首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have calculated the total individual ion activity coefficients of carbonate and calcium, γTCO32? and γTCa2+, in seawater. Using the ratios of stoichiometric and thermodynamic constants of carbonic acid dissociation and total mean activity coefficient data measured in seawater, we have obtained values which differ significantly from those widely accepted in the literature. In seawater at 25°C and 35%. salinity the (molal) values of γTCO23? and γTCa2+ are 0.038 ± 0.002 and 0.173 ± 0.010, respectively. These values of γTCO32? and γTCa2+ are independent of liquid junction errors and internally consistent with the value γTCl? = 0.651. By defining γTCa2+ and γTCO32? on a common scale (γTCl?), the product γTCa2+γTCO32? is independent of the assigned value of γCl? and may be determined directly from thermodynamic measurements in seawater. Using the value γTCa2+γTCO32? = 0.0067 and new thermodynamic equilibrium constants for calcite and aragonite, we show that the apparent constants of calcite and aragonite are consistent with the thermodynamic equilibrium constants at 25°C and 35%. salinity. The demonstrated consistency between thermodynamic and apparent constants of calcite and aragonite does not support a hypothesis of stable Mg-calcite coatings on calcite or aragonite surfaces in seawater, and suggests that the calcite critical carbonate ion curve of Broecker and Takahashi (1978, Deep-Sea Research25, 65–95) defines the calcite equilibrium boundary in the oceans, within the uncertainty of the data.  相似文献   

2.
Equations are developed for calculating the density of aluminosilicate liquids as a function of composition and temperature. The mean molar volume at reference temperature Tr, is given by Vr = ∑XiV?oi + XAV?oA, where the summation is taken over all oxide components except A12O3, X stands for mole fraction, V?oi terms are constants derived independently from an analysis of volume-composition relations in alumina-free silicate liquids, and V?oA is the composition-dependent apparent partial molar volume of Al2O3. The thermal expansion coefficient of aluminosilicate liquids is given by α = ∑Xi\?gaio + XA\?gaAo, where \?gaio terms are constants independent of temperature and composition, and \?gaoA is a composition-dependent term representing the effect of Al2O3 on the thermal expansion. Parameters necessary to calculate the volume of silicate liquids at any temperature T according to V(T) = Vrexp[α(T-Tr)], where Tr = 1400°C have been evaluated by least-square analysis of selected density measurements in aluminosilicate melts. Mean molar volumes of aluminosilicate liquids calculated according to the model equation conform to experimentally measured volumes with a root mean square difference of 0.28 ccmole and an average absolute difference of 0.90% for 248 experimental observations. The compositional dependence of V?oA is discussed in terms of several possible interpretations of the structural role of Al3+ in aluminosilicate melts.  相似文献   

3.
The synthetic chelating agent ethylenediaminetetraacetic acid (EDTA) has been used to evaluate the stoichiometric solubility product of galena (PbS) at 298°K: Ks2 = aPb2+aHS?aH+ This method circumvents the possible uncertainties in the stoichiometry and stability of lead sulfide complexes. At infinite dilution, Log Ks2 = ?12.25 ±0.17, and at an ionic strength corresponding to seawater (I = 0.7 M), Log Ks2 = ?11.73 ± 0.05. Using the value of Ks2 at infinite dilution, and the free energies of formation of HS? and Pb2+ at 298°K (literature values), the free energy of formation of PbS at 298°K is computed to be ?79.1 ± 0.8 KJ/mol (?18.9 Kcal/mol). Galena is shown to be more than two orders of magnitude more soluble than indicated by calculations based on previous thermodynamic data.  相似文献   

