首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The Cambrian Gahcho Kué kimberlite cluster includes four main pipes that have been emplaced into the Archaean basement granitoids of the Slave Craton. Each of the steep-sided pipes were formed by the intrusion of several distinct phases of kimberlite in which the textures vary from hypabyssal kimberlite (HK) to diatreme-facies tuffisitic kimberlite breccia (TKB). The TKB displays many diagnostic features including abundant unaltered country rock xenoliths, pelletal lapilli, serpentinised olivines and a matrix composed of microlitic phlogopite and serpentine without carbonate. The HK contains common fresh olivine set in a groundmass composed of monticellite, phlogopite, perovskite, serpentine and carbonate. A number of separate phases of kimberlite display a magmatic textural gradation from TKB to HK, which is characterised by a decrease in the proportion of pelletal lapilli and country rock xenoliths and an increase in groundmass crystallinity, proportion of fresh olivine and the degree of xenolith digestion.

The pipe shapes and infills of the Gahcho Kué kimberlites are similar to those of the classic South African pipes, particularly those of the Kimberley area. Similar intrusive magmatic emplacement processes are proposed in which the diatreme-zone results from the degassing, after breakthrough, of the intruding magma column. The transition zones represent ‘frozen’ degassing fronts. The style of emplacement of the Gahcho Kué kimberlites is very different from that of many other pipes in Canada such as at Lac de Gras, Fort à la Corne or Attawapiskat.  相似文献   


2.

The Letšeng Diamond Mine comprises two ~91 Ma kimberlite pipes. An update of the geology is presented based on the 2012–2017 detailed investigation of open pit exposures and all available drillcores which included mapping, logging and petrography. Each of the steep-sided volcanic pipes comprises a number of phases of kimberlite with contrasting diamond contents which were formed by the emplacement of at least four batches of mantle-derived magma. The resulting range of textures includes resedimented volcaniclastic kimberlite (RVK), Kimberley-type pyroclastic kimberlite (KPK), coherent kimberlite (CK) and minor amounts of hypabyssal kimberlite (HK). The pipes are compared with KPK occurrences from southern Africa and worldwide. Many features of the Letšeng pipes are similar to KPK infilled pipes particularly those of the widespread Cretaceous kimberlite province of southern Africa. The differences displayed at Letšeng compared to other large KPK pipe infills described from around the world are attributed to the marginal or melnoitic nature of the magma and the upper diatreme to crater setting of the Letšeng pipes, where processes become extrusive. It is concluded that the pipes comprise a variant of Kimberley-type pyroclastic kimberlite emplacement. The classification of many of the Letšeng rocks as KPK is important for developing the internal geology of the pipes as well as for predicting the distribution of diamonds within the bodies.

  相似文献   

3.
The pipe shapes, infill and emplacement processes of the Attawapiskat kimberlites, including Victor, contrast with most of the southern African kimberlite pipes. The Attawapiskat kimberlite pipes are formed by an overall two-stage process of (1) pipe excavation without the development of a diatreme (sensu stricto) and (2) subsequent pipe infilling. The Victor kimberlite comprises two adjacent but separate pipes, Victor South and Victor North. The pipes are infilled with two contrasting textural types of kimberlite: pyroclastic and hypabyssal-like kimberlite. Victor South and much of Victor North are composed of pyroclastic spinel carbonate kimberlites, the main features of which are similar: clast-supported, discrete macrocrystal and phenocrystal olivine grains, pyroclastic juvenile lapilli, mantle-derived xenocrysts and minor country rock xenoliths are set in serpentine and carbonate matrices. These partly bedded, juvenile lapilli-bearing olivine tuffs appear to have been formed by subaerial fire-fountaining airfall processes.

The Victor South pipe has a simple bowl-like shape that flares from just below the basal sandstone of the sediments that overlie the basement. The sandstone is a known aquifer, suggesting that the crater excavation process was possibly phreatomagmatic. In contrast, the pipe shape and internal geology of Victor North are more complex. The northwestern part of the pipe is dominated by dark competent rocks, which resemble fresh hypabyssal kimberlite, but have unusual textures and are closely associated with pyroclastic juvenile lapilli tuffs and country rock breccias±volcaniclastic kimberlite. Current evidence suggests that the hypabyssal-like kimberlite is, in fact, not intrusive and that the northwestern part of Victor North represents an early-formed crater infilled with contrasting extrusive kimberlites and associated breccias. The remaining, main part of Victor North consists of two macroscopically similar, but petrographically distinct, pyroclastic kimberlites that have contrasting macrodiamond sample grades. The juvenile lapilli of each pyroclastic kimberlite can be distinguished only microscopically. The nature and relative modal proportion of primary olivine phenocrysts in the juvenile lapilli are different, indicating that they derive from different magma pulses, or phases of kimberlite, and thus represent separate eruptions. The initial excavation of a crater cross-cutting the earlier northwestern crater was followed by emplacement of phase (i), a low-grade olivine phenocryst-rich pyroclastic kimberlite, and the subsequent eruption of phase (ii), a high-grade olivine phenocryst-poor pyroclastic kimberlite, as two separate vents nested within the original phase (i) crater. The second eruption was accompanied by the formation of an intermediate mixed zone with moderate grade. Thus, the final pyroclastic pipe infill of the main part of the Victor North pipe appears to consist of at least three geological/macrodiamond grade zones.

