首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We discuss the afterglow emission from a relativistic jet that is initially in the radiative regime, in which the accelerated electrons are fast-cooling. We note that such a 'semiradiative' jet decelerates faster than an adiabatic jet does. We also take into account the effect of strong inverse-Compton scattering on the cooling frequency in the synchrotron component and therefore on the light-curve decay index. We find that there are two kinds of light-curve break for the jet effect. The first is an 'adiabatic break', if the electrons become slow-cooling before the jet enters a spreading phase, and the second is a 'radiative break', which appears in the contrary case. We then show how a relativistic jet evolves dynamically and derive the overall temporal synchrotron emission in both cases, focusing on the change in the light-curve decay index around the break time. Finally, in view of our results, we rule out two cases for relativistic jets which do not account for the observed light-curve breaks in a few afterglows : (i) an adiabatic jet with strong Compton cooling  ( Y >1)  and with the cooling frequency ν c locating in the observed energy range; (ii) a radiative jet with a significant fraction of total energy occupied by electrons  ( ε e ∼1)  .  相似文献   

2.
Synchrotron radiation by relativistic electrons spiralling in magnetic fields is a mainstay of radio astronomy, accounting for emissions from many objects. Conventional models assume that electrons radiate singly, so power scales with number of electrons. Yet recently jets from active galactic nuclei have shown very high luminosity, inconsistent with plausible single-particle synchrotron emission. We report experiments showing that, by stimulating plasma instabilities with relativistic electron beams, one can induce increases in the synchrotron emission by factors of ∼106. Enhancement presumably arises from coherent bunching of the relativistic electrons as they spiral in an ambient magnetic field. Polarization measurements suggest that electrons radiatively cooperate on scales of ∼6.6 cm. Radio telescope Stokes parameters may be able to reveal such polarization effects in high-brightness sources, a new observing diagnostic.  相似文献   

3.
The high-energy continuum in Seyfert galaxies and galactic black hole candidates is likely to be produced by a thermal plasma. There are difficulties in understanding what can keep the plasma thermal, especially during fast variations of the emitted flux. Particle–particle collisions are too inefficient in hot and rarefied plasmas, and a faster process is called for. We show that cyclo-synchrotron absorption can be such a process: mildly relativistic electrons thermalize in a few synchrotron cooling times by emitting and absorbing cyclo-synchrotron photons. The resulting equilibrium function is Maxwellian at low energies, with a high-energy tail when Compton cooling is important. Assuming that electrons emit completely self-absorbed synchrotron radiation and at the same time Compton scatter their own cyclo-synchrotron radiation and ambient UV photons, we calculate the time-dependent behaviour of the electron distribution function, and the final radiation spectra. In some cases, the 2–10 keV spectra are found to be dominated by the thermal synchrotron self-Compton process rather than by thermal Comptonization of UV disc radiation.  相似文献   

4.
The precession of eccentric discs in close binaries   总被引:1,自引:0,他引:1  
If the emission of gamma-ray bursts were as a result of the synchrotron process in the standard internal shock scenario, then the typical observed spectrum should have a slope F ν ∝ ν −1/2, which strongly conflicts with the much harder spectra observed. This directly follows from the cooling time being much shorter than the dynamical time. Particle re-acceleration, deviations from equipartition, quickly changing magnetic fields and adiabatic losses are found to be inadequate to account for this discrepancy. We also find that in the internal shock scenario the relativistic inverse Compton scattering is always as important as the synchrotron process, and faces the same problems. This indicates that the burst emission is not produced by relativistic electrons emitting synchrotron and inverse Compton radiation.  相似文献   

5.
We consider the synchrotron emission from relativistic shocks assuming that the radiating electrons cool rapidly (either through synchrotron or any other radiation mechanism). It is shown that the theory of synchrotron emission in the fast cooling regime can account for a wide range of spectral shapes. In particular, the magnetic field, which decays behind the shock front, brings enough flexibility to the theory to explain the majority of gamma-ray burst spectra even in the parameter-free fast cooling regime. Also, we discuss whether location of the peak in observed spectral energy distributions of gamma-ray bursts and active galactic nuclei can be made consistent with predictions of diffusive shock acceleration theory, and find that the answer is negative. This result is a strong indication that a particle injection mechanism, other than the standard shock acceleration, works in relativistic shocks.  相似文献   

