首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the fate of freshwater runoff and corresponding nutrient and pollution loads is of critical importance for the development of accurate predictive models and coastal management tools. A key element of such studies is the identification and understanding of the interaction between stratification and current structure. This paper presents a new series of measurements made in the Liverpool Bay region of freshwater influence (ROFI) during spring 2004 where freshwater-maintained horizontal density gradients and strong tidal currents interact to produce strain-induced periodic stratification (SIPS). During stratification, tidal current profiles are significantly modified such that the tidal flow deviates from the otherwise rectilinear E–W axis generating counter rotating upper and lower mixed layers. This feature has often been reported for the Rhine ROFI but not previously identified in Liverpool Bay despite previous investigation at this site. Investigation of an ongoing long-term dataset collected nearby reveals this process to be a common feature throughout the year. Liverpool Bay is shown to maintain three different regimes, long term mixed, long term stratified, and a transitional state when SIPS occurs. The phase of SIPS relative to the tide results in a residual flow away from the Welsh coastline in the upper water column of 2.3–3.6 cm s−1 with a counterflow in the lower layer of 2.8–3.1 cm s−1 towards the coast.  相似文献   

2.
Regions of freshwater influence (ROFIs) are dynamic areas within the coastal seas that experience cycles of stability driven by density gradients and the spring-neap tidal cycle. As a result, pulses of biological production may occur on a more frequent timescale than the classic seasonal cycle. Net community production (NCP) rates and chlorophyll a concentration are presented from a site within the ROFI of Liverpool Bay and compared to similar measurements made at a site outside the ROFI during 2009. The influence of water column stability on biological production in the ROFI was also investigated using high-frequency observations from a Cefas Smartbuoy. Both sites were autotrophic from spring to autumn before becoming heterotrophic over winter. NCP at the inshore site was estimated to range from 30.8 to 50.4 gC m−2 year−1. A linear relationship detected between chlorophyll a and NCP from both sites was used to estimate metabolic balance over 1 year at the ROFI site using high-resolution chlorophyll a concentrations from the Smartbuoy but was found to poorly replicate NCP rates compared to those derived from dissolved oxygen fluxes. There was no clear biological response to periods of stratification within the ROFI, and it is proposed that changes in light attenuation in the Liverpool Bay ROFI, driven not only by stratification but also by fluctuations in riverine sediment load, most likely play an important role in controlling phytoplankton growth in this region.  相似文献   

3.
Physical and dynamical oceanography of Liverpool Bay   总被引:1,自引:1,他引:0  
The UK National Oceanography Centre has maintained an observatory in Liverpool Bay since August 2002. Over 8 years of observational measurements are used in conjunction with regional ocean modelling data to describe the physical and dynamical oceanography of Liverpool Bay and to validate the regional model, POLCOMS. Tidal dynamics and plume buoyancy govern the fate of the fresh water as it enters the sea, as well as the fate of its sediment, contaminants and nutrient loads. In this context, an overview and summary of Liverpool Bay tidal dynamics are presented. Freshwater forcing statistics are presented showing that on average the bay receives 233 m3 s − 1. Though the region is salinity controlled, river input temperature is shown to significantly modulate the plume buoyancy with a seasonal cycle. Stratification strongly influences the region’s dynamics. Data from long-term moored instrumentation are used to analyse the stratification statistics that are representative of the region. It is shown that for 65% of tidal cycles, the region alternates between being vertically mixed and stratified. Plume dynamics are diagnosed from the model and are presented for the region. The spring–neap modulation of the plume’s westward extent, between 3.5 °W and 4°W, is highlighted. The rapid eastward erosion of the plume during spring tides is identified as a potentially important freshwater mixing mechanism. Novel climatological maps of temperature, salinity and density from the CTD surveys are presented and used to validate numerical simulations. The model is found to be sensitive to the freshwater forcing rates, temperature and salinities. The existing CTD survey grid is shown to not extend sufficiently near the coast to capture the near coastal and vertically mixed component the plume. Instead the survey grid captures the westward spreading, shallow and transient, portion of the plume. This transient plume feature is shown in both the long-term averaged model and observational data as a band of stratified fluid stretching between the mouth of the Mersey towards the Isle of Man. Finally the residual circulation is discussed. Long-term moored ADCP data are favourably compared with model data, showing the general northward flow of surface water and southward trajectory of bottom water.  相似文献   

