首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We have conducted scanning electron microscope (SEM) and transmission electron microscope (TEM) studies of a variety of occurrences of matrix in the reduced CV3 chondrite breccia Vigarano. Matrix, which occurs as clastic interchondrule material and finer‐grained rims, is dominated by morphologically variable olivines that host submicron, hercynitic spinel, and carbonaceous inclusions. Clastic matrix and fine‐grained rims show significant differences in their olivine morphologies, abundance, and composition of olivine inclusions, and characteristics of the carbonaceous matter. We suggest that these differences are the result of different degrees of alteration of clastic matrix and rims and are not due to variability in their precursor materials. Textural and compositional characteristics of olivine in the matrix are consistent with formation by growth, possibly from an amorphous precursor material during asteroidal metamorphism, in the presence of limited quantities of aqueous fluids. Spinel inclusions in olivine may be nebular condensates that acted as seeds for nucleation of olivine or may have formed during metamorphism and were subsequently overgrown by olivine. Carbonaceous material occurs as nanometer‐sized inclusions within olivine in both fine‐grained rims and clastic matrix, but is most abundant as 100–200 nm grains, interstitial to matrix olivines. Most carbonaceous material is amorphous, but poorly graphitized carbon (PGC) also occurs as a minor component in both olivine inclusions and interstitial C. The widespread occurrence of fine‐grained amorphous carbon grains in the interstitial regions between olivine grains may preserve the distribution and grain size of nebular organic material. No clear textural relationships exist between carbonaceous grains and the other mineralogical components of Vigarano matrix that could help constrain the origin of the organic grains (i.e., evidence for Fischer‐Tropsch‐type reactions). Finally, there are considerable differences between matrix olivines in Vigarano in comparison with those in oxidized CV3 chondrites. In particular, the mineralogy and morphology of the matrix olivines and the nature, composition, and distribution of inclusions in the olivine grains are distinct. Based on these differences, we conclude that matrix in the oxidized CV3 chondrites could not have formed by thermal processing of Vigarano‐like material.  相似文献   

2.
Dust grains that formed around ancient stars and in stellar explosions seeded the early solar protoplanetary disk. While most of such presolar grains were destroyed during solar system formation, a fraction of such grains were preserved in primitive materials such as meteorites. These grains can provide constraints on stellar origins and secondary processing such as aqueous alteration and thermal metamorphism on their parent asteroids. Here, we report on the nature of aqueous alteration in the Miller Range (MIL) 07687 chondrite through the analysis of four presolar silicates and their surrounding material. The grains occur in the Fe-rich and Fe-poor lithologies, reflecting relatively altered and unaltered material, respectively. The O-isotopic compositions of two grains, one each from the Fe-rich and Fe-poor matrix, are consistent with formation in the circumstellar envelopes of low-mass Asymptotic Giant Branch (AGB)/Red Giant Branch (RGB) stars. The other two grains, also one each from the Fe-rich and Fe-poor matrix, have O-isotopic compositions consistent with formation in the ejecta of type-II supernovae (SNe). The grains derived from AGB/RGB stars include two polycrystalline pyroxene grains that contain Fe-rich rims. The SNe grains include a polycrystalline Ca-bearing pyroxene and a polycrystalline assemblage consistent with a mixture of olivine and pyroxene. Ferrihydrite is observed in all focused ion beam sections, consistent with parent-body aqueous alteration of the fine-grained matrix under oxidizing conditions. The Fe-rich rims around presolar silicates in this study are consistent with Fe-diffusion into the grains resulting from early-stage hydrothermal alteration, but such alteration was not extensive enough to lead to isotopic equilibration with the surrounding matrix.  相似文献   