In conclusion, the Victor kimberlite was formed by several eruptive events resulting in adjacent and cross-cutting craters that were infilled with either pyroclastic kimberlite or hypabyssal-like kimberlite, which is now interpreted to be of probable extrusive origin. Within the pyroclastic kimberlites of Victor North, there are two nested vents, a feature seldom documented in kimberlites elsewhere. This study highlights the meaningful role of kimberlite petrography in the evaluation of diamond deposits and provides further insight into kimberlite emplacement and volcanism.  相似文献   


4.
K.M. Masun  B.J. Doyle  S. Ball  S. Walker 《Lithos》2004,76(1-4):75-97
The 613±6 Ma Anuri kimberlite is a pipelike body comprising two lobes with a combined surface area of approximately 4–5 ha. The pipe is infilled with two contrasting rock types: volcaniclastic kimberlite (VK) and, less common, hypabyssal kimberlite (HK).

The HK is an archetypal kimberlite composed of macrocrysts of olivine, spinel, mica, rare eclogitic garnet and clinopyroxene with microphenocrysts of olivine and groundmass spinel, phlogopite, apatite and perovskite in a serpentine–calcite–phlogopite matrix. The Ba enrichment of phlogopite, the compositional trends of both primary spinel and phlogopite, as well as the composition of the mantle-derived xenocrysts, are also characteristic of kimberlite. The present-day country rocks are granitoids; however, the incorporation of sedimentary xenoliths in the HK shows that the Archean granitoid basement terrain, at least locally, was capped by younger Proterozoic sediments at the time of emplacement. The sediments have since been removed by erosion. HK is confined to the deeper eastern parts of the Anuri pipe. It is suggested that the HK was emplaced prior to the dominant VK as a separate phase of kimberlite. The HK must have ascended to high stratigraphic levels to allow incorporation of Proterozoic sediments as xenoliths.

Most of the Anuri kimberlite is infilled with VK which is composed of variable proportions of juvenile lapilli, discrete olivine macrocrysts, country rock xenoliths and mantle-derived xenocrysts. It is proposed that the explosive breakthrough of a second batch of kimberlite magma formed the western lobe resulting in the excavation of the main pipe. Much of the resulting fragmented country rock material was deposited in extra crater deposits. Pyroclastic eruption(s) of kimberlite must have occurred to form the common juvenile lapilli present in the VKs. The VK is variable in nature and can be subdivided into four types: volcaniclastic kimberlite breccia, magmaclast-rich volcaniclastic kimberlite breccia, finer grained volcaniclastic kimberlite breccia and lithic-rich volcaniclastic kimberlite breccia. The variations between these subtypes reflect different depositional processes. These processes are difficult to determine but could include primary pyroclastic deposition and/or resedimentation.

There is some similarity between Anuri and the Lac de Gras kimberlites, with variable types of VK forming the dominant infill of small, steep-sided pipes excavated into crystalline Archean basement and sedimentary cover.  相似文献   


5.

Kimberlites are rare volatile-rich ultramafic magmas thought to erupt in short periods of time (<1 Myr) but there is a growing body of evidence that the emplacement history of a kimberlite can be significantly more protracted. In this study we report a detailed geochronology investigation of a single kimberlite pipe from the Renard cluster in north-central Québec. Ten new high precision ID-TIMS (isotope dilution – thermal ionization mass spectrometry) U-Pb groundmass perovskite dates from the main pipe-infilling kimberlites and several small hypabyssal kimberlites from the Renard 2 pipe indicate kimberlite magmatism lasted at least ~20 Myr. Two samples of the main pipe-infilling kimberlites yield identical weighted mean 206Pb/238U perovskite dates with a composite date of 643.8 ± 1.0 Myr, interpreted to be the best estimate for main pipe emplacement. In contrast, six hypabyssal kimberlite samples yielded a range of weighted mean 206Pb/238U perovskite dates between ~652-632 Myr. Multiple dates determined from these early-, syn- and late-stage small hypabyssal kimberlites in the Renard 2 pipe demonstrate this rock type (commonly used to date kimberlites) help to constrain the duration of kimberlite intrusion history within a pipe but do not necessarily reliably record the emplacement age of the main diatreme in the Renard cluster. Our results provide the first robust geochronological data on a single kimberlite that confirms the field relationships initially observed by Wagner (1914) and Clement (1982); the presence of antecedent (diatreme precursor) intrusions, contemporaneous (syn-diatreme) intrusions, and consequent (post-diatreme) cross-cutting intrusions. The results of this detailed U-Pb geochronology study indicate a single kimberlite pipe can record millions of years of magmatism, much longer than previously thought from the classical viewpoint of a rapid and short-duration emplacement history.