6.
7.
We discuss the high-energy afterglow emission (including high-energy photons, neutrinos and cosmic rays) following the 2004 December 27 giant flare from the soft gamma-ray repeater (SGR) 1806−20. If the initial outflow is relativistic with a bulk Lorentz factor  Γ0∼  tens, the high-energy tail of the synchrotron emission from electrons in the forward shock region gives rise to a prominent sub-GeV emission, if the electron spectrum is hard enough and if the initial Lorentz factor is high enough. This signal could serve as a diagnosis of the initial Lorentz factor of the giant flare outflow. This component is potentially detectable by the Gamma-Ray Large Area Telescope ( GLAST ) if a similar giant flare occurs in the GLAST era. With the available 10-MeV data, we constrain that  Γ0 < 50  if the electron distribution is a single power law. For a broken power-law distribution of electrons, a higher Γ0 is allowed. At energies higher than 1 GeV, the flux is lower because of a high-energy cut-off of the synchrotron emission component. The synchrotron self-Compton emission component and the inverse Compton scattering component off the photons in the giant flare oscillation tail are also considered, but they are found not significant given a moderate Γ0 (e.g. ≤ 10). The forward shock also accelerates cosmic rays to the maximum energy 1017 eV, and generates neutrinos with a typical energy 1014 eV through photomeson interaction with the X-ray tail photons. However, they are too weak to be detectable.  相似文献   

8.
We present a new explanation for the origin of the steep power-law(SPL) state of X-ray binaries.The power-law component of X-ray emission is the synchrotron radiation of relativistic electrons in highly magnetized compact spots orbiting near the inner stable circular orbit of a black hole.It has a hard spectrum that extends to above MeV energies,which is determined by the electron acceleration rate.These photons are then down-scattered by the surrounding plasma to form an observed steep spectrum.We discuss ...  相似文献   

9.
The fast-spinning Crab pulsar (∼30 turn s−1), which powers the massive expansion and synchrotron emission of the entire Crab nebula, is surrounded by quasi-stationary features such as fibrous arc-like wisps and bright polar knots in the radial range of 2×1016≲ r ≲2×1017 cm, as revealed by high-resolution (∼0.1 arcsec) images from the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope ( HST ). The spin-down energy flux (∼5×1038 erg s−1) from the pulsar to the luminous outer nebula, which occupies the radial range 0.1≲ r ≲2 pc, is generally believed to be transported by a magnetized relativistic outflow of an electron–positron e± pair plasma. It is then puzzling that mysterious structures like wisps and knots, although intrinsically dynamic in synchrotron emission, remain quasi-stationary on time-scales of a few days to a week in the relativistic pulsar wind. Here we demonstrate that, as a result of slightly inhomogeneous wind streams emanating from the rotating pulsar, fast magnetohydrodynamic (MHD) shock waves are expected to appear in the pulsar wind at relevant radial distances in the forms of wisps and knots. While forward fast MHD shocks move outward with a speed close to the speed of light c , reverse fast MHD shocks may appear quasi-stationary in space under appropriate conditions. In addition, Alfvénic fluctuations in the shocked magnetized pulsar wind can effectively scatter synchrotron beams from gyrating relativistic electrons and positrons.  相似文献   

10.
We investigate the problem of determining the plasma composition of relativistic jets in blazars and microquasars from the polarization frequency spectra of their synchrotron radiation. The effect of plasma composition on this radiation is attributable to a change in the structure of the ordinary and extraordinary waves in plasma, depending on the presence of a nonrelativistic electron-proton component in it and on the type of relativistic particles (electrons, positrons). The structure of the normal waves determines the properties of the observed radiation and primarily the shape of the polarization frequency spectrum. Our analytic calculations of the polarization spectra for simple models of jets with a uniform magnetic field and with a magnetic-field shear revealed characteristic features in the polarization spectra. These features allow us to differentiate between the synchrotron radiation from an admixture of relativistic particles in a cold plasma and the radiation from a relativistic plasma. However, definitive conclusions regarding the relativistic plasma composition (electrons or electron-positron pairs) can be reached only by a detailed analysis of the polarization frequency spectra that will be obtained in future radioastronomical studies with high angular and frequency resolutions.  相似文献   