3.
Using density functional theory, we have examined the hydration mechanism of olivine with the objective of understanding the reaction pathways toward the formation of crystalline serpentine and brucite. It is found that further supply of water beyond saturation of the adsorption sites on olivine surfaces leads to the formation of amorphous brucite and serpentine molecules, with the latter forming in the subsurface domain. The calculated activation energy for this process is ~25 kJ mol?1, which permits formation of the amorphous materials well within the life span of the solar nebula. In addition, molecular dynamic simulations show that the adsorbed water in olivine is stable at least up to 900 K—a finding that is in accord with independent experimental studies. Thus, adsorption plus subsurface reaction of H2O in olivine could have taken place at temperatures considerably higher than the stability limit of hydrous minerals in the nebular condition. Using the DFT derived enthalpy of adsorption data, and reasonable approximation for the entropy of adsorption, we have calculated the fractional coverage of the reactive surface sites of olivine grains of spherical geometry by adsorbed water, and the corresponding ocean equivalent water (OEW) that could have been accreted into the Earth. These results suggest that adsorption and the associated subsurface hydroxylation of olivine grains might have been responsible for a significant fraction of the Earth's water budget. The adsorption of water into olivine crystals in the solar nebula might also have led to the delivery of water to other planetary bodies.  相似文献   

4.
Abstract— Fine‐grained, optically opaque rims coat individual olivine and pyroxene grains in CM matrices and chondrules. Bulk chemical analyses and observations of these rims indicate the presence of phyllosilicates and disseminated opaques. Because phyllosilicates could not have survived the chondrule formation process, chondrule silicate rims must have formed entirely by late‐state aqueous reactions. As such, these textures provide a useful benchmark for isolating alteration features from more complex CM matrix materials. Both chondrule silicate and matrix silicate rims exhibit morphological features commonly associated with advancing stages of replacement reactions in terrestrial serpentinites. Contacts between many matrix silicate rims and the adjacent matrix materials suggest that these rims formed entirely by aqueous reactions in a parent‐body setting. This contrasts with previous assertions that rim textures can only form by the accretion of nebular dust but does not imply an origin for the rims surrounding other types of CM core components, such as chondrules.  相似文献   

5.
Abstract– Low‐iron, manganese‐enriched (LIME) olivine grains are found in cometary samples returned by the Stardust mission from comet 81P/Wild 2. Similar grains are found in primitive meteoritic clasts and unequilibrated meteorite matrix. LIME olivine is thermodynamically stable in a vapor of solar composition at high temperature at total pressures of a millibar to a microbar, but enrichment of solar composition vapor in a dust of chondritic composition causes the FeO/MnO ratio of olivine to increase. The compositions of LIME olivines in primitive materials indicate oxygen fugacities close to those of a very reducing vapor of solar composition. The compositional zoning of LIME olivines in amoeboid olivine aggregates is consistent with equilibration with nebular vapor in the stability field of olivine, without re‐equilibration at lower temperatures. A similar history is likely for LIME olivines found in comet samples and in interplanetary dust particles. LIME olivine is not likely to persist in nebular conditions in which silicate liquids are stable.  相似文献   

6.
Abstract— A fine‐grained dark inclusion in the Ningqiang carbonaceous chondrite consists of relatively pristine solar nebular materials and has high concentrations of heavy primordial rare gases. Trapped 36Ar concentration amounts to 6 times 10?6 cc STP/g, which is higher than that of Ningqiang host by a factor of three. Light HF‐HCl etching of the dark inclusion removed 86, 73, and 64% of the primordial 36Ar, 84Kr, and 132Xe, respectively. Thus, the majority of the noble gases in this inclusion are located in very acid‐susceptive material. Based on the elemental composition, the noble gases lost from the dark inclusion during the acid‐treatments are Ar‐rich, and the noble gases remaining in the inclusion are Q and HL gases. Transmission electron microscopy showed that the acid treatments removed thin Si, Mg, and Fe‐rich amorphous rims present around small olivine and pyroxene grains in the dark inclusion, suggesting that the Ar‐rich gases reside in the amorphous layers. A possible origin of the Ar‐rich gases is the acquisition of noble‐gas ions with a composition fractionated relative to solar abundance favoring the heavy elements by the effect of incomplete ionization under plasma conditions at 8000 K electron temperature.  相似文献   

