首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The compositions of primary magmas depend to some degree on the dynamic processes occurring in the partially molten region of the mantle. The compositional dependence is estimated for three models which assume either accumulation from a migmatized source region or accumulation entirely by the interstitial flow of magma. Accumulation from a migmatised region results in magmas with higher concentrations of incompatible elements than does batch melting, whereas accumulation by interstitial flow results in magmas with lower concentrations of these elements. The concentrations of refractory elements are almost independent of both the accumulation process and the degree of partial melting and are therefore usefull for the identification of primary magmas.  相似文献   

2.
Primary melt and coexisting mineral compositions, at increasing degrees of partial melting at 15 kbar, were determined for an iron-rich martian mantle composition, DW. The composition of primary melts near the solidus was determined with basalt-peridotite sandwich experiments. In order to evaluate the approach of the liquids to equilibrium with a DW mantle assemblage, experiments were also performed to establish the liquidus mineralogy of the primary melts. Primary melt compositions produced from an iron-rich mantle are more picritic than those produced from an iron-poor mantle. By increasing the iron content of a model mantle composition (decreasing the mg#, where mg# = atomic [Mg/(Mg+Fe2+)*100]), picritic and komatiitic magmas result at lower percentages of melting and at temperatures closer to the solidus than in an iron-poor mantle. Terrestrial iron-rich primitive volcanics may be the partial melting products of iron-rich, mg# 80, source regions. The DW partial melting results support the conclusion of previous authors that the parent magmas of the SNC (shergottites, nakhlites, chassignites) meteorites were derived from a source region that had been previously depleted in an aluminous phase.  相似文献   

3.
Summary ?Partial melting of the mantle is polybaric which implies that the phase relations change during partial melting. In addition to the pressure the composition of the melt depends on the melting mode. Various melting models have been suggested. Here the basic phase relations of polybaric batch, percolative, and critical melting are considered, using a simple ternary system. The percolative melts are in equilibrium with their residua, but differ somewhat in composition from those of batch melting. Critical melting is a fractional type of melting where the residuum contain interstitial melt. The critical melts differ in composition from batch melts. The linear trends of peridotites from ophiolites show that the extracted melts had nearly constant compositions, and therefore were extracted within a small pressure interval. A comparison between the trends of mantle peridotite and experimental batch melts suggests strongly that the melt extracted from the peridotites are in equilibrium with their residua. This could suggest that either batch or percolative melting are relevant melting modes for the mantle. However, isotopic disequilibria favor instead a critical mode of melting. This inconsistency can be avoided if the ascending melts are accumulated within a source region and equilibrate with the residuum before the melt is extracted from the source region. The evidence for equilibrium suggests that multisaturation of tholeiitic compositions in PT-diagrams is relevant for estimating pressure and temperature of generation of primary tholeiitic magmas. Received September 2, 2001; revised version accepted March 20, 2002  相似文献   

4.
Zh. A. Fedotov 《Petrology》2012,20(7):640-657
The Mg-(Fe + Ti)-Al melting diagram for pyrolite based on experimental data from literature shows the composition of the liquid as a function of pressure and the degree of pyrolite melting. Three mechanisms of liquid separation from a mantle source material are discussed: (i) gravitational mechanism, which works at a degree of source material melting of 25%, (ii) filter pressing mechanism, which is efficient at degrees of melting lower than 2%, and (iii) nearly complete local melting of mantle material. Garnet in the solid residue is thought to play an important role by affecting the chemistries of mantle magmas. The comparison of petrochemical and experimental data in a Mg-(Fe + Ti)-Al ternary plot shows that picrite and ferropicrite alcaline primary magmas are segregated at depths of 120 and 210 km, respectively, in the garnet stability zone, at degrees of melting lower than 2%; and tholeiite basalt magmas are segregated above this zone. At degrees of melting of 25%, picrobasalt, komatiite-basalt, picrite, and ferropicrite primary magmas of the tholeiite series are derived at depths of 80, 130, 240, and 300 km, respectively. Ultrabasic komatiite magma is generated at high degrees of mantle source melting, with the solid residues devoid of garnet. The tholeiite basalt series can be produced by two parental melts: aluminous and magnesian basaltic, both separated from the mantle sources via the filter pressing mechanism: the former at depths shallower than 30 km in ocean spreading zones (TOR-2), and the latter at depths of 50?C60 km in oceanic spreading zones (TOR-1) and in the subcontinental lithosphere. Primary magnesian basalt magmas of the calc-alkaline and tholeiite series are derived in the lithospheric mantle at the same depths and low degrees of melting. Different evolutionary trajectories of compositionally similar primary magmas are controlled by the conditions of their further fractional crystallization: in compressional environments and with fluids saturating the melts in subduction zones for the former and in extensional environments and free magma ascent to the surface for the latter. Ultrapotassic rock series, such as lamprophyres, leucitites, kamafugites, lamproites, and kimberlites, are most probably generated via the melting of the metasomatized subcratonic mantle.  相似文献   