11.
We investigate the polarization properties of Comptonized X-rays from relativistic jets in active galactic nuclei (AGN) using Monte Carlo simulations. We consider three scenarios commonly proposed for the observed X-ray emission in AGN: Compton scattering of blackbody photons emitted from an accretion disc; scattering of cosmic microwave background (CMB) photons and self-Comptonization of intrinsically polarized synchrotron photons emitted by jet electrons. Our simulations show that for Comptonization of disc and CMB photons, the degree of polarization of the scattered photons increases with the viewing inclination angle with respect to the jet axis. In both cases, the maximum linear polarization is  ≈20 per cent  . In the case of synchrotron self-Comptonization (SSC), we find that the resulting X-ray polarization depends strongly on the seed synchrotron photon injection site, with typical fractional polarizations   P ≈ 10–20 per cent  when synchrotron emission is localized near the jet base, while   P ≈ 20–70 per cent  for the case of uniform emission throughout the jet. These results indicate that X-ray polarimetry may be capable of providing unique clues to identify the location of particle acceleration sites in relativistic jets. In particular, if synchrotron photons are emitted quasi-uniformly throughout a jet, then the observed degree of X-ray polarization may be sufficiently different for each of the competing X-ray emission mechanisms (synchrotron, SSC or external Comptonization) to determine which is the dominant process. However, X-ray polarimetry alone is unlikely to be able to distinguish between disc and CMB Comptonization.  相似文献   

12.
The understanding of the high energy γ-ray sky requires a coordinated multi-wavelength strategy. The Large Millimeter Telescope will be the largest and most sensitive single dish antenna operating between 0.8 mm and 3 mm in the foreseeable future. Its first light instrumentation and capabilities are well suited for studies of dust, dense molecular gas and the synchrotron emission from relativistic electrons. The Large Millimeter Telescope, due to enter commissioning and first light science phase in 2007, will be able to complement GLAST observations and help disentangling the nature of the new and old unidentified gamma-ray sources. Work sponsored by CONACyT grant SEP-2003-C02-42611.  相似文献   

13.
We investigate the acceleration and simultaneous radiative losses of electrons in the vicinity of relativistic shocks. Particles undergo pitch angle diffusion, gaining energy as they cross the shock by the Fermi mechanism and also emitting synchrotron radiation in the ambient magnetic field. A semi-analytic approach is developed which allows us to consider the behaviour of the shape of the spectral cut-off and the variation of that cut-off with the particle pitch angle. The implications for the synchrotron emission of relativistic jets, such as those in gamma-ray burst sources and blazars, are discussed.  相似文献   

14.
Flat radio spectra with large brightness temperatures at the core of active galactic nuclei and X-ray binaries are usually interpreted as the partially self-absorbed bases of jet flows emitting synchrotron radiation. Here we extend previous models of jets propagating at large angles to our line of sight to self-consistently include the effects of energy losses of the relativistic electrons due to the synchrotron process itself and the adiabatic expansion of the jet flow. We also take into account energy gains through self-absorption. Two model classes are presented. The ballistic jet flows, with the jet material travelling along straight trajectories, and adiabatic jets. Despite the energy losses, both scenarios can result in flat emission spectra; however, the adiabatic jets require a specific geometry. No re-acceleration process along the jet is needed for the electrons. We apply the models to observational data of the X-ray binary Cygnus X-1. Both models can be made consistent with the observations. The resulting ballistic jet is extremely narrow with a jet opening angle of only 5 arcsec. Its energy transport rate is small compared to the time-averaged jet power and therefore suggests the presence of non-radiating protons in the jet flow. The adiabatic jets require a strong departure from energy equipartition between the magnetic field and the relativistic electrons. These models also imply a jet power of two orders of magnitude higher than the Eddington limiting luminosity of a  10-M  black hole. The models put strong constraints on the physical conditions in the jet flows on scales well below achievable resolution limits.  相似文献   

15.
刘勇  李晓卿 《天文学报》2003,44(1):16-22
由分析可知,在光学厚的介质中麦氏分布的极端相对论电子在磁场中能产生同步加速辐射,其辐射谱为瑞利—金斯谱.基于Fokker-Planck方程,这种波场对快电子的加速将产生幂律分布的电子能谱.考虑到日冕活动区的物理条件,在太阳耀斑中观测到的10Mev左右的电子能谱很可能就是由同步加速辐射加速快电子产生的.  相似文献   