4.
The South Mountain batholith of southwestern Nova Scotia is a large, peraluminous, granodiorite-granite complex which intrudes mainly greenschist facies metasediments of the Cambro-Ordovician Meguma Group. Using Rb-Sr isochrons constructed from whole rocks and mineral separates, the present study shows a variation in age and initial ratios of the intrusive phases of the batholith as follows: biotite granodiorite (371.8 ± 2.2 Ma, (87Sr86Sr)i ranges from 0.7076 ± 0.0003 to 0.7090 ± 0.0003, with the average = 0.7081); adamellite (364.3 ± 1.3 Ma, (87Sr86Sr)i = 0.70942 ± 35); porphyry (361.2 ± 1.4 Ma, (87Sr86Sr)i = 0.71021 ± 119); using λ87Rb = 1.42 × 10?11yr?1.A suite of Meguma country rock samples showed a variation of 87Sr86Sr = 0.7113?0.7177 at the time of intrusion of the batholith. A number of xenoliths of this material occurring in the marginal granodiorite had partially equilibrated isotopically with the granodiorite at a higher 87Sr86Sr ratio than elsewhere in the granodiorites. This evidence demonstrates that isotopic (and probably some accompanying bulk chemical) contamination by the Meguma rocks has been an important factor in determining the ultimate chemical composition and mineralogy of the South Mountain batholith.The (87Sr86Sr)372 = 0.7081 of the early granodiorites indicates that the parent magma of the South Mountain batholith was derived from a source unlike the Meguma Group. The precise nature of the source region cannot be determined by Rb-Sr work unless the degree of contamination with Megumalike material is known.  相似文献   

5.
The stability constants, K1MB, for borate complexes with the ions of Cu, Pb, Cd and Zn are determined in this work by DPASV in 0.7 M KNO3 at metal concentrations of 10?7 M. The acidity constants of the Cu2+ ion are determined by DPASV in the same conditions. The following values for log K1MB (β1MB2) have been obtained: CuB: 3.48, CuB2: 6.13, PbB: 2.20, PbB2: 4.41, ZnB: 0.9, ZnB2: 3.32, CdB: 1.42, and CdB2: 2.7, while the values for the acidity constants of Cu are pK1CuOH = 7.66 and 1Cu(OH2) = 15.91. At the low concentration of boron in 35%. S sea-water complexes with borate represent only about 0.2% Cu, 0.03% Pb, 0.02% Zn and 0.003% Cd.  相似文献   

6.
7.
The stability of the amphibole pargasite [NaCa2Mg4Al(Al2Si6))O22(OH)2] in the melting range has been determined at total pressures (P) of 1.2 to 8 kbar. The activity of H2O was controlled independently of P by using mixtures of H2O + CO2 in the fluid phase. The mole fraction of H2O in the fluid (XH2O1fl) ranged from 1.0 to 0.2.At P < 4 kbar the stability temperature (T) of pargasite decreases with decreasing XH2O1fl at constant P. Above P ? 4 kbar stability T increases as XH2O1fl is decreased below one, passes through a T maximum and then decreases with a further decrease in XH2O1fl. This behavior is due to a decrease in the H2O content of the silicate liquid as XH2O1fl decreases. The magnitude of the T maximum increases from about 10°C (relative to the stability T for XH2O1fl= 1) at P = 5 kbar to about 30°C at P = 8 kbar, and the position of the maximum shifts from XH2O1fl ? 0.6 at P = 5 kbar to XH2O1fl? 0.4 at P = 8 kbar.The H2O content of liquid coexisting with pargasite has been estimated as a function of XH2O1fl at 5 and 8 kbar P, and can be used to estimate the H2O content of magmas. Because pargasite is stable at low values of XH2O1fl at high P and T, hornblende can be an important phase in igneous processes even at relatively low H2O fugacities.  相似文献   

8.
Light hydrocarbon (C1-C3) concentrations in the water from four Red Sea brine basins (Atlantis II, Suakin, Nereus and Valdivia Deeps) and in sediment pore waters from two of these areas (Atlantis II and Suakin Deeps) are reported. The hydrocarbon gases in the Suakin Deep brine (T = ~ 25°C, Cl? = ~ 85‰, CH4 =~ 711) are apparently of biogenic origin as evidenced by C1(C2 + C3) ratios of ~ 1000. Methane concentrations (6–8 μl/l) in Suakin Deep sediments are nearly equal to those in the brine, suggesting sedimentary interstitial waters may be the source of the brine and associated methane.The Atlantis II Deep has two brine layers with significantly different light hydrocarbon concentrations indicating separate sources. The upper brine (T = ~ 50°C, Cl? = ~ 73‰, CH4 = ~ 155 μl/l) gas seems to be of biogenic origin [C1(C2 + C3) = ~1100], whereas the lower brine (T = ~ 61°C, Cl? = ~ 155‰, CH4 = ~ 120μl/l) gas is apparently of thermogenic origin [C1(C2 + C3) = ~ 50]. The thermogenic gas resulting from thermal cracking of organic matter in the sedimentary column apparently migrates into the basin with the brine, whereas the biogenic gas is produced in situ or at the seawater-brine interface. Methane concentrations in Atlantis II interstitial waters underlying the lower brine are about one half brine concentrations; this difference possibly reflects the known temporal variations of hydrothermal activity in the basin.  相似文献   