  相似文献   

6.
Barnett  Wayne  Stubley  Michael  Hetman  Casey  Uken  Ron  Hrkac  Chris  McCandless  Tom 《Mineralogy and Petrology》2018,112(2):447-462

The Kennady North Project kimberlites (Northwest Territories of Canada) comprises multiple shallow dipping dykes and several volcaniclastic bodies that have an unusual shallow plunging geometry and complex “pipe” shapes that are termed chonoliths. The detailed exploration of the entire system provides exceptional evidence for subterranean volcanic conduit growth processes. The possible processes leading to the development of the kimberlite bodies are discussed, with emphasis on the importance of the subsurface intrusive system geometry and the local stress tensor. Emplacement into a locally compressive stress regime (i.e. σ1 and σ2 inclined at a low angle to surface) could change the kimberlite emplacement geometries to that observed at Kennady North. Models are proposed for the development of the chonoliths, to emphasize aspects of the growth of kimberlite systems that are not well understood. The conclusions challenge or evolve current emplacement models and should influence kimberlite exploration and resource definition assumptions.

  相似文献   

7.

The Nxau Nxau kimberlites in northwest Botswana belong to the Xaudum kimberlite province that also includes the Sikereti, Kaudom and Gura kimberlite clusters in north-east Namibia. The Nxau Nxau kimberlites lie on the southernmost extension of the Congo Craton, which incorporates part of the Damara Orogenic Belt on its margin. The Xaudum kimberlite province is geographically isolated from other known clusters but occurs within the limits of the NW-SE oriented, Karoo-aged Okavango Dyke Swarm and near NE-SW faults interpreted as the early stages of the East African Rift System. Petrographic, geochronological and isotopic studies were undertaken to characterise the nature of these kimberlites and the timing of their emplacement. The Nxau Nxau kimberlites exhibit groundmass textures, mineral phases and Sr-isotope compositions (87Sr/86Sri of 0.7036 ± 0.0002; 2σ) that are characteristic of archetypal (Group I) kimberlites. U-Pb perovskite, 40Ar/39Ar phlogopite and Rb-Sr phlogopite ages indicate that the kimberlites were emplaced in the Cretaceous, with perovskite from four samples yielding a preferred weighted average U-Pb age of 84 ± 4 Ma (2σ). This age is typical of many kimberlites in southern Africa, indicating that the Xaudum occurrences form part of this widespread Late Cretaceous kimberlite magmatic province. This time marks a significant period of tectonic stress reorganisation that could have provided the trigger for kimberlite magmatism. In this regard, the Nxau Nxau kimberlites may form part of a NE-SW oriented trend such as the Lucapa corridor, with implications for further undiscovered kimberlites along this corridor.

  相似文献   

8.

De Beers kimberlite mine operations in South Africa (Venetia and Voorspoed) and Canada (Gahcho Kué, Victor, and Snap Lake) have the potential to sequester carbon dioxide (CO2) through weathering of kimberlite mine tailings, which can store carbon in secondary carbonate minerals (mineral carbonation). Carbonation of ca. 4.7 to 24.0 wt% (average = 13.8 wt%) of annual processed kimberlite production could offset 100% of each mine site’s carbon dioxide equivalent (CO2e) emissions. Minerals of particular interest for reactivity with atmospheric or waste CO2 from energy production include serpentine minerals, olivine (forsterite), brucite, and smectite. The most abundant minerals, such as serpentine polymorphs, provide the bulk of the carbonation potential. However, the detection of minor amounts of highly reactive brucite in tailings from Victor, as well as the likely presence of brucite at Venetia, Gahcho Kué, and Snap Lake, is also important for the mineral carbonation potential of the mine sites.

  相似文献   

9.