5.
The initial accumulation of primary magma occurs just after the mantle has become permeable. The accumulation is caused by the compaction of the residuum, which either may be controlled by the rate of creep, or by the rate of flow of the interstitial melt. Experimental results suggest that the rate of compaction is controlled by the permeability, and a model for the accumulation process is worked out on this basis. The compaction causes the formation of a lower compaction boundary and an upper layer of melt. The ascending mantle of plumes and convection currents will form layers of melt situated 20–100 m apart. The type of partial melting for this accumulation is critical melting.  相似文献   

6.
The occurrence of various types of mobilizates in the Baldissero spinel lherzolite is due to partial melting of the same body. The study of the relationships between the peridotite and its mobilizates demonstrates that olivine did not take an active part in the fusion. Estimates of the degree of partial melting vary from 10% for the average composition, to 20% for the most depleted samples. These values refer to an initial pyrolitic composition, and thus are relative, as they can vary depending on the actual primary composition.The calculated composition of the liquid generated by partial melting is quite similar to that of a picritic basalt, and is practically the same irrespective of the 10% and 20% fusion. This fact provides strong evidence that melting took place at a unique invariant point of the natural system, producing a liquid with a remarkably constant composition.Projection of the liquid in the fo-an-di-si diagram is fairly well aligned with the modal compositions of the solid residua, but does not coincide with the minimum of the simplified system. The proposed solution is based on the enlargement of the spinel field (at constant pressure), due to the Cr content in this phase. Therefore, the position of the invariant minimum is not fixed, but rather controlled by the Cr content of the spinel. Is is suggested that, by an increase in the Cr content, spinel might at a given moment become refractory. Thus, saturated or over-saturated magmas are produced depending on the phase relations between olivine, orthopyroxene and clinopyroxene. This would happen in the case of very advanced fusions or in the case of fusion of already depleted peridotites.The relationships between mobilizates of different generations suggest a non adiabatic mantle upwelling.  相似文献   

7.
The Izera Complex (West Sudetes) contains widespread bodies of metagabbro, metadolerite and amphibolite (the Izera metabasites), and less abundant dykes of weakly altered dolerites, emplaced in a continental setting. The primary magmas of the Izera metabasites were probably formed through adiabatic decompression melting of upwelling asthenosphere (mantle plume) that was associated with the early Palaeozoic fragmentation of Gondwana (initial rift). The rocks are mildly alkaline, transitional-to-tholeiitic basalts and have OIB-like trace element patterns. Trace element modelling reveals that the mafic magmas were generated by variable degrees of partial melting (1–7%) of fertile, garnet-bearing asthenospheric source similar in composition to primitive mantle. Together with an increase in degree of partial melting, the compositional affinity of the magmas and the depth of segregation changed progressively from ca. 70–90 km (mildly alkaline magmas of the metadolerites and amphibolites) to ca. 60–75 km (transitional-to-tholeiitic magmas of the metagabbros). The systematics of incompatible versus compatible element distribution, and major and trace element modelling, indicate that some rocks experienced low-pressure (<5 kbar) differentiation resulting in up to 50% fractionation of clinopyroxene, olivine and minor plagioclase and ilmenite. The genetically distinct weakly altered dolerites are basaltic andesite in composition and possibly related to late- or post-orogenic events in the Karkonosze-Izera Block. These rocks are calc-alkaline, with relatively flat MREE–HREE patterns, enrichment in LREE and other highly incompatible elements relative to primitive mantle, and negative Nb–Ta, Ti, P anomalies. The geochemical features and geochemical modelling, indicate that their primary magmas segregated at depths ≤70 km and were produced by ~2% melting of a metasomatized sublithospheric mantle source presumably containing small amounts of hydrated phases. Although the present study is inconclusive as to the origin of the metasomatic component in the source (? slab-derived fluid/melts, OIB-like alkaline melt percolation of subcontinental lithosphere), the genesis of the Izera basaltic andesites is seemingly related to upwelling of asthenosphere and heat flow triggered by a postulated decoupling of the mantle lithosphere and post-collisional extensional collapse and uplift in the Karkonosze-Izera Block.  相似文献   

