pigeonitic rock series. The differences in rare earth patterns between two rock series are compatible with the theory of independent magmatic generation of these two series. Variation of rare earth patterns in both series have been examined by a model of magmatic differentiation based on the observed rare earth partition coefficients.  相似文献   

20.
REE abundances in minerals from spinel peridotite xenoliths from West Germany, the south-western U.S. and Mongolia decrease in the order clinopyroxene > orthopyroxene > olivine > spinel. While clinopyroxenes are similar in absolute chondrite-normalized concentrations to those known from other studies, orthopyroxenes and olivines are significantly lower in LREE although comparable in HREE. Spinels are much lower in all REE than any previously reported values and are completely negligible for the REE budget of peridotites.Partition coefficients for most orthopyroxene/clinopyroxene pairs increase systematically from La to Lu. Olivine/clinopyroxene and spinel/clinopyroxene partition coefficients increase from the intermediate rare earth elements to Lu and normally are higher for La compared to Sm.The application of Nagasawa's (1966) elastic lattice model suggests that all heavy but only minor amounts of the light REE substitute into structural positions of orthopyroxene and olivine.Significant differences between orthopyroxene/clinopyroxene partition coefficients for various xenoliths may be assigned to dependences upon equilibration temperature and bulk chemistry.Apart from grain surface contaminations, fluid inclusions which are practically always present in mantle minerals, can highly concentrate light rare earth elements and thus may be responsible for unexpectedly high concentrations of incompatible elements frequently reported for mantle olivines or orthopyroxenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号