首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于IGU预报轨道实时估计精密卫星钟差   总被引:2,自引:0,他引:2  
针对目前实时精密单点定位中,GPS卫星实时钟差服务所存在的精度问题,提出了一种基于IGU轨道的实时钟差估计方法。该方法基于IGU轨道,采用全球参考站非差载波相位观测值,进行实时钟差估计。数值结果表明:实时估计的卫星钟差与IGS最终产品的偏差大部分小于0.3 ns,平均优于0.2 ns;采用估计所得的实时钟差进行PPP静态定位,其精度可达1~2 cm,同时也可得到毫米级精度的天顶对流层延迟。  相似文献   

2.
连续接收10 d CNES实时播发的以状态空间表示的数据流信息,数据流的完整性可达91.769%;结合卫星广播星历实时恢复精密卫星轨道与钟差得出,CNES播发的实时数据流轨道三维位置精度优于4.5 cm,钟差精度优于0.09 ns。用得到的卫星轨道和钟差对10个IGS测站10 d观测数据进行精密单点定位解算,得出基于SSR信息的RTPPP可以实现23 min收敛到10 cm精度的定位性能,单天解三维点位精度优于3 cm。  相似文献   

3.
基于北斗三期试验卫星的实测数据确定其精密轨道和钟差,结果表明三期试验卫星IGSO径向重叠弧段精度优于7.0 cm,MEO优于5.3 cm,与二期非GEO卫星相当。采用相应轨道和钟差产品进行静态精密单点定位结果表明,在加入北斗三期试验卫星后,监测站坐标平面精度优于1.0 cm,高程精度优于2.6 cm,相对于仅采用北斗二期卫星定位结果分别提高0.5 cm和1.2 cm,且收敛时间缩短约2 h 35 min。  相似文献   

4.
提出基于单观测值的Kalman滤波快速计算方法,并引入共享存储并行编程(OpenMP)技术实现协方差快速更新,从而实现非差GPS卫星钟差的快速实时计算。均匀选取55个IGS参考站,计算2017-03-20~03-30采样率为60 s的卫星钟差。与IGS事后30 s钟差相比,两者具有很好的一致性,RMS互差优于0.5 ns。选取未参与钟差解算的10个IGS参考站进行精密单点定位,结果表明,实时静态PPP水平方向精度优于2 cm,高程方向精度为2~4 cm;实时动态PPP水平方向精度为2~4 cm,高程方向精度为4~6 cm,能够满足实时PPP的精度要求。该方法在主频1.2 GHz服务器上8线程并行模式下单历元耗时4 s,相比串行模式效率提升1/3。  相似文献   

5.
首先采用国际上通用的德国地学中心(GFZ)与武汉大学(WHU)精密产品,对GNSS精密卫星轨道和精密钟差产品精度进行初步评估;然后基于WHU精密轨道和钟差产品对18个分布于东半球的MGEX地面站进行多系统定位测试,同时也对BDS的B1I/B3I与B1C/B2a两组新、旧频点的精密单点定位性能进行对比分析。结果表明:1)四大导航系统(GPS、GLONASS、BDS、Galileo)的卫星轨道产品精度均在cm级,精密钟差内符合精度均优于0.1 ns,北斗三号(BDS-3)卫星钟精度相比北斗二号(BDS-2)有显著提升。2)亚太地区BDS的定位精度优于其他3个系统;在其他地区,GPS定位精度最优(与Galileo基本相当),优于BDS和GLONASS的定位结果。3)BDS PPP平均收敛时间静态模式约为50.33 min、动态模式约为77.83 min,收敛速度略低于GPS、Galileo,优于GLONASS。4)B1C/B2a与B1I/B3I双频消电离层组合PPP定位性能基本相当。  相似文献   

