首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 520 毫秒
1.
WIEBE  R.A. 《Journal of Petrology》1986,27(6):1253-1275
Nodules and xenocrysts dominated by high-A1 orthopyroxene occurin Proterozoic basaltic dikes that cut the Nain anorthositecomplex, Labrador. This pyroxene (En73–68, Al2O3 = 6.5–4.5)lacks exsolution and occurs both as anhedral xenocrysts up to10 cm in diameter and with euhedral plagioclase (An55) in ophiticnodules. Rarely, olivine (Fo70) occurs with orthopyroxene andAl-spinel with plagioclase. Scarce, more Fe-rich nodules containtwo pyroxenes (orthopyroxene + pigeonite and pigeonite+augite)and coarse intergrowths of ilmenite and Ti-rich magnetite. Pyroxenepairs yield temperatures of 1250? to 1170 ?C; coexisting oxidelamellae yield temperatures between 1145? and 1120 ?C. The highsubsolidus temperatures of the nodules contrasts with the lowtemperature of the host anorthosite at the time of dike emplacementand indicates a deep source for the nodules. Coexisting olivine(Fo70) and plagioclase (An54) suggest a maximum pressure ofabout 11 kb.The dominant orthopyroxene in these nodules is nearlyidentical in composition to the high-Al orthopyroxene megacrystswith exsolved plagioclase (HAOM) found in most Proterozoic anorthosites,and the ophitic nodules have textures similar to ophitic occurrencesof HAOM in anorthosite. Rafting of cotectic nodules from thelower crust can explain occurrences of HAOM in shallow levelanorthosites.The nodules and xenocrysts have compositions consistentwith crystallization from magmas that were parental to the anorthosites.They lend support to models which derive anorthosites by fractionalcrystallization of basaltic magma near the base of the crust.  相似文献   

2.
The Sept Iles layered intrusion (Quebec, Canada) is dominated by a basal Layered Series made up of troctolites and gabbros, and by anorthosites occurring (1) at the roof of the magma chamber (100-500 m-thick) and (2) as cm- to m-size blocks in gabbros of the Layered Series. Anorthosite rocks are made up of plagioclase, with minor clinopyroxene, olivine and Fe-Ti oxide minerals. Plagioclase displays a very restricted range of compositions for major elements (An68-An60), trace elements (Sr: 1023-1071 ppm; Ba: 132-172 ppm) and Sr isotopic ratios (87Sr/86Sri: 0.70356-0.70379). This compositional range is identical to that observed in troctolites, the most primitive cumulates of the Layered Series, whereas plagioclase in layered gabbros is more evolved (An60-An38). The origin of Sept Iles anorthosites has been investigated by calculating the density of plagioclase and that of the evolving melts. The density of the FeO-rich tholeiitic basalt parent magma first increased from 2.70 to 2.75 g/cm3 during early fractionation of troctolites and then decreased continuously to 2.16 g/cm3 with fractionation of Fe-Ti oxide-bearing gabbros. Plagioclase (An69-An60) was initially positively buoyant and partly accumulated at the top of the magma chamber to form the roof anorthosite. With further differentiation, plagioclase (<An60) became negatively buoyant and anorthosite stopped forming. Blocks of anorthosite (autoliths) even fell downward to the basal cumulate pile. The presence of positively buoyant plagioclase in basal troctolites is explained by the low efficiency of plagioclase flotation due to crystallization at the floor and/or minor plagioclase nucleation within the main magma body. Dense mafic minerals of the roof anorthosite are shown to have crystallized from the interstitial liquid.The processes related to floating and sinking of plagioclase in a large and shallow layered intrusion serve as a proxy to refine the crystallization model of the lunar magma ocean and explain the vertically stratified structure of the lunar crust, with (gabbro-)noritic rocks at the base and anorthositic rocks at the top. We propose that the lunar crust mainly crystallized bottom-up. This basal crystallization formed a mafic lower crust that might have a geochemical signature similar to the magnesian-suite without KREEP contamination, while flotation of some plagioclase grains produced ferroan anorthosites in the upper crust.  相似文献   

3.
Massif anorthosites form when basaltic magma differentiates in crustal magma chambers to form low-density plagioclase and a residual liquid whose density was greater than that of enclosing crustal rocks. The plagioclase and minor pyroxene crystallized in-situ on the floor of the magma chamber to produce the anorthosite complex, and the residual liquid migrated downwards, eventually to solidify as dense Fe-rich cumulates some of which were removed to the mantle. These movements were facilitated by high temperatures in Proterozoic continental crust, thus explaining the restriction of large anorthosite massifs to this period in Earth history.  相似文献   

