首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Mantle xenoliths from Hainan and Qilin, South China have been studied to constrain the nature of the upper mantle and mantle processes beneath a continental margin. The extremely low Ti (160–245 ppm) contents in clinopyroxenes from some spinel lherzolites, indicative of high degrees of partial melting are inconsistent with the relatively high clinopyroxene modes (7.4–13%) in these samples. This inconsistency could be due to polybaric melting that started in the garnet stability field, then, after the breakdown of garnet to pyroxene and spinel, continued in the spinel stability field. Polybaric melting, due to adiabatic decompression of upwelling mantle, would leave a residual mantle in which the degree of depletion decreases with depth. The predicted stratified lithospheric mantle is evidenced by the negative correlation between the forsterite content in olivine and the equilibration temperature, proportional to the depth in the lithosphere from which the xenolith was derived. The lower part of the lithospheric mantle beneath South China consists predominantly of fertile and moderately depleted peridotites, which are either devoid of LREE enrichment, or show the trace element signature of incipient metasomatism, and plot within the Phanerozoic mantle domain. In contrast, the upper part of the mantle contains harzburgite and cpx-poor lherzolite, which are strongly affected by metasomatism of melt/fluid of highly variable composition. The anomalously high orthopyroxene mode (up to 47%) makes some of these refractory samples compositionally similar to the Proterozoic/Archean mantle. Their low equilibrium temperature (800–900 °C) points to the presence of old lithospheric relicts in the uppermost mantle beneath South China. Such lithosphere architecture may have resulted from partial replacement of Archean–Proterozoic lithosphere by asthenosphere that rose adiabatically subsequent to lithospheric thinning during the Cenozoic.  相似文献   

2.
We present the whole-rock and the mineral chemical data for upper mantle peridotites from the Harmanc?k region in NW Turkey and discuss their petrogenetic–tectonic origin. These peridotites are part of a Tethyan ophiolite belt occurring along the ?zmir-Ankara-Ercincan suture zone in northern Turkey, and include depleted lherzolites and refractory harzburgites. The Al2O3 contents in orthopyroxene and clinopyroxene from the depleted lherzolite are high, and the Cr-number in the coexisting spinel is low falling within the abyssal field. However, the orthopyroxene and clinopyroxene in the harzburgites have lower Al2O3 contents for a given Cr-number of spinel, and plot within the lower end of the abyssal field. The whole-rock geochemical and the mineral chemistry data imply that the Harmanc?k peridotites formed by different degrees of partial melting (~%10–27) of the mantle. The depleted lherzolite samples have higher MREE and HREE abundances than the harzburgitic peridotites, showing convex-downward patterns. These peridotites represent up to ~16 % melting residue that formed during the initial seafloor spreading stage of the Northern Neotethys. On the other hand, the more refractory harzburgites represent residues after ~4–11 % hydrous partial melting of the previously depleted MOR mantle, which was metasomatized by slab-derived fluids during the early stages of subduction. The Harmanc?k peridotites, hence, represent the fragments of upper mantle rocks that formed during different stages of the tectonic evolution of the Tethyan oceanic lithosphere in Northern Neotethys. We infer that the multi-stage melting history of the Harmanc?k peridotites reflect the geochemically heterogeneous character of the Tethyan oceanic lithosphere currently exposed along the ?zmir-Ankara-Erzincan suture zone.  相似文献   

3.
ABSTRACT

We investigated lherzolitic peridotites in the Cretaceous Purang ophiolite along the Yarlung Zhangbo suture zone (YZSZ) in SW Tibet to constrain their mantle–melt evolution history. Coarse-grained Purang lherzolites contain orthopyroxene (Opx) and olivine (Ol) porphyroclasts with embayments filled by small olivine (Ol) neoblasts. Both clinopyroxene (Cpx) and Opx display exsolution textures represented by lamellae structures. Opx exsolution (Opx1) in clinopyroxene (Cpx1) is made of enstatite, whose compositions (Al2O3 = 3.85–4.90 wt%, CaO = <3.77 wt%, Cr2O3 = 0.85–3.82 wt%) are characteristic of abyssal peridotites. Host clinopyroxenes (Cpx1) have higher Mg#s and Na2O, with lower TiO2 and Al2O3 contents than Cpx2 exsolution lamellae in Opx, and show variable LREE patterns. Pyroxene compositions of the lherzolites indicate 10–15% partial melting of a fertile mantle protolith. P–T estimates (1.3–2.3 GPa, 745–1067°C) and the trace element chemistry of pyroxenes with exsolution textures suggest crystallization depths of ~75 km in the upper mantle, where the original pyroxenes became decomposed, forming exsolved structures. Further upwelling of lherzolites into shallow depths in the mantle resulted in crystal–plastic deformation of the exsolved pyroxenes. Combined with the occurrence of microdiamond and ultrahigh-pressure (UHP) mineral inclusions in chromites of the Purang peridotites, the pyroxene exsolution textures reported here confirm a multi-stage partial melting history of the Purang lherzolites and at least three discrete stages of P-T conditions in the course of their upwelling through the mantle during their intra-oceanic evolution.  相似文献   