4.
A critical factor controlling changes in the acidity of coastal waters is the alkalinity of the water. Concentrations of alkalinity are determined by supply from rivers and by in situ processes such as biological production and denitrification. A 2-year study based on 15 cruises in Liverpool Bay followed the seasonal cycles of changing concentrations of total alkalinity (TA) and total dissolved inorganic carbon (DIC) in relation to changes caused by the annual cycle of biological production during the mixing of river water into the Bay. Consistent annual cycles in concentrations of nutrients, TA and DIC were observed in both years. At a salinity of 31.5, the locus of primary production during the spring bloom, concentrations of NO x decreased by 25 ± 4 μmol kg−1 and DIC by 106 ± 16 μmol kg−1. Observed changes in TA were consistent with the uptake of protons during primary biological production. Concentrations of TA increased by 33 ± 8 μmol kg−1 (2009) and 33 ± 15 μmol kg−1 (2010). The impact of changes in organic matter on the measured TA appears likely to be small in this area. Thomas et al. (2009) suggested that denitrification may enhance the CO2 uptake of the North Sea by 25%, in contrast we find that although denitrification is a significant process in itself, it does not increase concentrations of TA relative to those of DIC and so does not increase buffer capacity and potential uptake of CO2 into shelf seawaters. For Liverpool Bay historical data suggest that higher concentrations of TA during periods of low flow are likely to contribute in part to the observed change in TA between winter and summer but the appropriate pattern cannot be identified in recent low-frequency river data. On a wider scale, data for the rivers Mersey, Rhine, Elbe and Weser show that patterns of seasonal change in concentrations of TA in river inputs differ between river systems.  相似文献   

5.
The seasonal and interannual variability in the phytoplankton community in Liverpool Bay between 2003 and 2009 has been examined using results from high frequency, in situ measurements combined with discrete samples collected at one location in the bay. The spring phytoplankton bloom (up to 29.4 mg chlorophyll m−3) is an annual feature at the study site and its timing may vary by up to 50 days between years. The variability in the underwater light climate and turbulent mixing are identified as key factors controlling the timing of phytoplankton blooms. Modelled average annual gross and net production are estimated to be 223 and 56 g C m−2 year−1, respectively. Light microscope counts showed that the phytoplankton community is dominated by diatoms, with dinoflagellates appearing annually for short periods of time between July and October. The zooplankton community at the study site is dominated by copepods and use of a fine mesh (80 μm) resulted in higher abundances of copepods determined (up to 2.5 × 106 ind. m−2) than has previously reported for this location. There is a strong seasonal cycle in copepod biomass and copepods greater than 270 μm contribute less than 10% of the total biomass. Seasonal trends in copepod biomass lag those in the phytoplankton community with a delay of 3 to 4 months between the maximum phytoplankton biomass and the maximum copepod biomass. Grazing by copepods exceeds net primary production at the site and indicates that an additional advective supply of carbon is required to support the copepod community.  相似文献   

6.
Sea surface temperature satellite imagery and a regional hydrodynamic model are used to investigate the variability and structure of the Liverpool Bay thermohaline front. A statistically based water mass classification technique is used to locate the front in both data sets. The front moves between 5 and 35 km in response to spring–neap changes in tidal mixing, an adjustment that is much greater than at other shelf-sea fronts. Superimposed on top of this fortnightly cycle are semi-diurnal movements of 5–10 km driven by flood and ebb tidal currents. Seasonal variability in the freshwater discharge and the density difference between buoyant inflow and more saline Irish Sea water give rise to two different dynamical regimes. During winter, when cold inflow reduces the buoyancy of the plume, a bottom-advected front develops. Over the summer, when warm river water provides additional buoyancy, a surface-advected plume detaches from the bottom and propagates much larger distances across the bay. Decoupled from near-bed processes, the position of the surface front is more variable. Fortnightly stratification and re-mixing over large areas of Liverpool Bay is a potentially important mechanism by which freshwater, and its nutrient and pollutant loads, are exported from the coastal plume system. Based on length scales estimated from model and satellite data, the erosion of post-neap stratification is estimated to be responsible for exporting approximately 19% of the fresh estuarine discharge annually entering the system. Although the baroclinic residual circulation makes a more significant contribution to freshwater fluxes, the episodic nature of the spring–neap cycle may have important implications for biogeochemical cycles within the bay.  相似文献   