Renard 65, a diamondiferous pipe in the Neoproterozoic Renard kimberlite cluster (Québec, Canada), is a steeply-dipping and downward-tapering diatreme comprised of three pipe-filling units: kimb65a, kimb65b, and kimb65d. The pipe is surrounded by a marginal and variably-brecciated country rock aureole and is crosscut by numerous hypabyssal dykes: kimb65c. Extensive petrographic and mineralogical characterization of over 700 m of drill core from four separate drill holes, suggests that Renard 65 is a Group I kimberlite, mineralogically classified as phlogopite kimberlite and serpentine-phlogopite kimberlite. Kimb65a is a massive volcaniclastic kimberlite dominated by lithic clasts, magmaclasts, and discrete olivine macrocrysts, hosted within a fine-grained diopside and serpentine-rich matrix. Kimb65b is massive, macrocrystic, coherent kimberlite with a groundmass assemblage of phlogopite, spinel, perovskite, apatite, calcite, serpentine and rare monticellite. Kimb65c is a massive, macrocrystic, hypabyssal kimberlite with a groundmass assemblage of phlogopite, serpentine, calcite, perovskite, spinel, and apatite. Kimb65d is massive volcaniclastic kimberlite with localized textures that are intermediate between volcaniclastic and coherent, with tightly packed magmaclasts separated by a diopside- and serpentine-rich matrix. Lithic clasts of granite-gneiss in kimb65a are weakly reacted, with partial melting of feldspars and crystallization of richterite and actinolite. Lithic clasts in kimb65b and kimb65d are entirely recrystallized to calcite + serpentine/chlorite + pectolite and display inner coronas of diopside-aegirine and an outer corona of phlogopite. Compositions are reported for all minerals in the groundmass of coherent kimberlites, magmaclasts, interclast matrices, and reacted lithic clasts. The Renard 65 rocks are texturally classified as Kimberley-type pyroclastic kimberlites and display transitional textures. The kimberlite units are interpreted to have formed in three melt batches based on their distinct spinel chemistry: kimb65a, kimb65b and kimb65d. We note a strong correlation between the modal abundances of lithic clasts and the textures of the kimberlites, where increasing modal abundances of granite/gneiss are observed in kimberlites with increasingly fragmental textures.

  相似文献   

10.
E.M.W. Skinner  J.S. Marsh 《Lithos》2004,76(1-4):183-200
Field and Scott Smith [Field, M., Scott Smith, B.H., 1999. Contrasting geology and near-surface emplacement of kimberlite pipes in southern Africa and Canada. Proc. 7th Int. Kimb. Conf. (Eds. Gurney et al.) 1, 214–237.] propose that kimberlite pipes can be grouped into three types or classes. Classical or Class 1 pipes are the only class with characteristic low temperature, diatreme-facies kimberlite in addition to hypabyssal- and crater-facies kimberlite. Class 2 and 3 pipes are characterized only by hypabyssal-and crater-facies kimberlite. In an increasing number of Class 1 pipes a new kimberlite facies, transitional-facies kimberlite, is being found. In most cases this facies forms a zone several metres wide at the interface between the hypabyssal- and diatreme-facies. The transitional-facies exhibits textural and mineralogical features, which are continuously gradational between the hypabyssal and the diatreme types. The textural gradations are from a coherent magmatic texture to one where the rock becomes increasingly magmaclastic and this is accompanied by concomitant mineralogical gradations involving the decline and eventual elimination of primary calcite at the expense of microlitic diopside. Both transitional- and diatreme-facies kimberlites are considered to have formed in situ from intruding hypabyssal kimberlite magma as a consequence of exsolution of initially CO2-rich volatiles from the volatile-rich kimberlite magma. The transitional-facies is initiated by volatile exsolution at depths of about 3 km below the original surface. With subsequent cracking through to the surface and resultant rapid decompression, the further catastrophic exsolution of volatiles and their expansion leads to the formation of the diatreme facies. Thus diatreme-facies kimberlite and Class 1 pipes are emplaced by essentially magmatic processes rather than by phreatomagmatism.