4.
Anorthosite-bearing layered intrusions are unique to the Archaean rock record and are abundant in the Archaean craton of southern West Greenland and the Superior Province of Canada. These layered intrusions consist mainly of ultramafic rocks, gabbros, leucogabbros and anorthosites, and typically contain high-Ca (>An70) megacrystic (2–30 cm in diameter) plagioclase in anorthosite and leucogabbro units. They are spatially and temporally associated with basalt-dominated greenstone belts and are intruded by syn-to post-tectonic granitoid rocks. The layered intrusions, greenstone belts and granitoids all share the geochemical characteristics of Phanerozoic subduction zone magmas, suggesting that they formed mainly in a suprasubduction zone setting. Archaean anorthosite-bearing layered intrusions and spatially associated greenstone belts are interpreted to be fragments of oceanic crust, representing dismembered subduction-related ophiolites. We suggest that large degrees of partial melting (25–35%) in the hotter (1500–1600 °C) Archaean upper mantle beneath rifting arcs and backarc basins produced shallow, kilometre-scale hydrous magma chambers. Field observations suggest that megacrystic anorthosites were generated at the top of the magma chambers, or in sills, dykes and pods in the oceanic crust. The absence of high-Ca megacrystic anorthosites in post-Archaean layered intrusions and oceanic crust reflects the decline of mantle temperatures resulting from secular cooling of the Earth.  相似文献   

5.
Mafic dikes and sheets rich in Fe, Ti-oxides and apatite are commonly associated with Proterozoic massif anorthosites and are referred to as oxide-apatite gabbronorites (OAGN). Within the Adirondacks, field evidence indicates that during middle to late stages of anorthositic evolution, these bodies were emplaced as magmas with unspecified liquid-crystal ratios. Sixty whole rock analyses of Adirondack OAGN and related rocks define continuous oxide trends on Harker variation diagrams (SiO2=37–54%). Similar trends exist for Sr, Y, Nb, Zr, and REE and together suggest a common origin via fractional crystallization. A representative parental magma (plagioclase-rich crystal mush) has been chosen from this suite, and successive daughter magmas have been produced by removal of minerals with compositions corresponding to those determined in actual rocks. Least squares, mass balance calculations of major element trends indicate that removal of intermediate plagioclase (An40–50) plus lesser amounts of pyroxene account for the compositional variation of this suite and produce very low sums of the squares of the residuals (R2 s>0.25). The extracted mineral phases correspond volumetrically and compositionally to those of the anorthositic suite, and the model succeeds in accounting for the observed OAGN trends. The major element model is utilized to calculate trace elejent concentrations for successive magmas, and these agree closely with observation. We conclude that, beginning with a plagioclase-rich crystal mush, the extraction of intermediate plagioclase (An40–50) drives residual magmas to increasingly Fe-, Ti-, and P-rich and SiO2-poor conditions characteristic of Fenner-type fractionation. The crystallization sequence is plagioclaseplagioclase+orthopyroxeneplagioclase+orthopyroxene (pigeonite)+augite. Fe, Ti-oxides begin to crystallize near the end of the sequence and are followed by apatite and fayalitic olivine which appears in place of pigeonite. Augitic pyroxene becomes the dominant ferromagnesian phase in late stages of fractionation. Resultant OAGN magmas are injected into congealed anorthosite by filter pressing of liquid-rich interstitial fractions. Varying compositions of the dikes reflect filter pressing at different stages during fractionation and thereby provide information on the fractionation history of Proterozoic massif anorthosites.  相似文献   

6.
Equilibrium melt trace element contents are calculated from Proterozoic Nain Plutonic Suite (NPS) mafic and anorthositic cumulates, and from plagioclase and orthopyroxene megacrysts. Assumed trapped melt fractions (TMF) <20% generally eliminate all minor phases in most mafic cumulate rocks, reducing them to mixtures of feldspar, pyroxene and olivine, which would represent the high-temperature cumulus assemblage. In anorthosites, TMF <15% generally reduce the mode to a feldspar-only assemblage. All model melts have trace element profiles enriched in highly incompatible elements relative to normal mid-ocean ridge basalt (NMORB); commonly with negative Nb and Th anomalies. Most mafic cumulates yield similar profiles with constant incompatible element ratios, and can be linked through fractional crystallization. High K-La subtypes probably represent crust-contaminated facies. Mafic cumulates are inferred to belong to a tholeiitic differentiation series, variably contaminated by upper and lower crustal components, and probably related to coeval tholeiitic basaltic dyke swarms and lavas in Labrador. Model melts from anorthosites and megacrysts have normalized trace element profiles with steeper slopes than those calculated from mafic cumulates, indicating that mafic cumulates and anorthosites did not crystallize from the same melts. Orthopyroxene megacrysts yield model melts that are more enriched than typical anorthositic model melts, precluding an origin from parental melts. Jotunites have lower K-Rb-Ba-Y-Yb and higher La-Ce than model residues from fractionation of anorthositic model melts, suggesting they are not cosanguineous with them, but provide reasonable fits to evolved mafic cumulate model melts. Incompatible element profiles of anorthositic model melts closely resemble those of crustal melts such as tonalites, with steep Y-Yb-Lu segments that suggest residual garnet in the source. Inversion models yield protoliths similar to depleted lower crustal granulite xenoliths with aluminous compositions, suggesting that the incompatible trace element budget of the anorthosites are derived from remobilization of the lower crust. The similarity of the highly incompatible trace elements and LILE between anorthositic and mafic cumulate model melts suggests that the basalts parental to the mafic cumulates locally assimilated considerable quantities of the same crust that yielded the anorthosites. The reaction between underplating basalt and aluminous lower crust would have forced crystallization of abundant plagioclase, and remobilization of these hybrid plagioclase-rich mushes then produced the anorthosite massifs.  相似文献   