4.
Geological and geophysical evidence indicates that at least100 km of Archaean to Proterozoic lithospheric mantle has beenremoved from beneath large areas of eastern and southeasternChina during late Mesozoic to Cenozoic time. Mantle-derivedxenoliths in Tertiary basalts from several localities acrossthis region have been studied by X-ray fluorescence, electronmicroprobe and laser ablation microprobe–inductively coupledplasma-mass spectrometry to characterize this thinner lithosphere.Trace element patterns of clinopyroxenes in the peridotitesfrom southeastern China can be divided into four groups: fertilegarnet lherzolites, fertile spinel (± garnet) lherzolites,and depleted and enriched peridotites. The addition of Nb, Sr,light rare earth elements, but not of Ti and Zr, suggests ametasomatizing agent containing both H2O and CO2. This studyalso demonstrates that the negative Ti anomaly commonly observedin clinopyroxene from mantle peridotites cannot be balancedby the Ti in coexisting orthopyroxene, but can be explainedby small degrees of partial melting, using appropriate distributioncoefficients. Most of the peridotites from southeastern China,whether spinel or garnet facies, are highly fertile in termsof Al2O3 and CaO contents and mg-number; many resemble commonlyused primitive mantle compositions. Modelling of trace elementpatterns in clinopyroxene indicates that most spinel and garnetperidotites from the Nushan, Mingxi and Niutoushan localitiesexperienced less than 5%, and many less than 2%, partial melting.A few depleted spinel peridotites from Nushan, and all spinelperidotites from Mingxi, require 10–25% fractional partialmelting; almost all spinel peridotites from the Qilin localityshow evidence of higher degrees (6–25%) of fractionalpartial melting. At both Nushan and Mingxi, the more depletedcompositions occur in the upper part of the lithospheric mantle,which now is  相似文献   

5.
The sub-arc mantle that experienced hydrous melting is commonly characterized by refractory geochemical compositions. Nevertheless, minor lherzolites with fertile compositions have also been reported for mantle peridotites from subduction zone. The petrogenesis and mantle source of the lherzolites are still controversial. The New Caledonia ophiolite(Peridotite Nappe) has been regarded as an allochthonous body of forearc lithosphere. This is supported by refractory compositions of its dominant mantle rocks.A few isolated lherzolitic massifs have also been observed in the northern part of New Caledonia.Those lherzolites are compositionally similar to abyssal peridotites, with negligible subduction-related modification. Here, we present new comprehensive geochemical compositions, in particular highprecision Sr-Nd-Hf isotope data, for the lherzolites. The initial176 Hf/177 Hf ratios display moderate correlations with sensitive indicators for the extent of melting(i.e., olivine Fo, whole-rock Mg# and Yb contents in clinopyroxene) and whole-rock initial187 Os/188 Os ratios. Some samples have ancient radiogenic Hf isotopes and unradiogenic Os isotope compositions, implying the preservation of ancient depletion signals in the lherzolites. The Nd isotope compositions, together with trace elements and mineral micro-textures, suggest that the lherzolites have been overprinted by a recent melt-rock interaction event. The high equilibrium temperatures of the studied samples have been estimated by the twopyroxene REE thermometer, yielding temperatures of 1066–1315 ℃. The lherzolites have more depleted Nd-Hf isotope compositions and higher equilibrium temperatures than the New Caledonia harzburgites.This indicates that the lherzolites may represent the residues of asthenosphere mantle trapped within the forearc region. Our studies on the New Caledonia lherzolites with ancient depletion signals suggest that ancient mantle domains in the convective mantle can be emplaced in forearc region by the upwelling of asthenosphere during the early stage of subduction initiation.  相似文献   