Distinctly different petrographic features characterize crater-facies kimberlite in each of the three pipe classes. In crater-facies kimberlites of Class 1 pipes, small pelletal magmaclasts and abundant microlitic diopside are characteristic. These features appear to reflect the derivation of the crater-facies material from the underlying diatreme zone. Most Class 2 pipes have shallow craters and the crater-facies rocks are predominantly pyroclastic kimberlites with diagnostic amoeboid lapilli, which are sometimes welded and have vesicles as well as glass. Possible kimberlite lava also occurs at two Class 2 pipes in N Angola. The possible presence of lava as well as the features of the pyroclastic kimberlite is indicative of hot kimberlite magma being able to rise to levels close to the surface to form Class 2 pipes. Most Class 3 kimberlites have very steep craters and crater-facies rocks are predominantly resedimented volcaniclastic kimberlites, in some cases characterized by the presence of abundant angular magmaclasts, which are petrographically very similar to typical hypabyssal-facies kimberlite found in Class 1 pipes. The differences in crater-facies kimberlite of the three classes of pipe reflect different formation and depositional processes as well as differences in kimberlite composition, specifically volatile composition. Kimberlite forming pipe Classes 1 and 3 is thought to be relatively water-rich and is emplaced by processes involving magmatic exsolution of volatiles. The kimberlite magma forming Class 2 pipes is CO2-rich, can rise to shallow levels, and can initiate phreatomagmatic emplacement processes.  相似文献   


11.
西村岩管是在苏北地区发现的第一个金伯利岩管,颠覆了苏北地区无金伯利岩的历史。从岩石学、地球化学和伴生矿物等方面分析了西村岩管的地质特征,并进一步探讨其金刚石找矿意义。从区域背景和金刚石形成条件看,西村地区具备了金伯利岩侵位和金刚石矿形成的基本地质条件,而西村岩管为金刚石矿就位提供了母岩条件;西村金伯利岩与山东、辽宁金伯利岩具有相似的地球化学特征,是幔源岩浆低程度部分熔融的产物,且在岩浆上升过程中普遍遭受了壳源物质的混染,后期碳酸盐化现象普遍发育;其相容元素含量与山东金伯利角砾岩相似,均为典型的金伯利岩型配分模式,稀土元素表现为轻、重稀土元素强烈分馏的特征;伴生指示矿物主要为榴辉岩型含铬镁铝榴石、富铬透辉石和富镁铬尖晶石,其特征均表现出含矿金伯利岩的特点。  相似文献   

12.
Over the past fifteen years the original data on the kimberlites of South Africa have been supplemented with a wealth of information on the kimberlites of the U.S.S.R., the U.S.A., and various parts of Africa. From their distribution pattern, it can now be shown that kimberlites are virtually confined to the old Precambrian cratons and that the diamond-bearing kimberlites exist on the older cratonic nuclei that have not been deformed for the past 2,500 m years. The kimberlite dykes infill major, deep-seated fractures that cross the cratons on a geometrical pattern. The kimberlite that infilled these fractures was a hot fluid that penetrated to within 2–3 km of the surface before there was explosive breakthrough to the surface with subsequent formation and infilling of the high-level diatremes by a gas-solid fluidisation process. The kimberlites can vary widely texturally, from the fragmental variety found in the diatremes, to massive varieties found within the hypabyssal dykes or skills.  相似文献   

13.
Rapopo  Mafusi  Sobie  Paul 《Mineralogy and Petrology》2018,112(2):339-350

The Cretaceous Liqhobong kimberlite cluster comprises six known diamondiferous Group 1 kimberlite bodies: the Main Pipe (8.5 ha), the Satellite Pipe (1.6 ha), the Discovery Blow (0.15 ha), the Blow (0.1 ha), the Main Dyke, and the East Dyke. Emplaced along a strike length of about 2.5 km, the kimberlites intruded Jurassic Drakensberg lavas and outcrop at altitude ranging from 2970 to 2670 m above sea level (masl) in the rugged Maluti Mountain terrain of Lesotho. The cluster’s intrusion was structurally controlled and emplacement occurred in at least three pulses. The dykes and the two blows (which are dyke enlargements emplaced ~900 m apart) comprise the earliest event and the Main and Satellite Pipes were emplaced during two separate, subsequent events. Each pipe has steep contacts with the country rock basalt. The two Blows have inward dipping contacts and narrow considerably at depth. Each of the Main and Satellite Pipes comprises multiple phases which range from largely volcaniclastic to marginally coherent kimberlites. The volume of the volcaniclastic kimberlite is always much more (>three times) than that of the coherent kimberlite. The larger Main and Satellite Pipes are diluted by country rock up to 40 vol% whereas the smaller Blows and Dykes typically have less than 10 vol% dilution. The degree of mantle sampling is highest (up to 40 vol%) in the smaller Blows and lower (~25 vol%) in the larger Pipes.