7.
Unusually iron-rich pyroxene and olivine occur in rocks associatedwith the Nain anorthosite massif, Labrador. Adamellite and granodioritecontain orthopyroxene (inverted from pigeonite) as iron-richas Ca6Fe82Mg12; comparison with experimental data suggests aminimum pressure of crystallization of 5 kb. Some of these iron-richpyroxene crystals have broken down, apparently upon decreasingpressure, to yield intergrowths of less iron-rich orthopyroxene(near Ca7Fe72Mg21), ferroaugite, fayalite (near Fo9), and quartz.Other rocks, monzonites, contain pyroxenes with calcium-poorcores and ferroaugite rims, as well as crystals composed ofbroad lamellae of ferroaugite and orthopyroxene in sub-equalproportions. Analysis of one such crystal with unusually thinand closely spaced lamellae yielded a bulk composition of Ca24Fe58Mg18.Such pyroxenes probably crystallized near or above the crestof the augite-pigeonite two-phase region, probably above 925°C. This high temperature suggests that the monzonites crystallizedfrom relatively dry magmas. If they represent a residual fractionderived from the same magma as the anorthosite, then that magmamust have been nearly anhydrous. Pigeonite rather than orthopyroxene was the primary magmaticCa-poor pyroxene in most of the Nain rocks studied here. Nucleationrates apparently were low under subsolidus conditions, and low-Capigeonite (Ca2Fe78Mg20) is present in grains where orthopyroxenedid not nucleate as pigeonite cooled and exsolved ferroaugite.Iron-rich orthopyroxene (Ca2Fe79M19) crystallized instead ofpigeonite in a Greenland quartz syenite that contains more abundanthydrous phases.  相似文献   

8.
Intermediate-composition plagioclase (An40–60) is typicallyless dense than the relatively evolved basaltic magmas fromwhich it crystallizes and the crystallization of plagioclaseproduces a dense residual liquid, thus plagioclase should havea tendency to float in these magmatic systems. There is, however,little direct evidence for plagioclase flotation cumulates eitherin layered intrusions or in Proterozoic anorthosite complexes.The layered series of the Poe Mountain anorthosite, southeastWyoming, contains numerous anorthosite–leucogabbro blocksthat constrain density relations during differentiation. Allblocks are more mafic than their hosting anorthositic cumulates,their plagioclase compositions are more calcic, and each blockis in strong Sr isotopic disequilibrium with its host cumulate.Associated structures—disrupted and deformed layering—indicatethat (1) a floor was present during crystallization and thatplagioclase was accumulating and/or crystallizing on the floor,(2) compositional layering and plagioclase lamination formeddirectly at the magma–crystal pile interface, and (3)the upper portions of the crystal pile contained significantamounts of interstitial melt. Liquid densities are calculatedfor proposed high-Al olivine gabbroic parental magmas and Fe-enrichedferrodioritic and monzodioritic residual magmas of the anorthositestaking into account pressure, oxygen fugacity, P2O5, estimatedvolatile contents, and variable temperatures of crystallization.For all reasonable conditions, calculated block densities aregreater than those of the associated melt. The liquid densities,however, are greater than those for An40–60 plagioclase,which cannot have settled to the floor. Plagioclase must eitherhave been carried to the floor in relatively dense packets ofcooled liquid plus crystals or have crystallized in situ. Asloping floor, possibly produced by diapiric ascent of relativelylight plagioclase-rich cumulates, is required to allow for drainingand removal of the dense interstitial liquid produced in thecrystal pile and may be a characteristic feature during thecrystallization of many Proterozoic anorthosites and layeredintrusions. KEY WORDS: magma; density; Proterozoic anorthosites; blocks; plagioclase  相似文献   