8.
It is assumed in the theories of Earth formation that the composition of gases extracted by primary planetary magmas is formed by the large-scale melting of the early mantle, which occurred in the presence of a metallic Fe phase. The molten Fe metal and silicate materials underwent gravitational migration, which affected the fractionation of siderophile elements. Volatile compounds had to form simultaneously in the zones of large-scale melting of the early Earth; their compositions were controlled by interaction with silicate and metallic melts. This process remains poorly understood.  相似文献   

9.
花岗岩结晶分离作用问题——关于花岗岩研究的思考之二   总被引:11,自引:15,他引:11  
岩浆结晶分离作用是一个古老的话题,很早就有学者指出,地球内部生成的岩浆大多是玄武质岩浆,大多数花岗岩是由玄武岩结晶分离形成的。本文在考察了岩浆结晶分离作用的制约因素、比较了不同性质岩浆结晶分离作用的特征之后指出:玄武质岩浆可以发生结晶分离作用,因为有与其相关的堆晶岩产出;安山质岩浆也可以发生结晶分离作用,因为也有与其相关的堆晶岩产出。但是,花岗质岩浆似乎不大可能发生结晶分离作用,因为,很少见到有与(富硅的)花岗质岩浆相伴的堆晶岩产出。花岗质岩浆之所以不大可能发生结晶分离作用的原因在于:(1)岩浆的黏性大,它不仅阻滞了矿物的结晶作用(使斜长石不能发育为自形晶),而且阻止了密度大的矿物(例如角闪石)下沉;(2)主要造岩矿物(例如斜长石)的密度与花岗质岩浆的密度相差无几,使结晶分离作用难以进行。本文详细考察了花岗质岩浆中斜长石的行为,指出在花岗质岩浆中斜长石结晶分离几乎是不可能的。那么,文献中大量充斥的花岗岩结晶分离作用的说法是依据什么呢?作者认为,文献中的许多说法可能主要是根据哈克图解得出的,而不是根据实际观察和理论研究得出的。作者认为,玄武岩和花岗岩不仅来源不同,成分不同,而且解释也不同。哈克图解中许多适合玄武岩的解释未必适合花岗岩。由于鲍文反应原理是结晶分离作用的理论基础,因此,文中也对鲍文反应原理进行了评述,并指出文献中存在的一些需要认真对待的问题,例如,从玄武岩-安山岩-英安岩-流纹岩的连续演化序列是不可能的;单元-超单元填图方法是不科学的;中国东部中生代大规模花岗岩不可能是玄武质岩浆结晶分离形成的等等。本文还以 Ajaji el ai.(1998)报道的摩洛哥 Tanncherfi 花岗岩为例,指出结晶分离作用的解释是不可能的。作者认为,花岗岩类的成分变化大,主要可能与源区组成、温度、压力、挥发分、部分熔融程度和过程、混合作用、岩浆分异及结晶分离作用有关。其中,源区组成可能是花岗岩多样性的最重要的原因,而结晶分离作用的影响可能是微乎其微的。本文认为,花岗岩结晶分离作用对于花岗岩成因的意义已经被大大地夸大了,我们应当重新思考结晶分离作用对于花岗质岩浆的意义。由于花岗岩的极端复杂性,许多问题还得不到比较合理的解释,本文的认识只是初步的。  相似文献   