9.
The partial molal volume of silicic acid (V?(Si(OH)4)) in 0.725 M NaCl at 1°C was calculated from the measured volume change (ΔV?n) due to the neutralization of anhydrous sodium metasilicate with HCl and the V?(HCl) and V?(NaCl) obtained from the literature. V?(Si(OH)4) = 59.0 cm3mol ? 1, determined under experimental conditions of pH = 2.2, compares favorably with V?(Si(OH)4) = 58.9 cm3 mol?1 calculated from the measured volume change due to the hydrolysis of the meta-silicate salt at pH = 11 and from the partial molal volume due to electrostriction (V?elect) of water by charged Si species present in the solution at the high pH. This agreement lends support to a semiempirical model for calculating V?elect in developed by Millero (1969). V?(NaOH) = ? 5.45 cm3 mol?1 in 0.725 M NaCl needed for this calculation was also determined in this work. The rate of polymerization of Si(OH)4 at 1°C was monitored to insure that the monomer Si(OH)4 was the main Si species present during the determination of V?(Si(OH)4) by neutralization of the alkali silicate. V?(Si(OH)4) determined in this study compares favorably with the value calculated from high pressure solubility measurements.  相似文献   

10.
Previous studies of the distribution of U and Th in parent versus weathered granites have shown both depletion and enrichment of these elements during weathering. In this study, the distribution of U and Th decay series isotopes was determined in a weathering profile of a granitic saprolite, which showed textural preservation indicating isovolumetric weathering. Two types of dissolution methods were used: a whole-rock dissolution and a sodium-citrate dithionite leach to preferentially attack noncrystalline phases of weathering products. Using volume-based activities, 45–70 percent of the total 232Th was gradually removed during weathering. Although the whole-rock 228Th232Th activity ratios were in equilibrium, there were large excesses of 228Th in the leachable fraction of both parent rock (228Th232Th = 2.06) and partially weathered saprolite (228Th232Th = 3–6.5), due to alpha recoil and release of daughter 228Th to the weathering rind of the mineral grain. For the most weathered sample, 81 percent of the thorium was in the teachable fraction and 228Th232Th = 1, indicating that even the more resistant minerals were attacked.The total U activities showed as much variation in the six parent rock samples as in the weathered profile, and 234U238U were in equilibrium in both the whole-rock and leachable fractions. 230Th was deficient relative to 234U and 226Ra in both fractions, suggesting recent addition of U and Ra to the entire profile. The large variation in U was not from absorption onto the intermediate weathering products, because only 11–23 percent of the U was in the leachable fraction.  相似文献   

11.
Natural malachite is a well defined solid demonstrating reproducible solubility behavior over a wide range of pH. The following equilibrium constants associated with the malachite dissolution equilibrium at 25°C, 1 atm were determined:
Ksp = a2cu2+aCO32?K2wa2H+ = 3.5 ± 0.6 × 10?34
(infinite dilution)
K1sp = [Cu2+]2[CO2?3]K2wa2H+ = 10. ± 0.2 × 10?32
(0.72 ionic strength)
K′sp = m2Cu2+mCOsu2?3K2wa2H+ = 1.3 ± 0.1 × 10?28
(36.9‰ salinity seawater). The temperature dependence of a “mixed” equilibrium constant, Ksp+, of the form:
K2sp = [Cu2+]2mCO2?3K2wa2H+
has been measured at I = 0.72, yielding the relationship:
log K2sp = (? 9.8 ± 0.03) × 104(1T°K) + (1.52 ± 0.09)
within a 5–25°C temperature range. The effect of pressure on the solubility of malachite in water and seawater was estimated from partial molar volume and compressibility data. For 25 °C at infinite dilution K'sp (1000 bar)K'sp(0) = 240 and in seawater K′sp(1000)K'sp(0) = 44.Comparison of stoichiometric and apparent malachite equilibrium constants has been used to estimate the extent of copper(II) ion interaction at the ionic strength of seawater. In dilute carbonate medium (total alkalinity, TA = 2.4 meq/kg H2O, pH 8.3), 2.9% of total dissolved copper exists as the free copper(II) ion and in seawater (S = 36.9%., TA = 2.3 meq/kg H2O, pH = 8.1), [Cu2+]T(Cu) is 3.1%.Total dissolved copper levels of approximately 450–750 nMol/Kg are necessary to attain malachite saturation conditions in the open ocean. Observations of malachite particles suspended in seawater must be explained by precipitation or solid phase substitution reactions from localized environments rather than by direct precipitation from bulk seawater.  相似文献   