7.
Comets and the chondritic porous interplanetary dust particles (CP IDPs) that they shed in their comae are reservoirs of primitive solar nebula materials. The high porosity and fragility of cometary grains and CP IDPs, and anomalously high deuterium contents of highly fragile, pyroxene-rich Cluster IDPs imply these aggregate particles contain significant abundances of grains from the interstellar medium (ISM). IR spectra of comets (3–40 μm) reveal the presence of a warm (near-IR) featureless emission modeled by amorphous carbon grains. Broad andnarrow resonances near 10 and 20 microns are modeled by warm chondritic (50% Feand 50% Mg) amorphous silicates and cooler Mg-rich crystalline silicate minerals, respectively. Cometary amorphous silicates resonances are well matched by IRspectra of CP IDPs dominated by GEMS (0.1 μm silicate spherules) that are thought to be the interstellar Fe-bearing amorphous silicates produced in AGB stars. Acid-etched ultramicrotomed CP IDP samples, however, show that both the carbon phase (amorphous and aliphatic) and the Mg-rich amorphous silicate phase in GEMS are not optically absorbing. Rather, it is Fe and FeS nanoparticles embedded in the GEMS that makes the CP IDPs dark. Therefore, CP IDPs suggest significant processing has occurred in the ISM. ISM processing probably includes in He+ ion bombardment in supernovae shocks. Laboratory experiments show He+ ion bombardment amorphizes crystalline silicates, increases porosity, and reduces Fe into nanoparticles. Cometary crystalline silicate resonances are well matched by IR spectra of laboratory submicron Mg-rich olivine crystals and pyroxene crystals. Discovery of a Mg-pure olivine crystal in a Cluster IDP with isotopically anomalous oxygen indicates that a small fraction of crystalline silicates may have survived their journey from AGB stars through the ISM to the early solar nebula. The ISM does not have enough crystalline silicates (<5%), however, to account for the deduced abundance of crystalline silicates in comet dust. An insufficient source of ISMMg-rich crystals leads to the inference that most Mg-rich crystals in comets are primitive grains processed in the early solar nebula prior to their incorporation into comets. Mg-rich crystals may condense in the hot (~1450 K), inner zones of the early solar nebula and then travel large radial distances out to the comet-forming zone. On the other hand, Mg-rich silicate crystals may be ISM amorphous silicates annealed at ~1000 K and radially distributed out to the comet-forming zone or annealed in nebular shocks at ~5-10 AU. Determining the relative abundance of amorphous and crystalline silicatesin comets probes the relative contributions of ISM grains and primitive grains to small, icy bodies in the solar system. The life cycle of dust from its stardust origins through the ISM to its incorporation into comets is discussed.  相似文献   