  相似文献   

14.
This paper reviews key characteristics of kimberlites on the Ekati property, NWT, Canada. To date 150 kimberlites have been discovered on the property, five of which are mined for diamonds. The kimberlites intrude Archean basement of the central Slave craton. Numerous Proterozoic diabase dykes intrude the area. The Precambrian rocks are overlain by Quaternary glacial sediments. No Phanerozoic rocks are present. However, mudstone xenoliths and disaggregated sediment within the kimberlites indicate that late-Cretaceous and Tertiary cover (likely <200 m) was present at the time of emplacement. The Ekati kimberlites range in age from 45 to 75 Ma. They are mostly small pipe-like bodies (surface area mostly <3 ha but up to 20 ha) that typically extend to projected depths of 400–600 m below current surface. Pipe morphologies are strongly controlled by joints and faults. The kimberlites consist primarily of variably bedded volcaniclastic kimberlite (VK). This is dominated by juvenile constituents (olivine and lesser kimberlitic ash) and variable amounts of exotic sediment (primarily mud), with minor amounts of xenolithic wall-rock material (generally <5%). Kimberlite types include: mud-rich resedimented VK (mRVK); olivine-rich VK (oVK); sedimentary kimberlite; primary VK (PVK); tuffisitic kimberlite (TK) and magmatic kimberlite (MK). The presence and arrangement of these rock types varies widely. The majority of bodies are dominated by oVK and mRVK, but PVK is prominent in the lower portions of certain kimberlites. TK is rare. MK occurs primarily as precursor dykes but, in a few cases, forms pipe-filling intrusions. The internal geology of the kimberlites ranges from simple single-phase pipes (RVK or MK), to complex bodies with multiple, distinct units of VK. The latter include pipes infilled with steep, irregular VK blocks/wedges and at least one case in which the pipe is occupied by well-defined sub-horizontal VK phases, including a unique, 100-m-thick graded sequence. The whole-rock compositions of VK samples suggest significant loss of kimberlitic fines during eruption followed by variable dilution by surface sediment and concurrent incorporation of kimberlitic ash. Diamond distribution within the kimberlites reflects the amount and nature of mantle material sampled by individual kimberlite phases, but is modified considerably by eruption and depositional processes. The characteristics of the Ekati kimberlites are consistent with a two-stage emplacement process: (1) explosive eruption/s causing vent clearing followed by formation of a significant tephra rim/cone of highly fragmented, olivine-enriched juvenile material with varying amounts of kimberlitic ash and surface sediments (predominantly mud); and (2) infilling of the vent by direct deposition from the eruption column and/or resedimentation of crater rim materials. The presence of less fragmented, juvenile-rich PVK in the lower portions of certain pipes and the intrusion of large volumes of MK to shallow levels in some bodies suggest emplacement of relatively volatile-depleted, less explosive kimberlite in the later stages of pipe formation and/or filling. Explosive devolatilisation of CO2-rich kimberlite magma is interpreted to have been the dominant eruption mechanism, but phreatomagmatism is thought to have played a role and, in certain cases, may have been dominant.  相似文献   

15.

Exploration for diamond-bearing kimberlites in the Chidliak project area by Peregrine Diamonds has generated a grid-like till sampling pattern across four discrete areas of interest totalling 402 km2 that is densely populated with research-grade compositional data for 10,743 mantle-derived Cr-pyrope garnets. The available dataset is well suited to statistical analysis, in part due to the relatively unbiased spatial coverage. Previous workers showed empirically that the TiO2 and Mn thermometry (Ti-TMn) attributes of Cr-pyrope populations at the Chidliak project may serve as source-specific “fingerprints”. In this work, we employ a simplified version of the multivariate Mahalanobis distance technique to formally examine the variability of, and differences between, Ti-TMn attributes of Cr-pyrope subpopulations recovered from a Laurentide-age glaciated terrain that also contains 30 known kimberlites within the four areas of interest. We show the simplified Mahalanobis distance approach enables accurate discrimination of Cr-pyrope subpopulations with subtly to distinctly different Ti-TMn attributes, and permits proper demarcation of their respective kimberlite source(s), specifically in areas with straightforward glacial histories. Redistribution and blending of Cr-pyrope subpopulations from known kimberlite sources is also observed, and typifies areas at Chidliak with complex late-glacial histories. Our results support <1 km horizontal scale subtle to obvious variability in the proportions of TiO2-rich and high-temperature (> 1100 °C) Cr-pyropes between closely spaced kimberlite source(s) and also between physically adjacent magma batches within single kimberlite pipes. The local scale variability is attributed to protokimberlite fluid or melt interacting with, and metasomatizing discrete conduits within, the ambient diamond-facies peridotitic mantle at times closely preceding eruption of kimberlite magma batches at Chidliak.