16.
Relativistic shocks can accelerate particles by the first-order Fermi mechanism; the particles then emit synchrotron emission in the post-shock gas. This process is of particular interest in the models used for the afterglow of gamma-ray bursts. In this paper we use recent results in the theory of particle acceleration at highly relativistic shocks to model the synchrotron emission in an evolving, inhomogeneous and highly relativistic flow. We have developed a numerical code that integrates the relativistic Euler equations for fluid dynamics with a general equation of state, together with a simple transport equation for the accelerated particles. We present tests of this code and, in addition, we use it to study the gamma-ray burst afterglow predicted by the fireball model, along with the hydrodynamics of a spherically-symmetric relativistic blast wave.
We find that, while broadly speaking the behaviour of the emission is similar to that already predicted with semi-analytic approaches, the detailed behaviour is somewhat different. The 'breaks' in the synchrotron spectrum behave differently with time, and the spectrum above the final break is harder than had previously been expected. These effects are due to the incorporation of the geometry of the (spherical) blast wave, along with relativistic beaming and adiabatic cooling of the energetic particles leading to a mix, in the observed spectrum, between recently injected 'uncooled' particles and the older 'cooled' population in different parts of the evolving, inhomogeneous flow.  相似文献   

17.
1 INTRoDUCTIONB1azars are rwho-loud AGNs characterized by emissions of strong and raPidiy wriablenOllthermal radiation over the elltire electromagntic spectrum. Syndritron ehasha followedby inverse ComPton scattering in a re1aivistic jet and beamd inio one directiOn is generallythought to be the IneCha8m powering these Objects (Kollgaard 1994; Urry & Paded 1995).All blazars have a sPectral energy distribution (SED) with tWO peak8 in a uFv rePesentation(von Montigny et al. 1995; S…  相似文献   

18.
We investigate the process of synchrotron radiation from thermal electrons at semirelativistic and relativistic temperatures. We find an analytic expression for the emission coefficient for random magnetic fields with an accuracy significantly higher than those derived previously. We also present analytic approximations to the synchrotron turnover frequency, treat Comptonization of self-absorbed synchrotron radiation, and give simple expressions for the spectral shape and the emitted power. We also consider modifications of the above results by bremsstrahlung.
We then study the importance of Comptonization of thermal synchrotron radiation in compact X-ray sources. We first consider emission from hot accretion flows and active coronae above optically thick accretion discs in black hole binaries and active galactic nuclei (AGNs). We find that for plausible values of the magnetic field strength, this radiative process is negligible in luminous sources, except for those with hardest X-ray spectra and stellar masses. Increasing the black hole mass results in a further reduction of the maximum Eddington ratio from this process. Then, X-ray spectra of intermediate-luminosity sources, e.g. low-luminosity AGNs, can be explained by synchrotron Comptonization only if they come from hot accretion flows, and X-ray spectra of very weak sources are always dominated by bremsstrahlung. On the other hand, synchrotron Comptonization can account for power-law X-ray spectra observed in the low states of sources around weakly magnetized neutron stars.  相似文献   

19.
The blast-wave model for gamma-ray bursts (GRBs) has been called into question by observations of spectra from GRBs that are harder than can be produced through optically thin synchrotron emission. If GRBs originate from the collapse of massive stars, then circumstellar clouds near burst sources will be illuminated by intense gamma radiation, and the electrons in these clouds will be rapidly scattered to energies as large as several hundred keV. Low-energy photons that subsequently pass through the hot plasma will be scattered to higher energies, hardening the intrinsic spectrum. This effect resolves the "line-of-death" objection to the synchrotron shock model. Illuminated clouds near GRBs will form relativistic plasmas containing large numbers of electron-positron pairs that can be detected within approximately 1-2 days of the explosion before expanding and dissipating. Localized regions of pair annihilation radiation in the Galaxy would reveal past GRB explosions.  相似文献   

20.
We estimate the power of relativistic, extragalactic jets by modelling the spectral energy distribution of a large number of blazars. We adopt a simple one-zone, homogeneous, leptonic synchrotron and inverse Compton model, taking into account seed photons originating both locally in the jet and externally. The blazars under study have an often dominant high-energy component which, if interpreted as due to inverse Compton radiation, limits the value of the magnetic field within the emission region. As a consequence, the corresponding Poynting flux cannot be energetically dominant. Also the bulk kinetic power in relativistic leptons is often smaller than the dissipated luminosity. This suggests that the typical jet should comprise an energetically dominant proton component. If there is one proton per relativistic electrons, jets radiate around 2–10 per cent of their power in high-power blazars and 3–30 per cent in less powerful BL Lacs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号