8.
Abstract— The outer portions of many type I chondrules (Fa and Fs <5 mol%) in CR chondrites (except Renazzo and Al Rais) consist of silica‐rich igneous rims (SIRs). The host chondrules are often layered and have a porphyritic core surrounded by a coarse‐grained igneous rim rich in low‐Ca pyroxene. The SIRs are sulfide‐free and consist of igneously‐zoned low‐Ca and high‐Ca pyroxenes, glassy mesostasis, Fe, Ni‐metal nodules, and a nearly pure SiO2 phase. The high‐Ca pyroxenes in these rims are enriched in Cr (up to 3.5 wt% Cr2O3) and Mn (up to 4.4 wt% MnO) and depleted in Al and Ti relative to those in the host chondrules, and contain detectable Na (up to 0.2 wt% Na2O). Mesostases show systematic compositional variations: Si, Na, K, and Mn contents increase, whereas Ca, Mg, Al, and Cr contents decrease from chondrule core, through pyroxene‐rich igneous rim (PIR), and to SIR; FeO content remains nearly constant. Glass melt inclusions in olivine phenocrysts in the chondrule cores have high Ca and Al, and low Si, with Na, K, and Mn contents that are below electron microprobe detection limits. Fe, Ni‐metal grains in SIRs are depleted in Ni and Co relative to those in the host chondrules. The presence of sulfide‐free, SIRs around sulfide‐free type I chondrules in CR chondrites may indicate that these chondrules formed at high (>800 K) ambient nebular temperatures and escaped remelting at lower ambient temperatures. We suggest that these rims formed either by gas‐solid condensation of silica‐normative materials onto chondrule surfaces and subsequent incomplete melting, or by direct SiO(gas) condensation into chondrule melts. In either case, the condensation occurred from a fractionated, nebular gas enriched in Si, Na, K, Mn, and Cr relative to Mg. The fractionation of these lithophile elements could be due to isolation (in the chondrules) of the higher temperature condensates from reaction with the nebular gas or to evaporation‐recondensation of these elements during chondrule formation. These mechanisms and the observed increase in pyroxene/olivine ratio toward the peripheries of most type I chondrules in CR, CV, and ordinary chondrites may explain the origin of olivine‐rich and pyroxene‐rich chondrules in general.  相似文献   

9.
Abstract— A composition approximating the lithology A groundmass of the Elephant Moraine (EET) 79001 martian basalt (Eg; McSween and Jarosewich, 1983) has been used to investigate the petrogenesis of the meteorite and the behavior of Cr and V at different oxygen fugacities. Crystallization experiments were carried out over a range of temperatures, and oxygen fugacities of either iron‐wüstite (IW) or IW + 2 (i.e., 1.5 log units below the quartz‐fayalite‐magnetite (QFM) buffer). Comparison of trace element concentrations (obtained by secondary ion mass spectrometry (SIMS) analysis) in experimental silicates with those of natural silicates supports the Fe‐Ti oxide‐derived oxygen fugacity of QFM ?1.8 ± 0.3 for this basalt (Herd et al., 2001). Experimental distribution coefficients, in conjunction with SIMS analyses of rims from the olivine and pyroxene xenocrysts in lithology A, as well as analyses of lithology A groundmass pigeonite cores, are used to calculate coexisting liquid concentrations of V and Cr. Liquid compositions derived from pigeonite xenocryst rims and groundmass pigeonite cores are similar, suggesting that the rims of orthopyroxene xenocrysts are overgrowths, which have not previously been accounted for when reconstructing the groundmass composition. This implies that the Eg composition requires modification. A similar exercise for the ferroan rims on olivine xenocrysts yields very different liquid compositions, indicating that these rims are not overgrowths but are part of the xenocryst assemblage. These results are shown to be consistent with the petrography of lithology A xenocrysts.  相似文献   

10.
Abstract— In this paper, we review the mineralogy and chemistry of calcium‐aluminum‐rich inclusions (CAIs), chondrules, FeNi‐metal, and fine‐grained materials of the CR chondrite clan, including CR, CH, and the metal‐rich CB chondrites Queen Alexandra Range 94411, Hammadah al Hamra 237, Bencubbin, Gujba, and Weatherford. The members of the CR chondrite clan are among the most pristine early solar system materials, which largely escaped thermal processing in an asteroidal setting (Bencubbin, Weatherford, and Gujba may be exceptions) and provide important constraints on the solar nebula models. These constraints include (1) multiplicity of CAI formation; (2) formation of CAIs and chondrules in spatially separated nebular regions; (3) formation of CAIs in gaseous reservoir(s) having 16O‐rich isotopic compositions; chondrules appear to have formed in the presence of 16O‐poor nebular gas; (4) isolation of CAIs and chondrules from nebular gas at various ambient temperatures; (5) heterogeneous distribution of 26Al in the solar nebula; and (6) absence of matrix material in the regions of CAI and chondrule formation.  相似文献   