7.
The fate of inflows into lakes has been extensively studied during summer stratification but has seen relatively little focus during the weak winter stratification, with or without ice-cover. Field observations are presented of groundwater inflow into a shallow bay of a subarctic lake. Atmospheric forcing of the bay during the study period was extremely variable and coincided with spring ice-cover break-up. Two dominant wind regimes were identified; (1) weak wind-forcing (wind speed <5 m s−1 or land-fast ice-cover), and (2) strong wind-forcing (wind speed >5 m s−1 and open water). At a relatively constant temperature of ~3.3°C, the groundwater inflow was closer to the temperature of maximum density than the water in the main body of the lake, which during the observed winter stratification is ~1.2°C. During weak wind-forcing, the stratification within Silfra Bay approximated two-layers as this denser groundwater formed a negatively buoyant underflow. A calculated underflow entrainment rate of 2.8 × 10−3 agrees well with other underflow studies. During strong wind-forcing, the water column out to the mouth of the bay became weakly stratified as the underflow was entrained vertically by wind-stirring. Observed periods of mixing can be predicted to occur when turbulent kinetic energy (TKE) production by wind stirring integrated over the underflow hydraulic residence time in the bay exceeds the potential energy associated with the stratification. A decrease of ice cover, as observed in the studied subarctic lake over the last decade, will result in the underflow being more frequently exposed to the strong wind-forcing regime during winter, thereby altering the winter distribution of groundwater inflow within the lake.  相似文献   

8.
The effect of horizontal grid resolution on the horizontal relative dispersion of particle pairs has been investigated on a short time scale, i.e. one tidal M 2 cycle. Of particular interest is the tidal effect on dispersion and transports in coastal waters where small-scale flow features are important. A three-dimensional ocean model has been applied to simulate the tidal flow through the Moskstraumen Maelstrom outside Lofoten in northern Norway, well known for its strong current and whirlpools (Gjevik et al., Nature 388(6645):837–838, 1997; Moe et al., Cont Shelf Res 22(3):485–504, 2002). Simulations with spatial resolution down to 50 m have been carried out. Lagrangian tracers were passively advected with the flow, and Lyapunov exponents and power law exponents have been calculated to analyse the separation statistics. It is found that the relative dispersion of particles on a short time scale (12–24 h) is very sensitive to the grid size and that the spatial variability is also very large, ranging from 0 to 100 km2 over a distance of 100 m. This means that models for prediction of transport and dispersion of oil spills, fish eggs, sea lice etc. using a single diffusion coefficient will be of limited value, unless the models actually resolves the small-scale eddies of the tidal current.  相似文献   

9.
Studies of aquatic invertebrate production have been primarily conducted at the level of individual taxa or populations. Advancing our understanding of the functioning and energy flow in aquatic ecosystems necessitates scaling-up to community and whole-lake levels, as well as integrating across benthic and pelagic habitats and across multiple trophic levels. In this paper, we compare a suite of non-cohort based methods for estimating benthic invertebrate production at subpopulation, habitat, and whole-lake levels for Sparkling Lake, WI, USA. Estimates of the overall mean benthic invertebrate production (i.e. whole-lake level) ranged from 1.9 to 5.0 g DM m−2 y−1, depending on the method. Production estimates varied widely among depths and habitats, and there was general qualitative agreement among methods with regards to differences in production among habitats. However, there were also consistent and systematic differences among methods. The size-frequency method gave the highest, while the regression model of Banse and Mosher (Ecol Monogr 50:355–379, 1980) gave the lowest production estimates. The regression model of Plante and Downing (Can J Fish Aquat Sci 46:1489–1498, 1989) had the lowest average coefficients of variation at habitat (CV = 0.17) and whole-lake (CV = 0.08) levels. At the habitat level, variance in production estimates decreased with sampling effort, with little improvement after 10–15 samples. Our study shows how different production estimates can be generated from the same field data, though aggregating estimates up to the whole-lake level does produce an averaging effect that tends to reduce variance.  相似文献   