10.
Some workers have held that mid-ocean ridge basalts are fractionated from high pressure (15–30 kbar) picritic primary magmas whereas others have favored primary magmas generated at about 10 kbar with compositions close to those of mid-ocean ridge basalts. Of critical significance are presumed differences in composition between experimentally determined primary magmas and the least fractionated mid-ocean ridge basalts. To evaluate the significance of these differences, all based on electron microprobe analyses, we consider three sources of uncertainty: (1) analytical uncertainties for a single microprobe laboratory, (2) systematic interlaboratory analytical differences, and (3) real variations in the possible compositions of primary magmas that can be produced from a peridotite source at a given pressure. The first source of error is surprisingly large and can account for a substantial part of the total variation of normative quartz (hypersthene calculated as equivalent olivine and quartz) in FAMOUS basalts. The second is not as serious but remains undetermined for many laboratories. The third is potentially the largest but is not yet fully documented. The least fractionated FA-MOUS basalts have high mg numbers (70–73) compatible with derivation from the mantle by direct partial melting with little or no subsequent fractional crystallization. Because of the wide range of normative quartz content in these basalts, it appears necessary to consider them as representatives of multiple parental magmas. When all the sources of uncertainty are taken into account, we conclude that the experimental data by various investigators are all fairly consistent and favor derivation of the least fractionated mid-ocean ridge basalts by at most only a small amount of fractional crystallization from primary magmas having a wide range of normative quartz content and generated over a range of pressures from about 7–11 kbar. Contribution No. 420, Department of Geosciences, The University of Texas at Dallas  相似文献   

11.
女山中更新世碧玄岩岩浆的起源和演化   总被引:9,自引:0,他引:9  
夏林圻  夏祖春 《岩石学报》1994,10(3):223-235
产于大陆板内环境的女山中更新世碧玄质火山岩及其所含幔源二辉橄榄岩捕虏体的研究结果揭示,在裂谷作用初始阶段,由于软流圈地幔柱上隆减压,造成深部溶解于地幔橄榄岩高压固体矿物相中的挥发组分出溶,这些出溶的初始地幔流体相在一定部位聚集,于30Ma前,大约37km之下,在地幔橄榄岩中诱发同步的部分熔融和交代作用,并相应产生原生碧玄质岩浆。后者上升速度较快,既未经历壳内高位岩浆房贮集,也没有遭受大陆地壳混染,只是在输送往地表的途中伴随结晶分离作用,发生一定程度演化。  相似文献   

12.
《Comptes Rendus Geoscience》2018,350(3):100-109
We investigated mafic and felsic volcanic rocks from the Bamoun plateau, a magmatic province located north of Mount Cameroon, in the continental part of the Cameroon Volcanic Line (CVL). Basalts and dacites were probably emplaced more than 40 Ma ago, while basanites represent very young volcanic eruptions. Among the basalts, some of them have suffered crustal contamination during their uprise through the continental crust, and their primary trace element and isotopic compositions have been slightly modified. The formation of the dacites was also accompanied by some crustal contamination. Non-contaminated rocks show that the oldest magmas are transitional basalts formed by relatively high degrees of partial melting of a moderately enriched mantle source, probably containing pyroxenites. Recent basanites were produced by very low partial melting degrees of an enriched mantle source with HIMU composition, but different from the source of the nearby Mount Cameroon lavas. The mantle beneath the CVL is thus very heterogeneous, and the tendency towards more alkaline mafic-ultramafic compositions in the youngest volcanic manifestations along the CVL seems to be a general feature of all CVL.  相似文献   