6.
位于安徽省境内的女山新生代碱性玄武岩中含有大量而且类型丰富的地幔橄榄岩包体,主要类型有尖晶石相、石榴石相、尖晶石-石榴子石过渡相二辉橄榄岩以及少量的方辉橄榄岩,其中部分尖晶石二辉橄榄岩样品中出现富含挥发分的角闪石、金云母和磷灰石。本文选择该区的尖晶石二辉橄榄岩和方辉橄榄岩包体进行了较为详细的岩石学、矿物学、地球化学研究工作。结果显示,除2个方辉橄榄岩表现难熔特征外,其它25件尖晶石相二辉橄榄岩均具有饱满的主量元素组成。二辉橄榄岩样品的Sr-Nd-Hf同位素均表现为亏损地幔的性质,不同于古老克拉通型难熔、富集的岩石圈地幔。富含挥发份交代矿物的出现以及轻稀土元素不同程度的富集,表明女山岩石圈地幔经历了较为强烈的交代作用,然而Re-Os同位素及PGE分析结果表明交代作用并没有显著改变Os同位素组成。二辉橄榄岩样品均具有较高的Os同位素组成,结合其饱满的主量元素组成,亏损的同位素特征,表明女山地区岩石圈地幔整体为新生岩石圈地幔。但1个方辉橄榄岩样品给出了较低的Os同位素比值0.1184,其Re亏损年龄为1.5Ga,它可能来自于软流圈中残留的古老难熔地幔。  相似文献   

7.
The Saramta peridotite massif is located within the Sharyzhalgai complex, SW margin of the Siberian craton. The Saramta massif was formed in the Archean and then juxtaposed with granulites of crystalline basement of the Siberian craton. The Saramta harzburgites are highly refractory in terms of lack of residual clinopyroxene, olivine Mg-number (up to 0.937), and spinel Cr-number (∼0.5), suggesting high degree of partial melting. Detailed study of their microstructures shows that they have extensively reacted with a SiO2-rich melt, leading to the crystallization of orthopyroxene, clinopyroxene, amphibole and spinel at the expense of olivine. The major element compositions of the least reacted harzburgites are similar to the residues of refractory peridotites produced by the fractional melting (initial melting pressures >3 GPa and melt fractions ∼40%). Moreover, non-residual clinopyroxenes are highly depleted in Yb, Zr and Ti, but highly enriched in LREE. A two-stage history is proposed for the Saramta peridotite: (1) primitive mantle underwent depletion in the garnet stability field followed by melting in the spinel stability field; (2) refractory harzburgites underwent refertilization by SiO2-rich melt in supra-subduction zone. Rare Saramta lherzolites probably formed from more refractory harzburgites as a result of such a melt–rock reaction. The Saramta peridotites are similar to low-T coarse-grained peridotites of subcratonic mantle. Processes of their formation, as reflected by textures and composition of minerals of the Saramta peridotites, are characteristic of the early stages of subcratonic mantle formation.  相似文献   

8.
Lithospheric thinning beneath the North China Craton is widely recognized, but whether the Yangtze block has undergone the same process is a controversial issue. Based on a detailed petrographic study, a suite of xenoliths from the Lianshan Cenozoic basalts have been analyzed for the compositions of minerals and whole rocks, and their Sr–Nd isotopes to probe the nature and evolution of the subcontinental lithospheric mantle beneath the lower Yangtze block. The Lianshan xenoliths can be subdivided into two Types: the main Type 1 xenoliths (9–15% clinopyroxene and olivine-Mg# < 90) and minor Type 2 peridotites (1.8–6.2% clinopyroxene and olivine-Mg# > 90). Type 1 peridotites are characterized by low MgO, high levels of basaltic components (i.e., Al2O3, CaO and TiO2), LREE-depleted patterns in clinopyroxenes and whole rocks, and relatively high 143Nd/144Nd (0.513219–0.513331) and low 86Sr/87Sr (0.702279–0.702789). These features suggest that Type 1 peridotites represent fragments of the newly accreted fertile lithospheric mantle that have undergone ~ 1% of fractional partial melting and later weak silicate–melt metasomatism, similar to Phanerozoic lithospheric mantle beneath the eastern North China Craton. Type 2 peridotites may be shallow relics of the older lithospheric mantle depleted in basaltic components, with LREE-enriched and HREE-depleted patterns, relatively low 143Nd/144Nd (0.512499–0.512956) and high 86Sr/87Sr (0.703275–0.703997), which can be produced by 9–14% partial melting and subsequent carbonatite–melt metasomatism. Neither type shows a correlation between equilibration temperatures and Mg# in olivine, indicating that the lithospheric mantle is not compositionally stratified, but both types coexist at similar depths. This coexistence suggests that the residual refractory lithospheric mantle (i.e., Type 2 peridotites) may be irregularly eroded by upwelling asthenosphere materials along weak zones and eventually replaced to create a new and fertile lithosphere mantle (i.e., Type 1 xenoliths) as the asthenosphere cooled. Therefore, the subcontinental lithospheric mantle beneath the lower Yangtze block shared a common evolutional dynamic environment with that beneath the eastern North China Craton during late Mesozoic–Cenozoic time.  相似文献   