  相似文献   

16.
New Rb–Sr age determinations using macrocrystal phlogopite are presented for 27 kimberlites from the Ekati property of the Lac de Gras region, Slave Province, Canada. These new data show that kimberlite magmatism at Ekati ranges in age from at least Late Paleocene (61 Ma) to Middle Eocene time (45 Ma). Older, perovskite-bearing kimberlites from Ekati extend this age range to Late Cretaceous time (74 Ma). Within this age range, emplacement episodes at 48, 51–53, 55–56 and 59–61 Ma can be recognized. Middle Eocene kimberlite magmatism of the previously dated Mark kimberlite (47.5 Ma) is shown to include four other pipes from the east-central Ekati property. A single kimberlite (Aaron) may be younger than the 47.5 Ma Mark kimberlite. The economically important Panda kimberlite is precisely dated in this study to be 53.3±0.6 Ma using the phlogopite isochron method, and up to six additional kimberlites from the central Ekati property have Early Eocene ages indistinguishable from that of Panda, including the Koala and Koala North occurrences. Late Paleocene 55–56 Ma kimberlite magmatism, represented by the Diavik kimberlite pipes adjacent to the southeastern Ekati property, is shown to extend onto the southeastern Ekati property and includes three, and possibly four, kimberlites. A precise eight-point phlogopite isochron for the Cobra South kimberlite yields an emplacement age of 59.7±0.4 Ma; eight other kimberlites from across the Ekati property have similar Late Paleocene Rb–Sr model ages. The addition of 27 new emplacement ages for kimberlites from the Ekati property confirms that kimberlite magmatism from the central Slave Province is geologically young, despite ages ranging back to Cambrian time from elsewhere in the Slave Province. With the available geochronologic database, Lac de Gras kimberlites with the highest diamond potential are currently restricted to the 51–53 and 55–56 Ma periods of kimberlite magmatism.  相似文献   

17.

The Renard 2 pipe is currently the deepest-drilled and most extensively studied kimberlite body in the Renard cluster, central Québec, Canada, forming the major component of the Mineral Resource of Stornoway Diamond Corporation’s Renard Mine. Renard 2 is infilled with two distinct kimberlite units that exhibit Kimberley-type pyroclastic kimberlite and related textures. Hypabyssal kimberlite also occurs as smaller cross-cutting sheets and irregular intrusions. The units are distinguished by their rock textures, groundmass mineral assemblages, olivine macrocryst size distributions and replacement products, mantle and country rock xenolith contents, whole rock geochemical signatures, bulk densities and diamond grades. These differences are interpreted to reflect different mantle ascent and near-surface emplacement processes and are here demonstrated to be vertically continuous from present surface to over 1000 m depth. The distinctive petrological features together with sharp, steep and cross-cutting internal contact relationships, show that each unit was formed from a separate batch of mantle-derived kimberlite magma, and was completely solidified before subsequent emplacement of the later unit. The mineralogy and textures of the ultra-fine-grained interclast matrix are consistent with those described at numerous Kimberley-type pyroclastic kimberlite localities around the world and are interpreted to reflect rapid primary crystallization during emplacement of separate kimberlite magmatic systems. The units of fractured and brecciated country rock surrounding the main kimberlite pipe contain kimberlite-derived material including carbonate providing evidence of subsurface brecciation. Together these data show that Renard 2 represents the deeper parts of a Kimberley-type pyroclastic kimberlite pipe system and demonstrates that their diagnostic features result from magmatic crystallisation during subsurface volcanic emplacement processes.

  相似文献   

18.
Hydrothermal alteration of kimberlite by convective flows of external water   总被引:1,自引:0,他引:1  
Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130–400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. Large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe is narrower leading to faster cooling. These predictions are consistent with fresh olivine and serpentine distribution in the Diavik A418 kimberlite pipe, (NWT, Canada) and with features of kimberlites of the Yakutian province in Russia affected by influx of ground water brines. Fast reactions and increases in the volume of solid products compared to the reactants result in self-sealing and low water–rock ratios (estimated at <0.2). Such low water–rock ratios result in only small changes in stable isotope compositions; for example, δO18 is predicted only to change slightly from mantle values. The model supports alteration of kimberlites predominantly by interactions with external non-magmatic fluids.  相似文献   

19.