13.
《Chemical Geology》1999,153(1-4):11-35
Anhydrous mantle peridotite xenoliths from a single volcanic vent in the French Massif Central are compositionally varied, ranging from relatively fertile lherzolites to refractory harzburgites. Fertile lherzolites closely resemble previous estimates of undepleted mantle compositions but the average of the Ray Pic xenoliths is much less enriched in LILE and LREE than McDonough's (1990) average mantle [McDonough, W.F., 1990. Constraints on the composition of the continental lithospheric mantle. Earth Planet. Sci. Lett., 101, 1–18]. The wide geochemical variation in the bulk rocks reflects significant heterogeneities that can be attributed to two major processes within the shallow lithospheric mantle. The first process is depletion, related to variable degrees of partial melting and melt extraction from an originally near-chondritic mantle. This process has largely controlled the major elements and much of the trace element variation between fertile lherzolites and refractory peridotites. LREE-depleted compositions are also produced by this process. During partial melting, HREE behaved coherently with the major oxides and the moderately incompatible trace elements (Y, V and Sc). A subsequent process of enrichment is indicated by high concentrations of incompatible trace elements in many of the xenoliths. Sr, Ba, K, Th, U, Nb and LREE abundance are independent of major oxide variations and reflect enrichment related to infiltration by alkaline silicate melts/fluids. Both fertile and refractory mantle were enriched but harzburgites were particularly affected. Modal metasomatism occurred only rarely and is indicated by Cr-diopside-rich veins and patches in a few samples. Their chemistry suggests that they were also formed by migration of similar magmas/fluids from the asthenospheric mantle, although the presence of wehrlitic patches may indicate interaction with carbonate melts. In both depleted and enriched xenoliths, trace element patterns for separated clinopyroxenes closely reflect those of the bulk rock, except for Rb, Ba and Nb, which are probably hosted by other phases.  相似文献   

14.
The Koetong Suite of Silurian, 2-mica granitoids was derived from a metasedimentary source and emplaced into Ordovician sediments and metasediments along the eastern margin of the Western Metamorphic Belt of South-eastern Australia. Whole-rock geochemical considerations preclude derivation of the magmas represented by the granitoids from exposed Ordovician metasediments. The magmas were generated by partial melting of material similar in composition to garnet-cordierite gneisses exposed in the adjacent metamorphic belt. Melting at pressures in excess of 5 Kb and temperatures about 750°C produced peraluminous magmas and, when the degree of partial melting approached 25–30%, these magmas became mobile and moved vertically into the overlying Ordovician sediments. During movement from the source region to the zone of emplacement, separation of the melt and refractory residue components of the magma resulted in a range of compositions so that whole-rock analyses of the granitoids are linearly related on major and trace element variation diagrams. Processes such as crystal fractionation and crystal accumulation may have operated locally. The magmas were largely composed of solid material throughout their emplacement histories and the amount of melt may not have exceeded 30–45% at any stage. Metasedimentary inclusions are a reflection of source heterogeneity.After emplacement of the magmas, in situ crystallization of a relatively anhydrous assemblage of minerals led to water contents in residual, intercrystalline, melts sufficiently high for muscovite to begin crystallization at pressures around 4 Kb. Subsequent saturation of intercrystalline residual melt and loss of the resultant volatile phase caused the development of eutectoid intergrowths involving muscovitebiotite-quartz and alkali feldspar.  相似文献   

15.
The assumption that mafic alkaline magmas are derived from mantle sources with a lherzolite mineralogy has become entrenched in the petrologic literature. Although it is commonly assumed that highly alkaline magmas require metasomatised mantle sources, there is little understanding of the spatial relation of such sources with respect to those of associated more Si-rich transitional magmas. Glasses developed in mantle xenoliths represent natural experiments which may provide some insight on this problem. Highly silica undersaturated glasses developed in the amphibole-garnet clinopyroxenite portion of a composite xenolith from Nunivak Island, Alaska, become quartz normative where they penetrate adjacent spinel lherzolite. A comparison of glass compositions in mantle pyroxenite and lherzolite xenoliths reveals that glasses developed in amphibole pyroxenite xenoliths are in general more silica undersaturated than those in lherzolite xenoliths. This suggests that some highly silica undersaturated magmas such as nephelinites may in fact be derived by the preferential melting of amphibole or amphibole-garnet pyroxenite veins and that the spectrum from nephelinite to transitional alkaline basalt that characterizes many individual alkaline volcanic suites is produced by mixing with melt derived from the host lherzolite as the degree of partial melting increases.  相似文献   