9.
We performed partial melting experiments at 1 and 1.5 GPa, and 1180–1400 °C, to investigate the melting under mantle conditions of an olivine-websterite (GV10), which represents a natural proxy of secondary (or stage 2) pyroxenite. Its subsolidus mineralogy consists of clinopyroxene, orthopyroxene, olivine and spinel (+garnet at 1.5 GPa). Solidus temperature is located between 1180 and 1200 °C at 1 GPa, and between 1230 and 1250 °C at 1.5 GPa. Orthopyroxene (±garnet), spinel and clinopyroxene are progressively consumed by melting reactions to produce olivine and melt. High coefficient of orthopyroxene in the melting reaction results in relatively high SiO2 content of low melt fractions. After orthopyroxene exhaustion, melt composition is controlled by the composition of coexisting clinopyroxene. At increasing melt fraction, CaO content of melt increases, whereas Na2O, Al2O3 and TiO2 behave as incompatible elements. Low Na2O contents reflect high partition coefficient of Na between clinopyroxene and melt (\(D_{{{\text{Na}}_{ 2} {\text{O}}}}^{{{\text{cpx}}/{\text{liquid}}}}\)). Melting of GV10 produces Quartz- to Hyperstene-normative basaltic melts that differ from peridotitic melts only in terms of lower Na2O and higher CaO contents. We model the partial melting of mantle sources made of different mixing of secondary pyroxenite and fertile lherzolite in the context of adiabatic oceanic mantle upwelling. At low potential temperatures (T P < 1310 °C), low-degree melt fractions from secondary pyroxenite react with surrounding peridotite producing orthopyroxene-rich reaction zones (or refertilized peridotite) and refractory clinopyroxene-rich residues. At higher T P (1310–1430 °C), simultaneous melting of pyroxenite and peridotite produces mixed melts with major element compositions matching those of primitive MORBs. This reinforces the notion that secondary pyroxenite may be potential hidden components in MORB mantle source.  相似文献   

10.
Distribution of water among the main rock-forming nominally anhydrous minerals of mantle xenoliths of peridotitic and eclogitic parageneses from the Udachnaya kimberlite pipe, Yakutia, has been studied by IR spectroscopy. The spectra of all minerals exhibit vibrations attributed to hydroxyl structural defects. The content of H2O (ppm) in minerals of peridotites is as follows: 23–75 in olivine, 52–317 in orthopyroxene, 29–126 in clinopyroxene, and 0–95 in garnet. In eclogites, garnet contains up to 833 ppm H2O, and clinopyroxene, up to 1898 ppm (~ 0.19 wt.%). The obtained data and the results of previous studies of minerals of mantle xenoliths show wide variations in H2O contents both within different kimberlite provinces and within the Udachnaya kimberlite pipe. Judging from the volume ratios of mineral phases in the studied xenoliths, the water content varies over narrow ranges of values, 38–126 ppm. At the same time, the water content in the studied eclogite xenoliths is much higher and varies widely, 391–1112 ppm.  相似文献   

11.
首次报道了来自东北地区岩石圈地幔水含量的数据。通过对吉林龙岗和汪清新生代玄武岩中的橄榄岩包体矿物进行电子探针(EMP)和激光熔蚀等离子体质谱(LA-ICPMS)的分析,得到了矿物的主量元素和微量元素的数据,结果显示这些橄榄岩是原始地幔经历了不同程度部分熔融的残余,大部分样品的熔融程度可能<10%。橄榄岩样品在后期还经历了地幔交代作用,大部分样品受到硅酸岩熔体的交代,少部分样品受到碳酸岩熔体的交代。显微傅里叶变换红外光谱(FTIR)的分析结果显示,橄榄岩样品中的单斜辉石、斜方辉石均含有以结构羟基形式存在的水,而橄榄石中没有明显的羟基吸收峰。龙岗样品中单斜辉石的水含量为(48~464)×10-6(H2O, 质量分数),斜方辉石水含量为(28~104)×10-6;汪清样品中单斜辉石的水含量为(34~403)×10-6,斜方辉石的水含量为(13~89)×10-6;所有样品全岩水含量为(8~92)×10-6。样品的水含量可以代表龙岗和汪清地区岩石圈地幔的水含量信息,并且水含量变化范围较大,造成这种变化的原因可能是由于地幔源区初始水含量的不均一,以及部分熔融和地幔交代作用叠加的结果。  相似文献   