9.
We present results of a secondary ion mass spectrometry study of the rare earth elements (REEs) in the minerals of two samples of lunar ferroan anorthosite, and the results are applicable to studies of REEs in all igneous rocks, no matter what their planet of origin. Our pyroxene analyses are used to determine solid-solid REE distribution coefficients (D = CREE in low-Ca pyroxene/CREE in augite) in orthopyroxene-augite pairs derived by inversion of pigeonite. Our data and predictions from crystal-chemical considerations indicate that as primary pigeonite inverts to orthopyroxene plus augite and subsolidus reequilibration proceeds, the solid-solid Ds for orthopyroxene-augite pairs progressively decrease for all REEs; the decrease is greatest for the LREEs. The REE pattern of solid-solid Ds for inversion-derived pyroxene pairs is close to a straight line for Sm-Lu and turns upward for REEs lighter than Sm; the shape of this pattern is predicted by the shapes of the REE patterns for the individual minerals.Equilibrium liquids calculated for one sample from the compositions of primary phases, using measured or experimentally determined solid-liquid Ds, have chondrite-normalized REE patterns that are very slightly enriched in LREEs. The plagioclase equilibrium liquid is overall less rich in REEs than pyroxene equilibrium liquids, and the discrepancy probably arises because the calculated plagioclase equilibrium liquid represents a liquid earlier in the fractionation sequence than the pyroxene equilibrium liquids. “Equilibrium” liquids calculated from the compositions of inversion-derived pyroxenes or orthopyroxene derived by reaction of olivine are LREE depleted (in some cases substantially) in comparison with equilibrium liquids calculated from the compositions of primary phases. These discrepancies arise because the inversion-derived and reaction-derived pyroxenes did not crystallize directly from liquid, and the use of solid-liquid Ds is inappropriate. The LREE depletion of the calculated liquids is a relic of formation of these phases from primary LREE-depleted minerals. Thus, if one attempts to calculate the compositions of equilibrium liquids from pyroxene compositions, it is important to establish that the pyroxenes are primary. In addition, our data suggest that experimental studies have underestimated solid-liquid Ds for REEs in pigeonite and that REE contents of liquids calculated using these Ds are overestimates.Our results have implications for Sm-Nd age studies. Our work shows that if pigeonite inversion and/or subsolidus reequilibration between augite and orthopyroxene occurred significantly after crystallization, and if pyroxene separates isolated for Sm-Nd studies do not have the bulk composition of the primary pyroxenes, then the Sm-Nd isochron age and εNd will be in error.  相似文献   

10.
Bulk analyses of 157 lithic fragments of igneous origin and analyses of their constituent minerals (plagioclase, pyroxene, olivine, Mg-Al spinel, chromite, ilmenite, armalcolite, baddeleyite, zirkelite, K-feldspar, interstitial glass high in SiO2 and K2O) have been used to characterize the lunar highland rock suites at the Luna 20 site. The predominant suite is composed of ANT (anorthositic-noritic-troctolitic) rocks, as found at previous Apollo and Luna sites. This suite consists of an early cumulate member, spinel troctolite, and later cumulate rocks which are gradational from anorthosite to noritic and troctolitic anorthosite to anorthositic norite and troctolite; anorthositic norite is the most abundant rock type and its composition is close to the average composition for the highland rocks at this site. Spinel troctolite is a distinctive member of this suite and is characterized by the presence of Mg-Al spinel, magnesian olivine (average, Fo83), and plagioclase. High-alumina basalt with low alkali content is another important rock type and melt of this composition may be parental to the cumulate ANT suite. Alkalic high-alumina basalt (KREEP) was not found in our sample, but may be genetically related to the ANT suite in that it may have formed by partial melting of rocks similar to those of the ANT suite. Fractional crystallization of low alkali, high-alumina basalt probably cannot produce alkalic high-alumina basalt because the enrichment in KREEP component is many times greater than the simultaneous change in major element components. Formation of alkalic high-alumina basalt by mechanical mixing of ANT rocks with very KREEP-rich components is not likely because the high-alumina basalt suite falls on a cotectic in the anorthiteolivine-silica system. Mare basalts may also be genetically related in that they may have been derived by remelting of rocks formed from residual liquids of fractional crystallization of parental low-alkali, high-alumina basalt, plus mafic cumulate crystals; the resultant melt would have a negative Eu anomaly and high FeMg and pyroxeneplagioclase ratios.  相似文献   