6.
基于武汉大学PANDA软件生成的GPS/GLONASS/BDS/Galileo四系统精密轨道和钟差产品,采用MGEX跟踪站多模观测数据进行试算,对GPS、GPS/BDS、GPS/GLONASS、GLONASS/BDS、GPS/GLONASS/BDS以及GPS/GLONASS/BDS/Galileo 7种模式的动态精密单点定位的精度和收敛性进行比较。结果表明:1)BDS动态PPP收敛速度较慢,收敛后精度能够达到cm级;2)GPS/BDS融合定位北方向分量精度不如GPS单系统定位,但东方向和高程方向分量收敛速度和定位精度都得到改善;GPS/GLONASS和GLONASS/BDS融合定位提高了东方向、北方向和高程方向分量的收敛速度和定位精度;3)GPS/GLONASS/BDS融合定位20 min即可收敛,收敛后平面精度优于1 cm,高程精度优于3 cm;Galileo的引入对收敛速度和定位精度的改善不明显。  相似文献   

7.
采用多项式和结合周期项的混合函数模型进行GPS卫星钟差高精度模型化与精度分析。结果表明,周期项对于卫星钟差模型化精度的提高具有重要作用。对于Rb 钟卫星,Block ⅡF卫星钟差模型化精度0.03 m(约0.1 ns)左右,Block ⅡR和Block ⅡR-M卫星钟差模型化精度0.05 m(约0.2 ns)左右,而Cs钟卫星钟差模型化精度则低一个数量级。采用精密单点定位进行模型化结果分析得到,混合模型化钟差参与解算的定位结果精度可达cm级,收敛时间约为4 h。以上表明,简单的模型化参数可在一定程度上代替繁琐的序列钟差,实现简化GPS卫星钟差服务模式。  相似文献   

8.
介绍利用精密单点定位(PPP)技术进行天顶对流层延迟(ZPD)估计的方法,从投影函数模型选取、卫星截止高度角设置、精密星历与精密钟差的使用3方面分析了各种因素对天顶对流层延迟估计精度的影响,确定了相对较优的模型和数据处理策略。大量的算例和分析表明:采用NMF与GMF均可获得较高精度的ZPD,二者差异甚小;采用5°~10°的截止高度角更利于得到较好的ZPD结果;采用快速精密星历和钟差、实时观测精密星历和快速精密钟差解算的ZPD结果与采用事后精密星历和钟差的精度是相当的,而采用外推超快精密星历和快速精密钟差解算测站ZPD值的结果精度稍有下降,但仍具较高的精度。  相似文献   

9.
研究了非差与历元差分两种观测模型估计精密卫星钟差的方法,评价了分别利用两类观测模型估钟的特点。通过实际算例分析了两种观测模型估钟的处理速度与精度。计算结果表明:基于非差观测模型估计卫星钟差精度高、观测信息没有损失、可靠性高、可以实现模糊度固定,但由于未知参数多,解算速度较慢,且需要经过一段时间的收敛才能达到所需精度;而历元差分模型估计卫星钟差待求参数较少,计算效率高,且不存在收敛过程,但估钟精度比非差模型估钟收敛后的精度略低,且得不到钟差初值,需从导航电文中提取或通过其他方式获取,不过由此引起的系统性偏差,在定位时可被模糊度和接收机钟差吸收,不影响最终的定位结果。  相似文献   

10.
分析精密单点定位观测模型中的卫星钟差改正项(包含硬件延迟偏差改正),给出采用IGS精密卫星钟差产品进行卫星钟差改正时的硬件延迟偏差改正方法.并通过实测数据定量分析硬件延迟偏差改正在静态及动态两种定位方式中的影响.实验结果表明:精密单点定位中,硬件延迟偏差改正对静态定位的影响很小,可以忽略;对动态定位的影响可达到cm级,应该加以考虑.  相似文献   

11.
就测站数量、观测时间和测站分布对估计钟差的影响进行了研究,结果表明:增加测站数量和观测时间,均有利于提高卫星钟差的估计精度;但随着测站个数的增加,计算耗时会随之增加,从而影响钟差的实时使用,因此,从兼顾钟差的精度和实时应用两方面考虑,只有选择适当的测站分布和测站个数,才有利于钟差的实时估计和应用。PPP定位中,基于估计钟差的收敛时间比基于IGS最终钟差的收敛时间更长。  相似文献   