12.
Nominally anhydrous phases (clinopyroxene (cpx), orthopyroxene (opx), and olivine (ol)) of peridotite xenoliths hosted by the Cenozoic basalts from Beishan (Hebei province), and Fansi (Shanxi province), Western part of the North China Craton (WNCC) have been investigated by Fourier transform infrared spectrometry (FTIR). The H2O contents (wt.) of cpx, opx and ol are 30–255 ppm, 14–95 ppm and ~ 0 ppm, respectively. Although potential H-loss during xenolith ascent cannot be excluded for olivine, pyroxenes (cpx and opx) largely preserve the H2O content of their mantle source inferred from (1) the homogenous H2O content within single pyroxene grains, and (2) equilibrium H2O partitioning between cpx and opx. Based on mineral modes and assuming a partition coefficient of 10 for H2O between cpx and ol, the recalculated whole-rock H2O contents range from 6 to 42 ppm. In combination with previously reported data for other two localities (Hannuoba and Yangyuan from Hebei province), the H2O contents of cpx, opx and whole-rock of peridotite xenoliths (43 samples) hosted by the WNCC Cenozoic basalts range from 30 to 654 ppm, 14 to 225 ppm, and 6 to 262 ppm respectively. The H2O contents of the Cenozoic lithospheric mantle represented by peridotite xenoliths fall in a similar range for both WNCC and the eastern part of the NCC (Xia et al., 2010, Journal of Geophysical Research). Clearly, the Cenozoic lithospheric mantle of the NCC is dominated by much lower water content compared to the MORB source (50–250 ppm). The low H2O content is not caused by oxidation of the mantle domain, and likely results from mantle reheating, possibly due to an upwelling asthenospheric flow during the late Mesozoic–early Cenozoic lithospheric thinning of the NCC. If so, the present NCC lithospheric mantle mostly represents relict ancient lithospheric mantle. Some newly accreted and cooled asthenospheric mantle may exist in localities close to deep fault.  相似文献   

13.
Water partitioning between mantle minerals from peridotite xenoliths   总被引:1,自引:1,他引:1  
The speciation and amount of water dissolved in nominally anhydrous silicates comprising eight different mantle xenoliths has been quantified using synchrotron micro-FTIR spectroscopy. Samples studied are from six geographic localities and represent a cross-section of the major upper mantle lithologies from a variety of tectonic settings. Clinopyroxene contains between 342 and 413 ppm H2O. Orthopyroxene, olivine and garnet contain 169–201, 3–54 and 0 to <3 ppm H2O, respectively. Pyroxenes water contents and the distribution of water between ortho- and clinopyroxene is identical regardless of sample mineralogy (D watercpx/opx = 2.1 ± 0.1). The total water contents of each xenolith are remarkably similar (113 ± 14 ppm H2O). High-resolution spectroscopic traverses show that the concentration and speciation of hydrous defects dissolved in each phase are spatially homogeneous within individual crystals and identical in different crystals interspersed throughout the xenolith. These results suggest that the amount of water dissolved in the silicate phases is in partial equilibrium with the transporting melt. Other features indicate that xenoliths have also preserved OH signatures of equilibrium with the mantle source region: Hydroxyl stretching modes in clinopyroxene show that garnet lherzolites re-equilibrated under more reducing conditions than spinel lherzolites. The distribution of water between pyroxenes and olivine differs according to xenolith mineralogy. The distribution of water between clinopyroxene and olivine from garnet peridotites (D watercpx/oliv(gnt) = 22.2 ± 24.1) is a factor of four greater than mineral pairs from spinel-bearing xenoliths (D watercpx/oliv(sp) = 88.1 ± 47.8). Such an increase in olivine water contents at the spinel to garnet transition is likely a global phenomenon and this discontinuity could lead to a reduction of the upper mantle viscosity by 0.2–0.7 log units and a reduction of its electrical resistivity by a factor of 0.5–0.8 log units.  相似文献   