11.
The Archean Shawmere Anorthosite Complex, at the southern end of the Kapuskasing Structural Zone, consists dominantly of anorthosite (An65 –85) with minor gabbroic and ultramafic units, which are completely enclosed and cut by tonalites. Both the anorthosites and the tonalites are themselves cut by narrow dikes of gabbroic anorthosite. All of the rocks have undergone high grade metamorphism and are recrystallized so that few igneous textures remain.The anorthosites, gabbros and ultramafic rocks of this complex are cumulates which contain calcic plagioclase (An65–95) and have atomic Mg/(Mg + Fe2+) ratios (Mg#) greater than 0.6; less than 3 ppm Rb; 150–210 ppm Sr; and less than 60 ppm Ba. REE abundanees range from 0.2 to 10 times chondritic and exhibit both light-enriched and light-depleted REE patterns. The lower Mg# for the samples having more enriched light REE indicates substantial fractions of ferromagnesian minerals crystallized in addition to plagioclase during fractional crystallization, suggesting that the parent magma was basaltic, and not anorthositic. The ranges in Sr, Ba and REE abundances required for the magmas are typical of those for tholeiitic basalts from Archean greenstone belts. Thus the Shawmere Anorthosite Complex may represent cumulates of a crustal-level magma chamber which could have been the immediate source of basic Archean volcanics.One gabbroic anorthositic dike sample has a steeply fractionalted REE pattern with heavy REE abundances less than chondrites and a large positive Eu anomaly. The proposed interpretations is that this rock formed by partial melting of mafic cumulates, perhaps those of the Shawmere Anorthosite Complex itself.  相似文献   

12.
http://dx.doi.org/10.1016/j.gsf.2016.11.007   总被引:1,自引:1,他引:0  
Lunar anorthosite is a major rock of the lunar highlands,which formed as a result of plagioclasefloatation in the lunar magma ocean(LMO).Constraints on the sufficient conditions that resulted in the formation of a thick pure anorthosite(mode of plagioclase 95 vol.%) is a key to reveal the early magmatic evolution of the terrestrial planets.To form the pure lunar anorthosite,plagioclase should have separated from the magma ocean with low crystal fraction.Crystal networks of plagioclase and mafic minerals develop when the crystal fraction in the magma(φ) is higher than ca.40-60 vol.%,which inhibit the formation of pure anorthosite.In contrast,when φ is small,the magma ocean is highly turbulent,and plagioclase is likely to become entrained in the turbulent magma rather than separated from the melt.To determine the necessary conditions in which anorthosite forms from the LMO,this study adopted the energy criterion formulated by Solomatov.The composition of melt,temperature,and pressure when plagioclase crystallizes are constrained by using MELTS/pMELTS to calculate the density and viscosity of the melt.When plagioclase starts to crystallize,the Mg~# of melt becomes 0.59 at 1291 C.The density of the melt is smaller than that of plagioclase for P 2.1 kbar(ca.50 km deep),and the critical diameter of plagioclase to separate from the melt becomes larger than the typical crystal diameter of plagioclase(1.8-3 cm).This suggests that plagioclase is likely entrained in the LMO just after the plagioclase starts to crystallize.When the Mg~# of melt becomes 0.54 at 1263 C,the density of melt becomes larger than that of plagioclase even for 0 kbar.When the Mg~# of melt decreases down to 0.46 at 1218 C,the critical diameter of plagioclase to separate from the melt becomes 1.5-2.5 cm,which is nearly equal to the typical plagioclase of the lunar anorthosite.This suggests that plagioclase could separate from the melt.One of the differences between the Earth and the Moon is the presence of water.If the terrestrial magma ocean was saturated with H_2O,plagioclase could not crystallize,and anorthosite could not form.  相似文献   

13.
We report new field and petrographic observations, and mineral-chemical data, on the amphibolite-facies Buksefjorden and granulite-facies Nordland anorthosites, which occur in different tectonostratigraphic terranes within the Archaean gneiss complex of SW Greenland. The Buksefjorden body [from the Akulleq (middle) terrane] is dominated by plagioclase and Ca-amphibole, but shows widespread effects of retrograde hydration (epidote, chlorite). Most plagioclase compositions are in the An60–82 range, with the majority of samples showing average core compositions ∼An76, whereas rims or recrystallized margins are ∼An65. Most grains in the An70–82 range display optically visible Huttenlocher intergrowths. Amphiboles at Buksefjorden are mainly magnesio-hornblende with X Mg ranging from 0.70 to 0.45. The Nordland anorthosite [from the Akia (northern) terrane] is also dominated by plagioclase and Ca-amphibole, but contains additional clinopyroxene (∼Ca47Mg38Fe15) as well as minor orthopyroxene (∼En68), spinel and corundum. Plagioclase at Nordland shows an equilibrated, equigranular texture, consistent with prolonged slow cooling from high temperatures. Despite this textural equilibration, plagioclase at Nordland shows a striking range of compositions from An28 to An97, most of which is found in single thin sections. A distinctive feature is the presence of discrete anorthite (+ spinel ± corundum) domains in some samples. Although a number of explanations may apply, we consider these domains to result from prograde mass transfer reactions involving Ca-amphibole and plagioclase. Amphibole compositions at Nordland show similar X Mg to those at Buksefjorden, but are more aluminous, alkalic, and titanian. This shift to more pargasitic compositions is consistent with the contrasts in metamorphic grade between the two anorthosite bodies. At Buksefjorden, there is no correlation between the amount of modal Ca-amphibole and plagioclase composition, which would be expected if amphibole was produced solely through metamorphism. Our results suggest, alternatively, that the primary igneous mineralogy of these rocks may have been plagioclase (∼An76) + hornblende + pyroxene + magnetite. The primary mineralogy at Nordland is less certain, but it is noteworthy that no rocks contain anorthite of unambiguous igneous origin, in contrast to some other occurrences of Archaean anorthosites. Received: 17 January 1996 / Accepted: 12 March 1997  相似文献   