10.
Between 1989 and 2001, five eruptions at Etna displayed a regular alternation between repose periods and episodes rich in gas, termed quasi-fire fountains and consisting of a series of Strombolian explosions sometimes leading to a fire fountain. This behaviour results from the coalescence of a foam layer trapped at the top of the reservoir which was periodically rebuilt prior to each episode (Vergniolle and Jaupart, J Geophys Res 95:2793–2809, 1990). Visual observations of fire fountains are combined with the foam dynamics to estimate the five degassing parameters characteristic of the degassing reservoir, i.e. the number of bubbles, gas volume fraction, bubble diameter, reservoir thickness and reservoir volume. The study of decadal cycles of eruptive patterns (Allard et al., Earth Sci Rev 78:85–114, 2006) suggests that the first eruption with fire fountains occurred in 1995 while the last one happened in 2001. The number of bubbles and the gas volume fraction increase smoothly from the beginning of the cycle (1995) to its end (2001). The increasing number of bubbles per cubic metre, from 0.61–20×105 to 0.1–3.4×109, results from cooling of the magma within the reservoir. The simultaneously decreasing bubble diameter, from 0.67–0.43 to 0.30–0.19 mm, is related to the decreasing amount of dissolved volatiles. Meanwhile, the thickness and the volume of the degassing reservoir diminish, from values typical of the magma reservoir to values characteristic of a very thin bubbly layer, marking the quasi-exhaustion of volatiles. The magma reservoir has a slender vertical shape, with a maximum thickness of 3,300–8,200 m and a radius of 240 m (Vergniolle 2008), making its detection from seismic studies difficult. Its volume, at most 0.58–1.4 km3, is in agreement with geochemical studies (0.5 km3) (Le Cloarec and Pennisi, J Volcanol Geotherm Res 108:141–155, 2001). The time evolution of both the total gas volume expelled per eruption, and the inter-eruptive gas flux results from the competition between the increasing number of bubbles and the decreasing bubble diameter. The smooth temporal evolution of the five degassing parameters also points towards bubbles being produced by a self-induced mechanism within the magma reservoir rather than by a magmatic reinjection prior to each eruption. The decadal cycles are therefore initiated by a magmatic reinjection, in agreement with a typical return time of 14–80 years (Albarède 1993). Hence, the 1995 eruption results from a fresh magma being newly emplaced while the magma from the following eruptions is progressively depleted in volatiles species until reaching a state of quasi-exhaustion in 2001. A magmatic reinjection of 0.13–0.6 km3 every few decades is sufficient to explain the expelled gas volume, including SO2. A scenario is also proposed for the alternation between gas-rich summit eruptions and gas-poor flank eruptions which are observed during decadal cycles. The scenario proposed for Etna could also be at work at Piton de la Fournaise and Erta ’Ale volcanoes.  相似文献   

11.
Most vascular plants form symbioses with mycorrhizal fungi that associate with roots and provide nutrients to hosts in exchange for carbohydrates, as well as serve a range of other functions. Mycorrhizal fungi have been studied extensively in upland ecosystems, but we know less about their ecology at aquatic-terrestrial interfaces, especially their distributions at depth. Our objectives were to determine whether abundances of arbuscular mycorrhizal fungi (AMF) change as floodplain islands develop and to describe vertical distributions of AMF from the forest floor to the water table along the freely flowing Tagliamento River in northeastern Italy. We sampled surface sediments (0–10 cm) from three stages of island development on the floodplain—fresh deposits, pioneer islands, and established islands. We also sampled sediments vertically (0–150 cm) from the ground surface to the water table on an established island. We characterized abundance of AMF propagules (colonized roots, spores, and hyphae) within sediments. Roots available to host fungi were absent on fresh deposits; however, some viable spores and hyphae were available at these sites. Pioneer and established islands each had similar hyphal lengths (~860 cm cm−3) and colonized root lengths (~3 cm cm−3). Abundance of spores increased from depositional (3.5 ± 0.9 (±SE) cm−3) to pioneer (17 ± 6.1 cm−3) to established (32 ± 6.3 cm−3) islands. On an established island, AMF propagules were present at all depths sampled, including at the water table, providing first documentation of these symbionts to such depths in a riparian setting. Mycorrhizal fungi likely link aquatic and terrestrial habitats by connecting plants, soil, and ground water and may influence nutrient transfers among these subsystems.  相似文献   