12.
Diffusion of ions in sea water and in deep-sea sediments   总被引:3,自引:0,他引:3  
The tracer-diffusion coefficient of ions in water, Dj0, and in sea water, Dj1, differ by no more than zero to 8 per cent. When sea water diffuses into a dilute solution of water, in order to maintain the electro-neutrality, the average diffusion coefficients of major cations become greater but of major anions smaller than their respective Dj1 or Dj0 values. The tracer diffusion coefficients of ions in deep-sea sediments, Dj,sed., can be related to Dj1 by Dj,sed. = Dj1 · αθ2, where θ is the tortuosity of the bulk sediment and a a constant close to one.  相似文献   

13.
Measurement of solubility as a function of pressure allows calculation of 3V?1. Using this experimental approach, the best estimate of 3V?1 for the dissolution of aged amorphous silica in salt water or seawater at 0–2°C is ?9.9 cm3 mol?1 (standard error = 0.4 cm3 mol?1). This gives V?Si(OH)4(aq)= 55 ± 5 cm3mol?1, which compares well with other published values of V?Si(OH)4(aq).  相似文献   

14.
Hydrothermal submarine metalliferous deposits, common in areas of the ocean floor with high heat flow, contain generally about 10 ppm U as an order of magnitude. The U234U238 ratio is in the majority of cases close to that of seawater; only in a few cases is it anomalously high. Anomalous U234U238 ratios are coupled with low U concentrations. These data are explained by a model where thermal water (essentially heated seawater) in its sub-bottom circulation often is unable to leach U from the basaltic oceanic crust; in fact, these thermal waters may in some cases lose U. When leaching of U from the basalt does take place, probably during shallow stages of the sub-bottom circulation, the resulting anomalous U234U238 ratio can be preserved in the hydrothermal deposit only if mixing with ‘seawater’ U is prevented.  相似文献   

15.
Sedimentary phosphorites occurring on the sea floor off Peru and Chile have been analyzed for U and Th isotopes, to establish their ages and hence obtain clues for their mode of formation. Fission-track distribution studies indicate that the U is primarily associated with the apatite fraction. Uranium-series disequilibrium methods, therefore, should be applicable, if the U incorporation is syngenetic with the apatite.The fractionation of U isotopes between oxidation states in the relatively young phosphorites from South America is low compared to that in older deposits. This supports the contention of Kolodny and Kaplan (1970) that the major mechanism of 234U238U fractionation is displacement of 234U atoms into sites where they are more ‘oxidizable’ than the 238U parent. Age estimates based on 234U(IV) and 230Th contents are internally consistent and range from late Pleistocene to Recent.The results indicate that marine phosphorites are currently forming in this area of intense oceanic upwelling. The age pattern during the last 150,000 yr suggests a correlation with eustatic high sea level stands and implies that conditions were more favorable for apatite genesis in this area during interglacials rather than during glacial times.  相似文献   

16.
Stability constants of hydroxocomplexes of Al(III):Al(OH)2+ and A1(OH)4? have been measured in the 20–70°C temperature range by reactions involving only dissolved species. The stability constant 1K1 of the first complex ion is studied by measuring pH of solutions of aluminium salts at several concentrations. 1β4 of aluminate ion is deduced from equilibrium constants of the reaction between the trioxalato aluminium (III) complex ion and Al3+ in acid medium, and between the same complex ion and A1(OH)4? in alkaline medium. The K values and the associated ΔH are 1K1 = 10?5.00 and ΔH1 = 11.8 Kcal; 1β4 = 10?22.20 and ΔH4 = 42.45 Kcal. These last results are not in agreement with the values of recent tables for ΔG0? and ΔH0? of Al3+ and Al(OH)4?. We suggest a consistent set of data for dissolved and solid Al species and for some aluminosilicates.  相似文献   