16.
The study provides new understanding of magmatism at extinct and modern spreading zones around the western margin of East Antarctica from Bransfield Strait to the Bouvet Triple Junction (BTJ) in the Atlantic Ocean and reveals causes of geochemical heterogeneity of mantle magmatism during the early opening of the Southern Ocean. The results indicate the involvement of an enriched source component in the generation of parental melts, which was formed in several tectonic stages. The enriched (metasomatized) mantle generated at rift zones has geochemical characteristics typical of the western Gondwana lithosphere (with isotopic compositions similar to those inferred for the enriched HIMU and EM-2 sources). This mantle source may have been produced by the thermal erosion of the continental mantle during the early stages of the Karoo–Maud–Ferrar superplume activity. This enriched mantle generated in the apical parts of the plume (sub-oceanic) began to melt during tectonic displacement and fragmentation of Gondwana. The Bouvet Triple Junction, located along modern spreading zones between the Antarctic and South American plate, is characterized by a greater depth of melting and a higher degree of enrichment of primary tholeiitic magmas. The highest enrichment of magmas in this region is controlled by a contribution from a pyroxenite-rich component, which was also identified in the extinct spreading center in Powell Basin.  相似文献   

17.
The study of melt microinclusions in olivine megacrysts from meimechites and alkali picrites of the Maimecha–Kotui alkali ultramafic and carbonatite province (Polar Siberia) revealed that the melt compositions corrected for loss of olivine due to post-entrapment crystallization of olivine on inclusion walls (differentiates of primary meimechite magma) match well to the composition of nephelinites and olivine melilitites belonging to carbonatite magmatic series. Modeling of fractional crystallization of meimechite magmas results in the high-alkali melt compositions corresponding to the silicate–carbonate liquid immiscibility field. The appearance of volatile-rich melts at the base of magma-generating plume systems at early stages of partial melting can be explained by extraction of incompatible elements including volatiles, by near-solidus melts at low degrees of partial melting, and meimechites are an example of such magmas. Subsequent accumulation of CO2 in the residual melt results in generation of carbonate magma.  相似文献   

18.
D.H. Green 《Tectonophysics》1973,17(3):285-297
The pyrolite model composition provides a satisfactory source composition for mantle-derived magmas insofar as major elements and “compatible” trace elements are concerned but there is evidence for mantle inhomogeneity in the abundances of “incompatible” minor and trace elements (e.g., K, Ti, P, Rb, Sr, light rare earth elements etc.). The composition of a magma, assuming a constant source composition, varies according to the pressure, temperature and water pressure or water content of the source region. The latter two variables essentially determine the degree of partial melting of the source region and in considering the chemical composition of the melt and nature of the residual phases, this parameter is of prime importance.For high degrees (> 20% approx.) of partial melting of a pyrolite source region, magmas are of tholeiitic character but are of increasingly undersaturated and alkaline type for lower degrees of partial melting and high pressures. For any chosen degree of melting and fixed water content of the source region, magmas are more olivine-rich at higher pressures. For any chosen pressure and chosen degree of partial melting, magmas are less olivine-rich at high water contents (and thus lower temperatures). Quartz tholeiite magmas may be derived by ~ 30% melting of pyrolite under water-saturated conditions at pressures up to between 17 kbar and 20 kbar. These generalizations may be applied to understand the characteristic magmatism of mid-oceanic ridges, island chains, oceanic islands and orogenic regions.  相似文献   