Olivine in kimberlites can provide unique insights into magma petrogenesis, because it is the most abundant xenocrystic phase and a stable magmatic product over most of the liquid line of descent. In this study we examined the petrography and chemistry of olivine in kimberlites from different tectonic settings, including the Slave craton, Canada (Ekati: Grizzly, Koala), the Brasilia mobile belt (Limpeza-18, Tres Ranchos-04), and the Kaapvaal craton, South Africa (Kaalvallei: Samada, New Robinson). Olivine cores display a wide range of compositions (e.g., Mg# = 78–95). The similarity in olivine composition, resorption of core zones and inclusions of mantle-derived phases, indicates that most olivine cores originated from the disaggregation of mantle peridotites, including kimberlite-metasomatised lithologies (i.e. sheared lherzolites and megacrysts). Olivine rims typically show a restricted range of Mg#, with decreasing Ni and increasing Mn and Ca contents, a characteristic of kimberlitic olivine worldwide. The rims host inclusions of groundmass minerals, which implies crystallisation just before and/or during emplacement. There is a direct correlation between olivine rim composition and groundmass mineralogy, whereby high Mg/Fe rims are associated with carbonate-rich kimberlites, and lower Mg/Fe rims are correlated with increased phlogopite and Fe-bearing oxide mineral abundances. There are no differences in olivine composition between explosive (Grizzly) and hypabyssal (Koala) kimberlites. Olivine in kimberlites also displays transitional zones and less common internal zones, between cores and rims. The diffuse transitional zones exhibit intermediate compositions between cores and rims, attributed to partial re-equilibration of xenocrystic cores with the ascending kimberlite melt. In contrast, internal zones form discrete layers with resorbed margins and restricted Mg# values, but variable Ni, Mn and Ca concentrations, which indicates a discrete crystallization event from precursor kimberlite melts at mantle depths. Overall, olivine exhibits broadly analogous zoning in kimberlites worldwide. Variable compositions for individual zones relate to different parental melt compositions rather than variations in tectonic setting or emplacement mechanism.

  相似文献   

20.
Based on a compilation of more than 100 kimberlite age determinations, four broad kimberlite emplacement patterns can be recognized in North America: (1) a northeast Eocambrian/Cambrian Labrador Sea province (Labrador, Québec), (2) an eastern Jurassic province (Ontario, Québec, New York, Pennsylvania), (3) a Cretaceous central corridor (Nunavut, Saskatchewan, central USA), and (4) a western mixed (Cambrian-Eocene) Type 3 kimberlite province (Alberta, Nunavut, Northwest Territories, Colorado/Wyoming). Ten new U–Pb perovskite/mantle zircon and Rb–Sr phlogopite age determinations are reported here for kimberlites from the Slave and Wyoming cratons of western North America. Within the Type 3 Slave craton, at least four kimberlite age domains exist: I-a southwestern Siluro-Ordovician domain (450 Ma), II-a SE Cambrian domain (540 Ma), III-a central Tertiary/Cretaceous domain (48–74 Ma) and IV-a northern mixed domain consisting of Jurassic and Permian kimberlite fields. New U–Pb perovskite results for the 614.5±2.1 Ma Chicken Park and 408.4±2.6 Ma Iron Mountain kimberlites in the State Line field in Colorado and Wyoming confirm the existence of at least two periods of pre-Mesozoic kimberlite magmatism in the Wyoming craton.

A compilation of robust kimberlite emplacement ages from North America, southern Africa and Russia indicates that a high proportion of known kimberlites are Cenozoic/Mesozoic. We conclude that a majority of these kimberlites were generated during enhanced mantle plume activity associated with the rifting and eventual breakup of the supercontinent Gondwanaland. Within this prolific period of kimberlite activity, there is a good correlation between North America and Yakutia for three distinct short-duration (10 my) periods of kimberlite magmatism at 48–60, 95–105 and 150–160 Ma. In contrast, Cenozoic/Mesozoic kimberlite magmatism in southern Africa is dominated by a continuum of activity between 70–95 and 105–120 Ma with additional less-prolific periods of magmatism in the Eocene (50–53 Ma), Jurassic (150–190) and Triassic (235 Ma). Several discrete episodes of pre-Mesozoic kimberlite magmatism variably occur in North America, southern Africa and Yakutia at 590–615, 520–540, 435–450, 400–410 and 345–360 Ma. One of the surprises in the timing of kimberlite magmatism worldwide is the common absence of activity between about 250 and 360 Ma; this period is even longer in southern Africa. This >110 my period of quiescence in kimberlite magmatism is likely linked to relative crustal and mantle stability during the lifetime of the supercontinent Gondwanaland.

Economic diamond deposits in kimberlite occur throughout the Phanerozoic from the Cambrian (Venetia, South Africa; Snap Lake and Kennady Lake, Canada) to the Tertiary (Mwadui, Tanzania; Ekati and Diavik in Lac de Gras, Canada). There are clearly some discrete periods when economic kimberlite-hosted diamond deposits formed globally. In contrast, the Devonian event, which is such an important source of diamonds in Yakutia, is notably absent in the kimberlite record from both southern Africa and North America.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号