17.
High precision mass spectrometric determination of calcium isotope ratios allows the 40K → 40Ca radioactive decay to be used for dating a much broader range of geologic materials than is suggested by previous work. 40Ca42Ca is used to monitor enrichments in 40Ca and can be measured to ±0.01% (2σ) using an exponential mass discrimination correction (Russell et al., 1978) and large ion currents. The earth's mantle has such a low KCa (~0.01) that it has retained “primordial” 40Ca42Ca = 151.016 ± 0.011 (normalized to 42Ca44Ca = 0.31221), as determined by measurements on two meteorites, pyroxene from an ultramafic nodule, metabasalt, and carbonatite. 40Ca42Ca ratios can be conveniently expressed relative to this value as ?Ca in units of 10?4. To test the method for age dating, a mineral isochron has been obtained on a sample of Pikes Peak granite, which has been shown to have concordant KAr, RbSr, and UPb ages. Plagioclase, K-feldspar, biotite, and whole rock yield an age of 1041 ± 32 m.y. (2σ) in agreement with previous age determinations (λK = 0.5543 b.y.?1, λβ?λK = 0.8952, 40K = 0.01167%). The initial 40Ca42Ca of 151.024 ± 0.016 (?Ca = +0.5 ± 1.0), indicates that assimilation of high K/Ca crust was insufficient to affect calcium isotopes. Measurements on two-mica granite from eastern Nevada indicate that the magma sources had K/Ca ≈ 1, similar to intermediate-composition crustal rocks. These results show that the KCa system can be used as a precise geochromometer for common felsic igneous and metamorphic rocks, and may prove applicable to sedimentary rocks containing authigenic K minerals. The relatively short half-life of 40K, the non-volatile daughter, and the fact that potassium and calcium are stoichiometric constituents of many minerals, make the KCa system complementary to other dating methods, and potentially applicable to a variety of geologic problems.  相似文献   