11.
Frans J.M. Rietmeijer 《Icarus》2011,211(2):948-959
Chondrite aggregate interplanetary dust particle IDP L2011K7, collected in the Earth’s lower stratosphere, is an agglomerate of diopside, Mg,Fe-olivine, rare Fe-sulfide and abundant amorphous Mg,Fe-silicates. The overwhelming majority of amorphous silicates have a serpentine-dehydroxylate [(Mg,Fe)3Si2O7] composition; a few have a smectite-dehydroxylate [(Mg,Fe)6Si8O22] composition. The cation ratios of the amorphous silicates are notably identical to those of serpentine and smectite phyllosilicates. This paper follows the chronological changes in the amorphous silicates that include (1) formation of nanometer scale crystalline silicates (Mg,Fe-olivine and pyroxene), (2) partial hydration and formation of antigorite-serpentine proto-phyllosilicates, (3) partial dehydration of these proto-phyllosilicates, and finally oxidation and Fe-oxide formation by flash heating during atmospheric entry. Environmental conditions capable of driving these changes in the diffuse interstellar medium or solar nebula, in a comet nucleus, or in circumsolar orbit as a cometary meteoroid were marginal at best. These changes could only proceed because of the unique amorphous silicate compositions. While this study cannot make a firm statement about an interstellar or solar nebula origin for its amorphous silicates that are irradiation-induced olivine, this study does find that amorphous silicates with serpentine and (rare) smectite compositions are an important fraction of the amorphous silicates in comets in addition to amorphous olivine and pyroxene. It is noted that an ice and water-free, millimeter-scale, structurally coherent crumb would be an ample ‘microenvironment’ to evolve micrometer-scale dust. After all IDP L2011K7 only measures 22 × 17 μm.  相似文献   

12.
Two processes have been proposed to explain observations of crystalline silicate minerals in comets and in protostellar sources, both of which rely on the thermal annealing of amorphous grains. First, high temperatures generated by nebular shock processes can rapidly produce crystalline magnesium silicate grains and will simultaneously produce a population of crystalline iron silicates whose average grain size is ∼10-15% that of the magnesium silicate minerals. Second, exposure of amorphous silicate grains to hot nebular environments can produce crystalline magnesium silicates that might then be transported outward to regions of comet formation. At the higher temperatures required for annealing amorphous iron silicates to crystallinity the evaporative lifetime of the grains is much shorter than a single orbital period where such temperatures are found in the nebula. Thermal annealing is therefore unable to produce crystalline iron silicate grains for inclusion into comets unless such grains are very quickly transported away from the hot inner nebula. It follows that observation of pure crystalline magnesium silicate minerals in comets or protostars is a direct measure of the importance of simple thermal annealing of grains in the innermost regions of protostellar nebulae followed by dust and gas transport to the outer nebula. The presence of crystalline iron silicates would signal the action of transient processes such as shock heating that can produce crystalline iron, magnesium and mixed iron-magnesium silicate minerals. These different scenarios result in very different predictions for the organic content of protostellar systems.  相似文献   