14.
A suite of spinel peridotite xenoliths in Mesozoic basalts of the Tuoyun basin in the Tianshan area of northwest China has a high proportion of amphibole/mica-bearing lherzolites, with high Cpx/Opx ratios (mean 0.74). Many aspects of mineral chemistry in the Tuoyun peridotites are intermediate between those of refractory Archean cratonic mantle and fertile Phanerozoic mantle. These include Ni/Cr and the contents of transition metals and Y in olivine and orthopyroxene and the abundances of elements such as Na, Al, Ti, Y, Sr and LREE in clinopyroxene. The data suggest that the mantle in Tuoyun is moderately depleted in basaltic components relative to both the refractory Archean mantle and the fertile Phanerozoic mantle. The wide variations in the CaO/Al2O3 (0.9–3.5) of whole rocks and LREE/HREE (0.8–14.2) and Ti/Eu (971–5,765) of clinopyroxenes in the Tuoyun peridotites are interpreted as the metasomatism of hydrous carbonatitic and potassic melt or the cumulative effects of mantle metasomatism by different agents (carbonatite and small-volume silicate melts) through time. The Tuoyun mantle shows closer affinity to the type of mantle found beneath the Proterozoic Cathaysia block, and especially to that beneath the East Central Asia Orogenic Belt (ECAOB), than to the mantle beneath the Archean North China Craton. This implies that the Tianshan subcontinental lithospheric mantle may have been generated during the accretion of the ECAOB. The high proportion of fine-grained microstructures, high Cpx/Opx ratio, obvious Ca enrichment and lower overall depletion in the Tuoyun mantle relative to that in other parts of the ECAOB reflect stronger mechanical and chemical modification of the Tuoyun mantle, near the translithospheric Talas-Ferghana strike-slip fault, which played a major role in controlling the strength of the mantle lithosphere and has channeled the upwelling mantle.  相似文献   

15.
We provide petrographic, major and trace element data for over 30 spinel peridotite xenoliths from the Tokinsky Stanovik (Tok) volcanic field on the Aldan shield to characterize the lithospheric mantle beneath the south-eastern margin of the Siberian craton, which formed in the Mesoproterozoic. High equilibration temperatures (870–1,010°C) of the xenoliths and the absence of garnet-bearing peridotites indicate a much thinner lithosphere than in the central craton. Most common among the xenoliths are clinopyroxene-poor lherzolites and harzburgites with Al2O3 and CaO contents nearly as low as in refractory xenoliths from kimberlite pipes (Mir, Udachnaya) in the central and northern Siberian craton. By contrast, the Tok peridotites have higher FeO, lower Mg-numbers and lower modal orthopyroxene and are apparently formed by shallow partial melting (3 GPa). Nearly all Tok xenoliths yield petrographic and chemical evidence for metasomatism: accessory phlogopite, amphibole, phosphates, feldspar and Ti-rich oxides, very high Na2O (2–3.1%) in clinopyroxene, LREE enrichments in whole-rocks.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

16.
         二辉橄榄岩通常被认为是低程度部分熔融的残留,但熔体再富集作用为其成因提供了一种新的解释。熔体再富集作 用通常是指软流圈来源的玄武质熔体加入到难熔的方辉橄榄岩或纯橄岩形成更为饱满的二辉橄榄岩的过程。除了使主量元 素富集之外,熔体再富集作用还可以使微量元素与Sr-Nd 同位素从方辉橄榄岩中的富集特征转变为二辉橄榄岩所呈现的亏 损特征。对于熔体再富集作用是否改变橄榄岩的Os 同位素组成还存在较大的争议,它主要取决于加入熔体的比例,熔体中 硫的饱和程度以及熔体再富集作用发生的时间等因素。对于以低熔/岩比例为主的大陆岩石圈地幔来说,熔体再富集作用对 橄榄岩的Os 同位素组成的影响可能较为有限。除了化学成分上的影响之外,熔体的加入也会改变大陆岩石圈地幔的物理特 征。这一过程使得岩石圈地幔的渗透率增大和黏滞度降低,从而会破坏大陆岩石圈地幔的稳定性。虽然熔体再富集作用可 以影响和改变岩石圈地幔的性质,但它是否导致克拉通地幔的减薄以及克拉通破坏尚有疑问。  相似文献   