18.
Variations in the chemical composition of sedimentary rocks and the nature of kerogen through geologic time were investigated in order to obtain information on biological and environmental evolution during the pre-Phanerozoic eon. Rock samples differing in lithology, depositional environment, and age were pulverized, pre-extracted with organic solvents, and analyzed for total nitrogen (N), phosphorus (P) and organic carbon (org. C or CT). Variations in the molecular structure of kerogen were measured by determining the ratio of org. C content after pyrolysis (CR) to org. C content before pyrolysis (CT), the CRCT ratio being considered an index of the degree of condensed-aromatic (as opposed to aliphatic) character. The rocks included mudstones (Early Archean (> 3 · 109 years old) to Miocene), carbonate rocks (mid-Proterozoic (1.3 · 109 years old) to Eocene), cherts (Early Archean (> 3 · 109 years old) to Late Proterozoic (0.8 · 109 years old)), and coal (Archean (> 2.7 · 109 years old) to Early Proterozoic (~1.8 · 109 years old)).The mudstones and carbonates showed progressive increase in org. C content with decreasing age, as reported by other investigators, but the cherts unexpectedly showed a decrease in org. C content with decreasing age. In all samples, a simple inverse correlation between CRCT ratio and org. C was observed, each rock type forming its own trend separate from but parallel to those of the other rock types. Thus, the older cherts tend to be richer in org. C and have lower CRCT ratios, but the older carbonates and mudstones are poorer in org. C and have higher CRCT ratios. For a given org. C concentration, chert has the highest CRCT ratio and carbonate rock the lowest, mudstone being intermediate; this may mean that chert is relatively ineffective as a catalyst for the thermal cracking of kerogen or that it inhibits cracking. N appears to be correlated with org. C. The relationship between CRCT ratio and org. C or N suggests that the concentrations of org. C and N in sedimentary rocks are largely determined by selective elimination of labile aliphatic and nitrogenous groups of kerogen during post-depositional maturation, although the nature, abundance and depositional environment of the organic source material must be taken into consideration as well. The observed secular variations of org. C, N and CRCT ratio may be ascribed to several possible causes, including age-dependent post-depositional alteration of kerogen, secular decrease in the CO2O2 ratio of the atmosphere and hydrosphere during pre-Phanerozoic time, secular increase in rates of accumulation of organic matter in sediments and evolutionary changes in the composition of the biological source material. The secular variations of the carbonates and mudstones could be accounted for by age-dependent cumulative effects of post-depositional alteration alone, whereas the secular variations of the cherts probably reflect changes in the nature of the biological source material and the composition of the atmosphere and hydrosphere. The available evidence suggests that primary characteristics of kerogen are better preserved in chert than in the other types of sediment.The CRCT ratios of the carbonates and cherts correlate negatively with the A465mμA665mμ absorbance ratios of “humic matter” extracted from the same rock samples with benzene—methanol. Thus, the greater the degree of condensed-aromatic character of the kerogen, the greater the degree of condensed-aromatic character of the solvent-extractable bituminous “humic matter” with which it is associated. In addition, the ratio of aliphatic to carbonyl-type groups (CH2C=O) in the extractable “humic matter” of carbonates and cherts correlates with the non-extractable org. C content of the rocks, suggesting that the org. C data are related to the degree of aliphatic character of the kerogen. The chemical similarity between extractable “humic matter” and its associated kerogen is evidence that the “humic matter” is as old as its rock matrix and can be accepted as a valid chemical fossil. It also suggests that information obtainable from kerogen may be gotten more easily, rapidly and cheaply from solvent-extractable organic matter. The mudstones showed little or no relationship between A465mμA665mμ ratio and CRCT ratio, or between CH2C=O ratio and org. C content. The data are consistent with the hypothesis that the kerogen in the carbonates and cherts is autochthonous, whereas the kerogen in the mudstones is partly allochthonous, implying the existence of soil humus and soil organisms in pre-Phanerozoic times. Moreover, the existence of coal in Archean sediments is consistent with the existence of very shallow-water and possibly terrestrial microfloras possessing adaptations for protection against ultraviolet solar radiation.The P content of the sediments showed a complicated zig-zag pattern of variation through geologic time. All the different suites of samples gave similar results, indicating that the variations represent phenomena whose effects were worldwide and independent of local environment. P levels are low in the early pre-Phanerozoic but rise with decreasing age until ~ 1 · 109 years B.P., then fall to a minimum at (~0.7–0.8) · 109 years B.P., and rise again to a lower Paleozoic (Ediacarian?) maximum, decline to a later Paleozoic minimum, and then rise again. The low P content of early pre-Phanerozoic sediments could be due to several factors, including high CO2 content of seawater, anaerobic conditions in the sea, absence of stable-shelf environments, and low rates of primary production. The minimum in the Late Proterozoic is tentatively attributed to the Late Proterozoic glaciations. The data are consistent with the theory that the glacial episode was of worldwide extent.  相似文献   

19.
The 13C12C fractionation factors (CO2CH4) for the reduction of CO2 to CH4 by pure cultures of methane-producing bacteria are, for Methanosarcina barkeri at 40°C, 1.045 ± 0.002; for Methanobacterium strain M.o.H. at 40°C, 1.061 ± 0.002; and, for Methanobacterium thermoautotrophicum at 65°C, 1.025 ± 0.002. These observations suggest that the acetic acid used by acetate dissimilating bacteria, if they play an important role in natural methane production, must have an intramolecular isotopic fractionation (CO2HCH3) approximating the observed CO2CH4 fractionation.  相似文献   

20.
The solution of radioelements and radiogenic 4He by groundwaters in fractured rocks is dependent upon the radioelement distribution in the rock matrix and the extent of the rock-water interface. The 234U238U activity ratio and the dissolved U, Rn and He contents of such groundwaters respond to changes in the flow regime with time. Although 234U238U activity ratios change with groundwater residence time as a consequence of 234Th-recoil induced solution of 234U, the activity ratio is strongly influenced by the U distribution within fractures, by the extent of the rock-water interface and by the amount of 238U in solution. A model for the quantitative evaluation of these effects is presented.Groundwaters from depths up to 880 m in the Stripa granite have variable dissolved uranium contents and 234U238U activity ratios. The uranium geochemistry is primarily determined by variations in flow path rather than by groundwater age.Dissolved radiogenic 4He in the groundwaters increases with their depth of origin, and is dependent upon the U content of the granite and upon its fracture porosity. It increases with groundwater residence time but movement of 4He by diffusion and transport processes make the actual groundwater age indeterminate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号