12.
13.
We present thermal measurements made by high spatial resolution ground-based (a hand-held thermal camera) and low spatial resolution space-based (MODIS) instruments for a lava flow field active during the last phase of the May–July 2003 eruption at Piton de la Fournaise (La Réunion). Multiple oblique ground-based thermal images were merged to provide full coverage of the flow-field. These were then corrected for path length attenuation and orthorectified, allowing the at-surface radiance emitted by the flow-field to be estimated. Comparison with the radiance recorded by the MODIS sensors during the eruption reveals that, for clear-sky conditions and moderate-to-low viewing angles (satellite zenith <40°), the satellite measurements represent ∼90% of the at-surface radiance, and thus represent valuable data for quantifying volcanic thermal anomalies. Nevertheless, extreme viewing geometries and the presence of clouds strongly affect the radiance reaching the sensor and affected data from 94% of the overpasses. Ground-based thermal data were used to investigate an empirical relationship between the radiant heat flux and lava discharge rate during the emplacement of pahoehoe flows. While the average radiation temperature for flow surface that were 6–24 h old ranged between 500 K and 625 K, the ratio between radiative heat flux and Time-Averaged lava Discharge Rate (TADR) ranged between 1.5 × 108 J m−3 and 3.5 × 108 J m−3. This relationship was used to estimate TADR values from optimal MODIS data and produced results in line with those obtained from GPS surveys (Coppola et al. 2005). Our results underscore the importance of ground-based thermal analysis for the interpretation of satellite measurements, particularly in terms of calculating discharge rate trends.  相似文献   

14.
The physical and biological environment of the Barents Sea is characterised by large variability on a wide range of scales. Results from a numerical ocean model, SINMOD, are presented showing that the physical variability is partly forced by changes in annual net ice import. The mean contribution from ice import in the simulation period (1979–2007) is about 40% of the total amount of ice melted each year. The annual ice import into the Barents Sea varies between 143 and 1,236 km3, and this causes a substantial variability in the amount of annual ice melt in the Barents Sea. This in turn impacts the freshwater content. The simulated freshwater contribution from ice is 0.02 Sv on average and 0.04 Sv at maximum. When mixed into a mean net Atlantic Water (AW) inflow of 1.1 Sv with a salinity of 35.1, this freshwater addition decreases the salinity of the modified AW to 34.4 and 33.9 for the mean and maximum freshwater fluxes, respectively. Ice import may thus be important for the Barents Sea production of Arctic Ocean halocline water which has salinity of about 34.5. The changes in the ice melt the following summer due to ice import also affect the formation of dense water in the Barents Sea by changing stratification, altering the vertical mixing rates and affecting heat loss from the warm AW. The model results thus indicate that ice import from the Arctic has a great impact on water mass modification in the Barents Sea which in turn impacts the ventilation of the Arctic Ocean.  相似文献   

15.
Techniques recently developed for measuring P regeneration, particulate P turnover, and PO4 3− concentration in lakewater assume that dissolved 32P (D32P) released by plankton is PO4 3−. To test this assumption, I obtained samples of D32P regenerated from whole plankton communities by labeling the communities with 32P-PO4 3− then blocking re-uptake and transformation of regenerated D32P with two competitive inhibitors, unlabeled 31P-PO4 3− and pyrophosphate. Under these conditions, regenerated D32P accumulated and could be examined by gel chromatography to discern how much of it was 32P-PO4 3− versus higher molecular weight P compounds. I estimated that most or all of the D32P released was 32P-PO4 3−. I also observed that the amount of DP observed on filtration of lakewater depended on the method employed to obtain the filtrate. Therefore, I also separated particulate 32P from D32P with dialysis membrane (100,000 MW cutoff) without pressure. There was little DP larger than PO4 3− and no DP >5,000 MW in the dialysate, leading me to conclude that DP <100,000 MW was a minor component of both regenerated and total P. I suggest that under P-limited conditions that most dissolved P observed in lakewater filtrates may be intact viruses and cell constituents liberated in the filtration process. These results are mostly congruent with Lean’s (J Fish Res Board Can 30:1525–1536, 1973) model of P-cycling in lake plankton, although the nature of “colloidal P” in Lean’s model should be further investigated.  相似文献   