14.
Nelsonite and Fe–Ti oxides ore are common in Proterozoic massif-type anorthosites and layered intrusions. Their geneses have long been controversial, with existing hypotheses including liquid immiscibility between Si-rich and Fe–Ti–P-rich melts and gravitational fractionation among apatite, magnetite, ilmenite and silicates. In this paper, we report detailed field geology and mineral geochemical studies of the nelsonite and Fe–Ti oxides ore from the Damiao anorthosite complex, NE China. Geological observations indicate that the nelsonite and Fe–Ti oxides ore occur as irregularly inclined stratiform-like or lensoid or veins, and are in sharp contact with the anorthosite and gabbronorite. The widespread veins and lenses structure of the Damiao nelsonite and Fe–Ti oxides ore in the anorthosite indicates their immiscibility-derived origin. The apatite in the nelsonite and gabbronorite shows evolution trends different from that in the gabbronorite in the diagrams of Sr versus REEs and Eu/Eu*, suggesting that petrogenesis of the nelsonite and gabbronorite is different from the gabbronorite. Compared with the gabbronorite, the nelsonite and Fe–Ti oxides ore have magnetite high in Cr, plagioclase high in Sr and low in An, and apatite high in Sr, low in REEs with negative Eu anomaly. The evidence permits us to propose that the Damiao Fe–Ti oxides ore/nelsonite and gabbronorite were derived from different parental magmas. The gabbronorite was formed by solidification of the interstitial ferrodioritic magma in the anorthosite, which was the residual magma after extensive plagioclase and pyroxene crystallization and was carried upward by the plagioclase crystal mesh. In contrast, the Fe–Ti oxides ore and nelsonites and mangerite were produced by crystallization of the Fe–Ti–P-rich and SiO2-rich magmas, respectively, due to the liquid immiscibility that occurred when the highly evolved ferrodioritic magma mixed with newly replenished magmas. The variation from Fe–Ti oxides ore to nelsonite and gabbro-nelsonite upwards (as apatite content increases with height) in the steeply inclined Fe–Ti oxides orebodies suggest that gravity fractionation may have played important roles during the crystallization of the Fe–Ti–P-rich magma.  相似文献   

15.
Exposed, subduction-related magmatic arcs commonly include sections of ultramafic plutonic rocks that are composed of dunite, wehrlite, and pyroxenite. In this experimental study we examined the effects of variable H2O concentration on the phase proportions and compositions of igneous pyroxenites and related ultramafic plutonic rocks. Igneous crystallization experiments simulated natural, arc magma compositions at 1.2 GPa, corresponding to conditions of the arc lower crust. Increasing H2O concentration in the liquid changes the crystallization sequence. Low H2O concentration in the liquid stabilizes plagioclase earlier than garnet and amphibole while derivative liquids remain quartz normative. Higher H2O contents (>3%) suppress plagioclase and lead to crystallization of amphibole and garnet thereby producing derivative corundum normative andesite liquids. The experiments show that alumina in the liquid correlates positively with Al in pyroxene, as long as no major aluminous phase crystallizes. Extrapolation of this correlation to natural pyroxenites in the Talkeetna and Kohistan arc sections indicates that clinopyroxenes with low Ca-Tschermaks component represent near-liquidus phases of primitive, Si-rich hydrous magmas. Density calculations on the residual solid assemblages indicate that ultramafic plutonic rocks are always denser than upper mantle rocks in the order of 0.05 to 0.20 g/cm3. The combination of high pressure and high H2O concentration in the liquid suppresses plagioclase crystallization, so that ultramafic plutonic rocks form over a significant proportion of the crystallization interval (up to 50% crystallization of ultramafic rocks from initial, mantle-derived liquids). This suggests that in subduction-related magmatic arcs the seismic Moho might be shallower than the petrologic crust/mantle transition. It is therefore possible that calculations based on seismic data have overestimated the normative plagioclase content (e.g., SiO2, Al2O3) of igneous crust in arcs.  相似文献   