17.
《International Geology Review》2012,54(11):1418-1444
Quaternary volcanic rocks in the Kuandian (KD), Longgang (LG), Changbaishan (CBS), Wangqing (WQ), and Jilin (JL) volcanic centres in eastern Liaoning and southern Jilin provinces contain mantle xenoliths of spinel-facies lherzolites and minor harzburgites. Among the study sites, the KD, LG, and CBS volcanic fields are located on the northeastern margin of the North China Craton (NCC), whereas the WQ and JL fields lie on the southern margin of the Xing'an–Mongolia Orogenic Belt (XMOB). The (Fo) components of olivine (Ol) and Cr# (=Cr/(Cr + Al)) of spinel, together with trace element abundance of clinopyroxene, suggest that the subcontinental lithospheric mantle (SCLM) in the study area has undergone a low degree (4–6%) of partial melting. The rocks do not show modal metasomatism, but clinopyroxene grains in selected samples show elevated large ion lithophile element compositions, suggesting that the mantle xenoliths underwent minor cryptic metasomatism by exchange with a silicate melt. Two-pyroxene thermometry yielded equilibration temperatures ranging from 740°C to 1210°C. The corresponding oxygen fugacity (fO2) was calculated to range from FMQ –2.64 to +0.39 with an average of –0.59 (n?=?53). The oxidation state is comparable to that of abyssal peridotites and the asthenospheric mantle. We failed to discover differences in equilibration temperatures and oxidation state between lherzolites and harzburgites, suggesting that partial melting did not affect fO2 values. In addition, similar fO2 of non-metasomatized and metasomatized samples suggest that metasomatism in the region did not affect fO2. Our data suggest that the present SCLM beneath the northeastern margin of the NCC and the southern margin of the XMOB are very similar and likely formed from a fertile asthenosphere after delamination of an old lithospheric keel below the NCC in response to the west-dipping subduction of the Pacific oceanic plate since early to middle Mesozoic time.  相似文献   

18.
This paper presents field, petrographic–structural and geochemical data on spinel and plagioclase peridotites from the southern domain of the Lanzo ophiolitic peridotite massif (Western Alps). Spinel lherzolites, harzburgites and dunites crop out at Mt. Arpone and Mt. Musinè. Field evidence indicates that pristine porphyroclastic spinel lherzolites are transformed to coarse granular spinel harzburgites, which are in turn overprinted by plagioclase peridotites, while strongly depleted spinel harzburgite and dunite bands and bodies replace the plagioclase peridotites. On the northern flank of Mt. Arpone, deformed, porphyroclastic (lithospheric) lherzolites, with diffuse pyroxenite banding, represent the oldest spinel-facies rocks. They show microstructures of a composite subsolidus evolution, suggesting provenance from deeper (asthenospheric) mantle levels and accretion to the lithosphere. These protoliths are locally transformed to coarse granular (reactive) spinel harzburgites and dunites, which show textures reminiscent of melt/rock reaction and geochemical characteristics suggesting that they are products of peridotite interaction with reactively percolating melts. Geochemical data and modelling suggest that <1–5% fractional melting of spinel-facies DMM produced the injected melts. Plagioclase peridotites are hybrid rocks resulting from pre-existing spinel peridotites and variable enrichment of plagioclase and micro-gabbroic material by percolating melts. The impregnating melts attained silica-saturation, as testified by widespread orthopyroxene replacement of olivine, during open system migration in the lithosphere. At Mt. Musinè, coarse granular spinel harzburgite and dunite bodies replace the plagioclase peridotites. Most of these replacive, refractory peridotites have interstitial magmatic clinopyroxene with trace element compositions in equilibrium with MORB, while some Cpx have REE-depleted patterns suggesting transient geochemical features of the migrating MORB-type melts, acquired by interaction with the ambient plagioclase peridotite. These replacive spinel harzburgite and dunite bodies are interpreted as channels exploited for focused and reactive migration of silica-undersaturated melts with aggregate MORB compositions. Such melts were unrelated to the silica-saturated melts that refertilized the pre-existing plagioclase peridotites. Finally, MORB melt migration occurred along open fractures, now recorded as gabbroic dikes.