16.
Liverpool Bay, a region of freshwater influence subject to semi-diurnal and enduring periods of stratification, is home to a long-term coastal observatory. The observatory provides a new array of data which include vertical profiles of velocity from an Acoustic Doppler Current Profiler and a high frequency radar system (which provides measurements of surface currents). Using this dataset in conjunction with an analytical potential energy model that uses advances in the formulation of a freshwater buoyancy term, the processes controlling stratification can be assessed. The results indicate that a depth-resolving freshwater buoyancy term should be used for the calculation stratification. Advection, in addition to depth-mean straining, is an important process affecting the stratification in Liverpool Bay. Specifically, when semi-diurnal stratification occurs, the two terms are in phase whilst when enduring stratification occurs, they are out of phase. The phase of the advective component, and thus its influence relative to depth-mean straining, was found to be a function of the vertical variation of the horizontal density gradient.  相似文献   

17.
Wind and tidal straining are proposed as key mechanisms influencing the magnitude and timing of the horizontal flux of freshwater across regions of freshwater influence (ROFIs). Evidence for this hypothesis is presented in estimates of the tidally averaged residual current profile, obtained from 5 years of continuous acoustic doppler current profiler measurements in the Liverpool Bay ROFI. The modified horizontal Richardson number (RxwtR_{x}^{wt}), which includes both the tidal and the wind forcing, was assessed as a measure of stratification. RxwtR_{x}^{wt} was found to be a good indicator of the timing of the evolution and destruction of stratification, but was not as successful as an indicator of the magnitude of stratification, both enduring and periodic. The observed mean residual velocities are compared to those predicted by a classical solution, and the eddy viscosity (N z ) is shown to be a control on differences between the observed and predicted circulation. Principal component analysis is used to show that the strongest residual currents occur when the water column periodically alternates between a well-mixed and stratified state, a consequence of straining, rather than simply related to the density gradient. Evidence of wind straining was found in the correspondence between the wind direction and the near surface and near bed residual current direction.  相似文献   

18.
Large-scale zonal flow driven across submarine topography establishes standing Rossby waves. In the presence of stratification, the wave pattern can be represented by barotropic and baroclinic Rossby waves of mixed planetary topographic nature, which are locked to the topography. In the balance of momentum, the wave pattern manifests itself as topographic formstress. This wave-induced formstress has the net effect of braking the flow and reducing the zonal transport. Locally, it may lead to acceleration, and the parts induced by the barotropic and baroclinic waves may have opposing effects. This flow regime occurs in the circumpolar flow around Antarctica. The different roles that the wave-induced formstress plays in homogeneous and stratified flows through a zonal channel are analyzed with the BARBI (BARotropic-Baroclinic-Interaction ocean model, Olbers and Eden, J Phys Oceanogr 33:2719–2737, 2003) model. It is used in complete form and in a low-order version to clarify the different regimes. It is shown that the barotropic formstress arises by topographic locking due to viscous friction and the baroclinic one due to eddy-induced density advection. For the sinusoidal topography used in this study, the transport obeys a law in which friction and wave-induced formstress act as additive resistances, and windstress, the effect of Ekman pumping on the density stratification, and the buoyancy forcing (diapycnal mixing of the stratified water column) of the potential energy stored in the stratification act as additive forcing functions. The dependence of the resistance on the system parameters (lateral viscosity ε, lateral diffusivity κ of eddy density advection, Rossby radius λ, and topography height δ) as well as the dependence of transport on the forcing functions are determined. While the current intensity in a channel with homogeneous density decreases from the viscous flat bottom case in an inverse quadratic law ~δ –2 with increasing topography height and always depends on ε, a stratified system runs into a saturated state in which the transport becomes independent of δ and ε and is determined by the density diffusivity κ rather than the viscosity: κ/λ 2 acts as a vertical eddy viscosity, and the transport is λ 2/κ times the applied forcing. Critical values for the topographic heights in these regimes are identified.  相似文献   