13.
Abstract— Patches of clastic matrix (15 to 730 μm in size) constitute 4.9 vol% of EH3 Yamato (Y‐) 691 and 11.7 vol% of EH3 Allan Hills (ALH) 81189. Individual patches in Y‐691 consist of 1) ?25 vol% relatively coarse opaque grain fragments and polycrystalline assemblages of kamacite, schreibersite, perryite, troilite (some grains with daubréelite exsolution lamellae), niningerite, oldhamite, and caswellsilverite; 2) ?30 vol% relatively coarse silicate grains including enstatite, albitic plagioclase, silica and diopside; and 3) an inferred fine nebular component (?45 vol%) comprised of submicrometer‐size grains. Clastic matrix patches in ALH 81189 contain relatively coarse grains of opaques (?20 vol%; kamacite, schreibersite, perryite and troilite) and silicates (?30 vol%; enstatite, silica and forsterite) as well as an inferred fine nebular component (?50 vol%). The O‐isotopic composition of clastic matrix in Y‐691 is indistinguishable from that of olivine and pyroxene grains in adjacent chondrules; both sets of objects lie on the terrestrial mass‐fractionation line on the standard three‐isotope graph. Some patches of fine‐grained matrix in Y‐691 have distinguishable bulk concentrations of Na and K, inferred to be inherited from the solar nebula. Some patches in ALH 81189 differ in their bulk concentrations of Ca, Cr, Mn, and Ni. The average compositions of matrix material in Y‐691 and ALH 81189 are similar but not identical‐matrix in ALH 81189 is much richer in Mn (0.23 ± 0.05 versus 0.07 ± 0.02 wt%) and appreciably richer in Ni (0.36 ± 0.10 versus 0.18 ± 0.05 wt%) than matrix in Y‐691. Each of the two whole‐rocks exhibits a petrofabric, probably produced by shock processes on their parent asteroid.  相似文献   

14.
Abstract— It was suggested that multilayered accretionary rims composed of ferrous olivine, andradite, wollastonite, salite‐hedenbergitic pyroxenes, nepheline, and Ni‐rich sulfides around Allende calcium‐aluminum‐rich inclusions (CAIs) are aggregates of gas‐solid condensates which reflect significant fluctuations in physico‐chemical conditions in the slowly cooling solar nebula and grain/gas separation processes. In order to test this model, we studied the mineralogy of accretionary rims around one type A CAI (E104) and one type B CAI (E48) from the reduced CV3 chondrite Efremovka, which is less altered than Allende. In contrast to the Allende accretionary rims, those in Efremovka consist of coarse‐grained (20–40 μm), anhedral forsterite (Fa1–8), Fe, Ni‐metal nodules, amoeboid olivine aggregates (AOAs) and fine‐grained CAIs composed of Al‐diopside, anorthite, and spinel, ± forsterite. Although the fine‐grained CAIs, AOAs and host CAIs are virtually unaltered, a hibonite‐spinel‐perovskite CAI in the E48 accretionary rim experienced extensive alteration, which resulted in the formation of Fe‐rich, Zn‐bearing spinel, and a Ca, Al, Si‐hydrous mineral. Forsterites in the accretionary rims typically show an aggregational nature and consist of small olivine grains with numerous pores and tiny inclusions of Al‐rich minerals. No evidence for the replacement of forsterite by enstatite was found; no chondrule fragments were identified in the accretionary rims. We infer that accretionary rims in Efremovka are more primitive than those in Allende and formed by aggregation of high‐temperature condensates around host CAIs in the CAI‐forming regions. The rimmed CAIs were removed from these regions prior to condensation of enstatite and alkalies. The absence of andradite, wollastonite, and hedenbergite from the Efremovka rims may indicate that these rims sampled different nebular regions than the Allende rims. Alternatively, the Ca, Fe‐rich silicates rimming Allende CAIs may have resulted from late‐stage metasomatic alteration, under oxidizing conditions, of original Efremovka‐like accretionary rims. The observed differences in O‐isotope composition between forsterite and Ca, Fe‐rich minerals in the Allende accretionary rims (Hiyagon, 1998) suggest that the oxidizing fluid had an 16O‐poor oxygen isotopic composition.  相似文献   