16.
Luna 20 soil 22003,1 (250–500 μ) is similar to Apollo 16 soil 61501,47 (250–500 μ) in terms of the percentage of different types of particles. However, among the lithic fragments, the Apollo 16 sample contains a greater percentage of fragments with more than 70 wt. % modal plagioclase and a significantly greater proportion of KREEP-rich particles. Modal analyses of non-mare lithic fragments in Luna 20 and Apollo 11, 14, 15 and 16 indicate that the KREEP-poor highland regions (the bulk of the lunar terrae), though relatively feldspathic, are compositionally inhomogeneous, ranging in plagioclase content from approximately 35 to 100 wt. %. The average plagioclase content lies in the range 45–70 wt.%. Luna 20 pyroxene analyses cluster in two groups, one more magnesian than the other. The groups persist when pyroxene analyses from KREEP-poor noritic, troctolitic and anorthositic lithic fragments from Apollo 11, 14, 15 and 16 and Luna 20 are included. Olivine compositions mimic these pyroxene groups.Within each pyroxene group Cr2O3 and TiO2 decrease as Fe(Fe + Mg) increases, suggesting a relationship by fractional crystallization. The two groups suggest that at least two magma compositions were involved. To account for these observations we envisage a Moon-wide magma system in which initial accretionary heterogeneities were imperfectly erased by diffusion and convection. During the cooling of this magma system fractional crystallization was effected by the flotation of plagioclase and sinking of pyroxene, olivine and perhaps ilmenite. The endproduct was an upper layer enriched in plagioclase and a lower layer enriched in mafic silicates. KREEP-rich rocks, which are predominantly noritic in major element composition, may be mechanical mixtures of KREEP-poor norite and material residual after fractional crystallization of the surface magma system.  相似文献   

17.
元古宙岩体型斜长岩的特征及研究现状   总被引:1,自引:0,他引:1  
斜长岩是指斜长石含量>90%的岩浆岩,可分为6类。其中,岩体型斜长岩仅赋存于前寒武纪变质地体中,形成时代主要为元古宙(2.1~ 0.9 Ga),代表地球演化史上很重要的构造-热事件。岩体呈穹隆状或层状产出,具典型堆晶结构,有含钾长石和斜长石出溶片晶的巨晶斜长石和富铝辉石。巨晶的出溶指示了岩浆由高压至低压的变压结晶过程,体现了斜长岩体深成、浅侵位的特点。关于斜长岩的源区,之前普遍认为源于幔源玄武质岩浆,而近10年来更趋向于源区为下地壳,母岩浆的成分为纹长苏长岩和铁闪长岩等新认识;其成因模式以底侵模式和地壳舌状物熔融模式最具代表性。岩体型斜长岩时空上常与奥长环斑花岗岩共生,构成AMCG(Anorthosite Mangerite Charnockite Granite)岩石组合,被认为属非造山岩浆作用的产物,可能代表大陆裂谷环境。然而,新近一些年龄结果显示,它们形成于造山作用的后期阶段,暗示岩体产出于碰撞后环境。斜长岩体中常赋存有Fe Ti V氧化物矿床,有的富含P及Cu,Ni硫化物等,属典型的岩浆矿床。对此,目前主要有结晶分异过程、早期堆晶过程及不混熔分离3种成因机制解释。由此对今后研究中值得关注的问题提出了一些看法。  相似文献   