Our data document the complexity of rock-types and mantle processes in the South Lanzo peridotite massif and describe a composite tectonic and magmatic scenario that is not consistent with the “asthenospheric scenario” proposed by previous authors. We envisage a “transitional scenario” in which extending subcontinental lithospheric mantle was strongly modified (both depleted and refertilized) by early melts with MORB-affinity formed by decompression partial melting of the upwelling asthenosphere, during pre-oceanic rifting and lithospheric thinning in the Ligurian Tethys realm.  相似文献   


19.
Relative to the North China Craton, the subcontinental lithospheric mantle (SCLM) beneath the Central Asian Orogenic Belt is little known. Mantle-derived peridotite xenoliths from the Cenozoic basalts in the Xilinhot region, Inner Mongolia, provide samples of the lithospheric mantle beneath the eastern part of the belt. The xenoliths are predominantly lherzolites with minor harzburgites, and can be subdivided into three groups, based on the REE patterns of clinopyroxenes. Group 1 peridotites (LREE-enriched), with low modal Cpx (3–7%), high Mg# in olivine (> 90.6) and Cr# in spinel (> 43.8), low whole-rock CaO + Al2O3 contents (1.62–3.22 wt.%) and estimated temperatures of 1043–1126 °C, represent moderately refractory SCLM that has experienced carbonatite-related metasomatism. Group 2 peridotites (LREE-depleted), with high modal Cpx (9–13%), low Mg# in olivine (< 90.6) and Cr# in spinel (< 20.0), high whole-rock CaO + Al2O3 contents (4.93–6.37 wt.%) and estimated temperatures of 814–970 °C, show affinity with Phanerozoic fertile SCLM that has undergone silicate-related metasomatism. Group 3 peridotites (convex-upward REE patterns), show wide ranges of olivine-Mg# (88.4–90.6), spinel-Cr# (11.5–47.6), and modal Cpx (3–14%) that overlap Groups 1 and 2. Their spinels have high TiO2 contents (> 0.41 wt.%), implying involvement of reactions between melt and peridotites. The estimated temperatures of Group 3 (1033–1156 °C) are similar to those of Group 1. We suggest that the pre-existing moderately refractory lithospheric mantle (i.e., Group 1) beneath the eastern part of the Central Asian Orogenic Belt was strongly penetrated by upwelling asthenospheric material, and the cooling of this material produced fertile lithospheric mantle (i.e., Group 2). The present lithospheric mantle of this area consists of interspersed volumes of younger fertile and older more refractory lithosphere, with the fertile type dominating the shallower levels of the mantle.  相似文献   

20.
Upper-mantle xenoliths in Cenozoic basalts of northwestern Spitsbergen are rocks of peridotite (spinel lherzolites) and pyroxenite (amphibole-containing garnet and garnet-free clinopyroxenites, garnet clinopyroxenites, and garnet and garnet-free websterites) series. The upper-mantle section in the depth range 50–100 km is composed of spinel peridotites; at depths of 80–100 km pyroxenites (probably, dikes or sills) appear. The equilibrium conditions of parageneses are as follows: in the peridotites—730–1180 °C, 13–27 kbar, and oxygen fugacity of − 1.5 to + 0.3 log. un.; in the pyroxenites—1100–1310 °C, 22–33 kbar. The pyroxenite minerals have been found to contain exsolved structures, such as orthopyroxene lamellae in clinopyroxene and, vice versa, clinopyroxene lamella in orthopyroxene. The formation temperatures of unexsolved phases in orthopyroxene and clinopyroxene are nearly 100–150 °C higher than the temperatures of the lamellae–matrix equilibrium and the equilibrium of minerals in the rock. The normal distribution of cations in the spinel structure and the equilibrium distribution of Fe2 + between the M1 and M2 sublattices in the orthopyroxenes point to the high rate of xenolith ascent from the rock crystallization zone to the surface. All studied Spitsbergen rock-forming minerals from mantle xenoliths contain volatiles in their structure: OH, crystal hydrate water H2Ocryst, and molecules with characteristic CH and CO groups. The first two components are predominant, and the total content of water (OH– + H2Ocryst) increases in the series olivine → garnet → orthopyroxene → clinopyroxene. The presence of these volatiles in the nominally anhydrous minerals (NAM) crystallized at high temperatures and pressures in the peridotites and pyroxenites testifies to the high strength of the volatile–mineral bond. The possibility of preservation of volatiles is confirmed by the results of comprehensive thermal and mass-spectral analyses of olivines and clinopyroxene, whose structures retain these components up to 1300 °C. The composition of hypothetic C–O–H fluid in equilibrium (in the presence of free carbon) with the underlying mantle rocks varies from aqueous (> 80% H2O) to aqueous–carbonic (~ 60% H2O). The fluid becomes essentially aqueous when the oxygen activity in the system decreases. However, there is no strict dependence of the redox conditions on the depth of formation of xenoliths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号