15.
Abstract— We present the results of irradiation experiments aimed at understanding the structural and chemical evolution of silicate grains in the interstellar medium. A series of He+ irradiation experiments have been performed on ultra‐thin olivine, (Mg,Fe)2SiO4, samples having a high surface/volume (S/V) ratio, comparable to the expected S/V ratio of interstellar dust. The energies and fluences of the helium ions used in this study have been chosen to simulate the irradiation of interstellar dust grains in supernovae shock waves. The samples were mainly studied using analytical transmission electron microscopy. Our results show that olivine is amorphized by low‐energy ion irradiation. Changes in composition are also observed. In particular, irradiation leads to a decrease of the atomic ratios O/Si and Mg/Si as determined by x‐ray photoelectron spectroscopy and by x‐ray energy dispersive spectroscopy. This chemical evolution is due to the differential sputtering of atoms near the surfaces. We also observe a reduction process resulting in the formation of metallic iron. The use of very thin samples emphasizes the role of surface/volume ratio and thus the importance of the particle size in the irradiation‐induced effects. These results allow us to account qualitatively for the observed properties of interstellar grains in different environments, that is, at different stages of their evolution: chemical and structural evolution in the interstellar medium, from olivine to pyroxene‐type and from crystalline to amorphous silicates, porosity of cometary grains as well as the formation of metallic inclusions in silicates.  相似文献   

16.
Abstract— Ningqiang is an anomalous CV chondrite (oxidized subgroup) containing a high abundance of aggregational inclusions (13.7 vol.%) and low abundances of refractory inclusions (1.0+1.0–0.5 vol.%) and bulk refractory lithophiles (~0.82 × CV). Ningqiang may have agglomerated after most refractory inclusions at the nebular midplane had already been incorporated into other objects. Coarse-grained rims surround only ~5% of Ningqiang chondrules, compared to ~50% in normal CV chondrites. Aggregational inclusions appear to have formed by incipient melting of fine-grained aggregates at relatively low temperatures in the solar nebula, possibly by the mechanism responsible for chondrule formation. Granoblastic porphyritic chondrules, which contain olivines forming 120° triple junctures and no mesostasis, probably formed in the solar nebula by incomplete melting of precursor materials that were olivine normative and had relatively low concentrations of Si, Ca, Al, Fe and Na.  相似文献   

17.
MnO/FeO ratios in olivine from amoeboid olivine aggregates (AOAs) reflect conditions of nebular condensation and can be used in concert with matrix textures to compare metamorphic conditions in carbonaceous chondrites. LIME (low‐iron, Mn‐enriched) olivine was identified in AOAs from Y‐81020 (CO3.05), Kaba (CV~3.1), and in Y‐86009 (CV3), Y‐86751 (CV3), NWA 1152 (CR/CV3), but was not identified in AOAs from Efremovka (CV3.1–3.4) or Allende (CV>3.6). According to thermodynamic models of nebular condensation, LIME olivine is stable at lower temperatures than Mn‐poor olivine and at low oxygen fugacities (dust enrichment <10× solar). Although this set of samples does not represent a single metamorphic sequence, the higher subtypes tend to have AOA olivine with lower Mn/Fe, suggesting that Mn/Fe decreases during parent body metamorphism. Y‐81020 has the lowest subtype and most forsteritic AOA olivine (Fo>95) in our study, whereas Efremovka AOAs are slightly Fe‐rich (Fo>92). AOA olivines from Kaba are mostly forsteritic, but rare Fe‐rich olivine precipitated from an aqueous fluid. A combination of precipitation of Fe‐rich olivine and diffusion of Fe into primary olivine grains resulted in iron‐rich compositions (Fo97–59) in Allende AOAs. Variations from fine‐grained, nonporous matrix toward higher porosity and coarser lath‐like matrix olivine can be divided into six stages represented by (1) Y‐81020, Efremovka, NWA 1152; (2) Y‐86751 lithology B; (3) Y‐86009; (4) Kaba; (5) Y‐86751 lithology A; (6) Allende. These stages are inferred to represent general degree of metamorphism, although the specific roles of thermally driven grain growth and diffusion versus aqueous dissolution and precipitation remain uncertain.  相似文献   