19.
It is widely accepted that basaltic magmas are products of partial fusion of periodotite within planetary mantles. As such, they provide valuable insights into the composition, structure, and processes of planetary interiors. Those compositions which approach primary melt compositions provide the most direct information about planetary interiors and serve as a starting point to understand basaltic evolution. Within the collection of lunar samples returned by the Apollo and Luna missions are homogeneous, picritic glass beads of volcanic origin. These picritic glasses are our closest approximations to primary magmas. As such, these glass beads provide a unique perspective concerning the origin of mare basalts, the characteristics of the lunar interior, and processes in the early differentiation of the Moon. We have obtained trace element data for these picritic glasses using SIMS techniques. These data and literature isotopic and experimental data on the picritic glasses are placed within the framework of mare basaltic magmatism.The volcanic glasses are very diverse in their trace element characteristics, for example, they have a wide range of REE pattern shapes and concentrations. Like the crystalline mare basalts, all picritic glasses have a negative Eu anomaly. Unlike the crystalline mare basalts, there is little correlation between the size of the Eu anomaly and overall REE concentrations. Trace element differences among the various glasses suggests that a KREEP component was incorporated into their mantle source. This implies large scale mixing of the “Lunar Magma Ocean”-derived cumulate pile. Subtle differences among glasses suggest that local mixing of sources may also have been an important process. Preservation of subtle chemical differences in the picritic glasses and crystalline basalts may be interpreted as indicating that they were produced by small to moderate degrees of partial melting and that the lunar mantle did not experience extensive melting during episodes of mare volcanism.Several lines of evidence are consistent with the view that the picritic glasses were derived from mantle sources that were compositionally distinct from the sources for crystalline mare basalts. These are parallel, but no common, liquid lines of descent; chemical differences between picritic glasses and the more primitive crystalline mare basalts; experimental studies indicating that the picritic glasses are multiply saturated at depths greater than that of the mare basalts; differences in lead isotopic data; and the mode of eruption (i.e., fire fountaining for glass beads). These data also provide circumstantial evidence that suggests that the picritic glasses were derived from a source somewhat more volatile-rich than that of the mare basalts.Several petrogenetic models are suggested by the trace element characteristics of the picritic glasses:
  • 1.(1) Partial melting of heterogeneous lunar mantle at depths greater than 300 km to produce the parental magmas (picritic) for both the mare basalts and picritic glasses. Picritic magmas represented by glass beads were erupted to the surface with small degrees of fractional crystallization while mare basalts were produced by larger degrees of fractional crystallization (15–30%) of similar (but not identical) picritic magmas.
  • 2.(2) Picritic magmas represented by the glass beads were generated at depths greater than 400 km in a volatile-enriched (relative to the mare basalt source) heterogeneous mantle while mare basalts are fractional crystallization products of picritic magmas generated at depths of less than 400 km.
  • 3.(3) The picritic magmas represented by the glass beads represent polybaric melting that initiated at depths of at least 1000 km. A primitive mantle component or less processed cumulate mantle components may have been involved in the generation of the picritic glasses in any of these models.
  相似文献   

20.
Igneous rocks of the Devonian Kola Alkaline Carbonatite Province (KACP) in NW Russia and eastern Finland can be classified into four groups: (a) primitive mantle-derived silica-undersaturated silicate magmas; (b) evolved alkaline and nepheline syenites; (c) cumulate rocks; (d) carbonatites and phoscorites, some of which may also be cumulates. There is no obvious age difference between these various groups, so all of the magma-types were formed at the same time in a relatively restricted area and must therefore be petrogenetically related. Both sodic and potassic varieties of primitive silicate magmas are present. On major element variation diagrams, the cumulate rocks plot as simple mixtures of their constituent minerals (olivine, clinopyroxene, calcite, etc). There are complete compositional trends between carbonatites, phoscorites and silicate cumulates, which suggests that many carbonatites and phoscorites are also cumulates. CaO / Al2O3 ratios for ultramafic and mafic silicate rocks in dykes and pipes range up to 5, indicating a very small degree of melting of a carbonated mantle at depth. Damkjernites appear to be transitional to carbonatites. Trace element modelling indicates that all the mafic silicate magmas are related to small degrees of melting of a metasomatised garnet peridotite source. Similarities of the REE patterns and initial Sr and Nd isotope compositions for ultramafic alkaline silicate rocks and carbonatites indicate that there is a strong relationship between the two magma-types. There is also a strong petrogenetic link between carbonatites, kimberlites and alkaline ultramafic lamprophyres. Fractional crystallisation of olivine, diopside, melilite and nepheline gave rise to the evolved nepheline syenites, and formed the ultramafic cumulates. All magmas in the KACP appear to have originated in a single event, possibly triggered by the arrival of hot material (mantle plume?) beneath the Archaean/Proterozoic lithosphere of the northern Baltic Shield that had been recently metasomatised. Melting of the carbonated garnet peridotite mantle formed a spectrum of magmas including carbonatite, damkjernite, melilitite, melanephelinite and ultramafic lamprophyre. Pockets of phlogopite metasomatised lithospheric mantle also melted to form potassic magmas including kimberlite. Depth of melting, degree of melting and presence of metasomatic phases are probably the major factors controlling the precise composition of the primary melts formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号