18.
Laminated anorthosite grading outwards into leucogabbro, gabbro,and monzogabbro occurs in a 2.6-km-diameter funnel-shaped intrusion,cut by a quartz alkali syenite plug and concentric syenite andgranite ring-dykes. The anorthosite-gabbro series is laminatedbut not modally or otherwise texturally layered. The lamination,defined by large tabular plagioclase crystals, forms a set ofinwarddipping cones, the dips of which decrease from 60–45?in the central anorthosite to < 25? in the outer gabbros.Rocks close to the outer contact are medium-grained isotropicgabbros. Plagioclase, forming >80% of the series, generallyhas homogeneous labradorite cores (An62–58 in the wholeseries) and thin strongly zoned rims, which follow progressivelylonger solidus paths from the anorthosites to the gabbros. Allrocks contain a late-magmatic alkali feldspar. Plagioclase isthe main or only cumulus phase, the anorthosites being ad- tomesocumulates and the gabbros orthocumulates. Olivine (FO49–41)is more abundant than clinopyroxene in most of the series. Dependingon quartz content, the syenites and granites are hypersolvusor subsolvus and the depth of crystallization was calculatedto be 5 ? 2 km. A Rb/Sr isochron for the syenites and granites gave an age of399 ? 10 Ma with an initial strontium isotopic ratio of 0.7084? 0.0005. Ten samples from the anorthosite-gabbro scries havean average calculated initial ratio of 0.70582 ? 0-00004 at– 400 Ma, showing that the two series are not comagmatic.The anorthosite-gabbro series has parallel REE trends (LaN/YbN{small tilde} 7–10) with decreasing positive Eu anomaliesand increasing total REE contents from anorthosite to gabbro;two monzogabbros have almost no Eu anomaly. The liquid calculatedto be in equilibrium with the lowest anorthosite has almostno Eu anomaly and its normalized REE pattern lies just abovethose for the monzogabbros. The syenites and granites have complementaryREE patterns with negative Eu anomalies. The inferred parental magma was alkalic and leucotroctoliticwith high TiO2 P2O5, Sr and K/Rb and with low MgO, very similarto parental magmas in the Gardar province, South Greenland.It was probably produced at depth by settling of olivine andclinopyroxene but not of plagioclase, which accumulated by flotation.It is suggested that plagioclase crystals from this lower chamberwere progressively entrained (from 0% in the gabbros to 30–40%in the anorthosites), giving rise to the flow lamination inthe upper chamber. The magma in the lower chamber may have beenlayered, because the plagioclase cores in the anorthosite areconsiderably richer in Or than those in the leucogabbros orgabbros. Overall convection did not occur in the upper chamber,whereas compositional convection occurred in the more slowlycooled central anorthositic adcumulates.  相似文献   

19.
Only fine-grained rocks are present in the Luna 20 samples, and coarser grained rocks are represented by fragments of single crystals. A petrologic study has been made of 47 fine-grained crystalline rocks, microbreccias, and glassy aggregates. In addition, a total of 33 single crystals of pyroxene, plagioclase, olivine and spinel, in the size range 125 to 500 μ, have been examined using electron microprobe and single crystal X-ray diffraction techniques.The most abundant fine-grained crystalline rocks in the samples we have examined are recrystallized anorthositic norite and anorthositic troctolite. Gabbroic rocks, anorthosite, and KREEP basalt are present but not common. Most of the single crystals of pyroxene and plagioclase could have been derived from coarser grained noritic, troctolitic and anorthositic rocks. However, three of the 14 pyroxene crystals, and 2 of the 5 olivine crystals have Fe(Fe + Mg) contents greater than 0.45 and are believed to have been derived from mare basalts or related rocks. Two relatively sodic crystals of plagioclase were found. One is a crystal zoned at least over the range An85 to An63, and the second is a homogeneous crystal of albite (~An3).  相似文献   

20.
The texture of Los Angeles (stone 1) is dominated by relatively large (0.5−2.0 mm) anhedral to subhedral grains of pyroxene, and generally subhedral to euhedral shocked plagioclase feldspar (maskelynite). Minor phases include subhedral titanomagnetite and ilmenite, Fe-rich olivine, olivine+augite-dominated symplectites [some of which include a Si-rich phase and some which do not], pyrrhotite, phosphate(s), and an impact shock-related alkali- and silica-rich glass closely associated with anhedral to euhedral silica grains. Observations and model calculations indicate that the initial crystallization of Mg-rich pigeonitic pyroxenes at ≤1150 °C, probably concomitantly with plagioclase, was followed by pigeonitic and augitic compositions between 1100 and 1050 °C whereas between 1050 and 920 to 905 °C pyroxene of single composition crystallized. Below 920 to 905 °C, single composition Fe-rich clinopyroxene exsolved to augite and pigeonite. Initial appearance of titanomagnetite probably occurred near 990 °C and FMQ-1.5 whereas at and below 990 °C and ≥FMQ-1.5 titanomagnetite and single composition Fe-rich clinopyroxene may have started to react, producing ilmenite and olivine. However, judging from the most common titanomagnetite compositions, we infer that most of this reaction likely occurred between 950 and 900 °C at FMQ-1.0±0.2 and nearly simultaneously with pyroxene exsolution, thus producing assemblages of pigeonite, titanomagnetite, olivine, ilmenite, and augite. We deem this reaction as the most plausible explanation for the formation of the olivine+augite-dominated symplectites in Los Angeles. But we cannot preclude possible contributions to the symplectites from the shock-related alkali- and silica-rich glass or shocked plagioclase, and the breakdown of Fe-rich pigeonite compositions to olivine+augite+silica below 900 °C. Reactions between Fe-Ti oxides and silicate minerals in Los Angeles and other similar basaltic Martian meteorites can control the T-fO2 equilibration path during cooling, which may better explain the relative differences in fO2 among the basaltic Martian meteorites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号