18.
Renazzo‐type (CR) carbonaceous chondrites belong to one of the most pristine meteorite groups containing various early solar system components such as matrix and fine‐grained rims (FGRs), whose formation mechanisms are still debated. Here, we have investigated FGRs of three Antarctic CR chondrites (GRA 95229, MIL 07525, and EET 92161) by electron microscopy techniques. We specifically focused on the abundances and chemical compositions of the amorphous silicates within the rims and matrix by analytical transmission electron microscopy. Comparison of the amorphous silicate composition to a matrix area of GRA 95229 clearly shows a compositional relationship between the matrix and the fine‐grained rim, such as similar Mg/Si and Fe/Si ratios. This relationship and the abundance of the amorphous silicates in the rims strengthen a solar nebular origin and rule out a primary formation mechanism by parent body processes such as chondrule erosion. Moreover, our chemical analyses of the amorphous silicates and their abundance indicate that the CR rims experienced progressive alteration stages. According to our analyses, the GRA 95229 sample is the least altered one based on its high modal abundance of amorphous silicates (31%) and close‐to‐chondritic Fe/Si ratios, followed by MIL 07525 and finally EET 92161 with lesser amounts of amorphous silicates (12% and 5%, respectively) and higher Fe/Si ratios. Abundances and chemical compositions of amorphous silicates within matrix and rims are therefore suitable recorders to track different alteration stages on a submicron scale within variably altered CR chondrites.  相似文献   

19.
We have discovered in a Stardust mission terminal particle a unique mineralogical assemblage of symplectically intergrown pentlandite ((Fe,Ni)9S8) and nanocrystalline maghemite (γ‐Fe2O3). Mineralogically similar cosmic symplectites (COS) have only been found in the primitive carbonaceous chondrite Acfer 094 and are believed to have formed by aqueous alteration. The O and S isotopic compositions of the Wild 2 COS are indistinguishable from terrestrial values. The metal and sulfide precursors were thus oxidized by an isotopically equilibrated aqueous reservoir either inside the snow line, in the Wild 2 comet, or in a larger Kuiper Belt object. Close association of the Stardust COS with a Kool mineral assemblage (kosmochloric Ca‐rich pyroxene, FeO‐rich olivine, and albite) that likely originated in the solar nebula suggests the COS precursors also had a nebular origin and were transported from the inner solar system to the comet‐forming region after they were altered.  相似文献   

20.
Crystal size distribution (CSD) and spatial distribution pattern (SDP) analyses are applied to the early crystallizing phases, olivine and pyroxene, in olivine‐phyric shergottites (Elephant moraine [EET] 79001A, Dar al Gani [DaG] 476, and dhofar [Dho] 019) from each sampling locality inferred from Mars ejection ages. Trace element zonation patterns (P and Cr) in olivine are also used to characterize the crystallization history of these Martian basalts. Previously reported 2‐D CSDs for these meteorites are re‐evaluated using a newer stereographically corrected methodology. Kinks in the olivine CSD plots suggest several populations that crystallized under different conditions. CSDs for pyroxene in DaG 476 and EET 79001A reveal single populations that grew under steady‐state conditions; pyroxenes in Dho 019 were too intergrown for CSD analysis. Magma chamber residence times of several days for small grains to several months for olivine megacrysts are calculated using the CSD slopes and growth rates inferred from previous experimental data. Phosphorus imaging in olivines in DaG 476 and Dho 019 indicate rapid growth of skeletal, sector‐zoned, or patchy cores, probably in response to delayed nucleation, followed by slow growth, and finally rapid dendritic growth with back‐filling to form oscillatory zoning in rims. SPD analyses indicate that olivine and pyroxene crystals grew or accumulated in clusters rather than as randomly distributed grains. These data reveal complex solidification histories for Martian basalts, and are generally consistent with the formation at depth of olivine megacryst cores, which were entrained in ascending magmas that crystallized pyroxenes, small olivines, and oscillatory rims on megacrysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号