19.
The oceanic mixed layer (OML) response to an idealized hurricane with different propagation speeds is investigated using a two-layer reduced gravity ocean model. First, the model performances are examined with respect to available observations relative to Hurricane Frances (2004). Then, 11 idealized simulations are performed with a Holland (Mon Weather Rev 108(8):1212–1218, 1980) symmetric wind profile as surface forcing with storm propagation speeds ranging from 2 to 12 m s−1. By varying this parameter, the phasing between atmospheric and oceanic scales is modified. Consequently, it leads to different momentum exchanges between the hurricane and the OML and to various oceanic responses. The present study determines how OML momentum and heat budgets depend on this parameter. The kinetic energy flux due to surface wind stress is found to strongly depend on the propagation speed and on the cross-track distance from the hurricane center. A resonant regime between surface winds and near-inertial currents is clearly identified. This regime maximizes locally the energy flux into the OML. For fast-moving hurricanes (>6 m s−1), the ratio of kinetic energy converted into turbulence depends only on the wind stress energy input. For slow-moving hurricanes (<6 m s−1), the upwelling induced by current divergence enhances this conversion by shallowing the OML depth. Regarding the thermodynamic response, two regimes are identified with respect to the propagation speed. For slow-moving hurricanes, the upwelling combined with a sharp temperature gradient at the OML base formed in the leading part of the storm maximizes the oceanic heat loss. For fast propagation speeds, the resonance mechanism sets up the cold wake on the right side of the hurricane track. These results suggest that the propagation speed is a parameter as important as the surface wind speed to accurately describe the oceanic response to a moving hurricane.  相似文献   

20.
The impact of intensive farming on chemical weathering in the Critical Zone is still an open question. Extensively instrumented and monitored over the last 50 years, the Orgeval Critical Zone Observatory (CZO) in France is an observation site impacted by intensive farming since the 1960s. The Orgeval observatory represents an ideal place to study the response and resilience capability of the Critical Zone under agricultural stress. This paper investigates the chemical composition of different water bodies in two nested catchments of the Orgeval CZO, including rainfall, springs, rivers, and rocks, over one and half hydrological year. We show that elemental and strontium isotopic ratios are powerful to constrain the origin of the elements. The results show that the river chemistry at the outlet of the two nested catchments is dominated by rain inputs (particularly atmospheric dust dissolution) and the chemical weathering of limestone and gypsum. Fertilizer input is clearly visible, although the distinction between gypsum dissolution and fertilizer inputs needs more investigation. The mixtures of water masses inferred from our data are in good agreement with the hydrological context of the watershed, that is, a multilayered aquifer structure. At the main outlet of the CZO, we estimate that the input of ocean‐derived solutes through rainfall represents 7 t km?2 year?1, on the same order of magnitude as the net fertilizer input (10 t km?2 year?1), and that rock weathering releases 50 t km?2 year?1. Including previously published physical erosion rates, we estimate that the total denudation rate (physical and chemical) of the Orgeval CZO is 20 mm (1,000 year)?1, which, along with the entire Seine watershed, is among the lowest chemical denudation rates for carbonate terrains under temperate climate. Chemical denudation is about 10 times higher than physical erosion in the Orgeval CZO. The consumption of CO2 by rock weathering is estimated to be between 265.103 and 360.103 molC km2 year?1, similar for the two nested catchments. Compared with the rivers, the springs show a higher CO2 consumption rate that suggests, as pointed out earlier, a enhancement of carbonate dissolution linked to nitrification and thus fertilizer application. The hyporheic zone appears to be a hot spot in the carbon cycle at the Orgeval CZO. This study sheds light on the complex, anthropocenic, interplay between geology, climate, and human activities that characterize and that take place in intensive agriculture regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号