12.
基于西安测绘研究所发布的BDS-3精密轨道和钟差产品,研究B1C-B2a双频组合的卫星端差分码偏差(DCB)改正模型,并分析中国科学院发布的DCB产品的稳定性。采用10个MGEX测站7 d的观测数据,对非差非组合和无电离层组合模型下的B1I-B3I、B1C-B2a两种双频组合的BDS-3精密单点定位精度进行对比分析。结果表明,BDS-3静态定位精度水平方向优于2.0 cm,高程方向优于2.5 cm,收敛时间在31 min左右;模拟动态定位精度水平方向优于3.4 cm ,高程方向优于4.1 cm,收敛时间在60 min左右;B1I-B3I、B1C-B2a两种双频组合定位精度相当且收敛时间较为接近,二者都可用于北斗精密单点定位。  相似文献   

13.
利用GPS、GLONASS、Beidou和Galileo 四系统的观测数据以及MGEX精密轨道和钟差产品,研究多系统融合精密单点定位的理论模型,并分析其收敛速度和定位精度。结果表明,静态定位时,Beidou系统收敛较慢,收敛后平面精度优于5 cm,高程精度优于8 cm,四系统融合收敛速度最快,定位精度和GPS接近;动态定位时,Beidou平均收敛时间在110 min以上,平面定位精度优于8 cm, 高程精度优于16 cm,四系统融合显著提升了收敛速度,但是定位精度和GPS相比没有明显提升。在截止高度角大于30°条件下,GPS系统定位偏差较大,而多系统依然能够保证足够数量的可见卫星,从而保证可靠的定位精度。  相似文献   

14.
地面测站的数量及分布会影响实时卫星钟差估计的精度和可靠性。鉴于目前BDS主要为亚太地区提供服务,均匀选取中国区域内8~24个实时监测站,分析区域测站数与BDS实时卫星钟差估计精度的关系。结果表明,当测站数小于16个,IGSO/MEO卫星在中国区域内被观测的弧长不全,实时钟差精度和定位精度较差;当测站数达到16个,中国区域内可观测的BDS卫星弧长覆盖饱和;当测站数达到17个及以上,实时钟差精度达到0.15 ns,平面定位精度达到0.3 m以内,高程定位精度达到0.4 m以内,且钟差和定位精度随着测站数的增加不再明显提高。  相似文献   

15.
以gbm精密星历和钟差作为参考真值,对GPS、BDS、Galileo以及GLONASS四大系统2017-02-01~02-28的广播星历、钟差以及卫星空间测距误差(SISRE)的精度进行对比分析。结果表明,GPS轨道径向、切向、法向的精度为1 m、0.4 m、0.8 m左右,钟差约为2 ns,卫星信号测距误差(SISRE)约0.4 m;BDS不同类型卫星表现出很大差异;Galileo卫星的径向、切向、法向的精度为0.3 m、0.3 m、0.2 m,钟差约3 ns,SISRE约1 m;GLONASS卫星的径向、切向、法向精度为0.4 m、1.0 m、0.4 m,钟差约7 ns,SISRE约2 m。  相似文献   

16.
采用2021年(GPS周2138~2190)IGS BDS-3卫星精密钟差产品进行周期性变化分析,并在周期性分析结果基础上建立高精度模型化函数。结果表明,附加8个周期的模型化精度能达到0.049 ns,与二次多项结果相比,精度提高约70%。同时,对BDS-3卫星钟差模型化结果进行精密单点定位(PPP)性能分析,虽然其收敛时间稍慢于IGS最终产品,但能实现cm级定位,且模型化产品与目前IGS离散化产品相比可大大节省内存空间。  相似文献   

17.
在阐述GPS/GLONASS组合精密单点定位(PPP)方法及模型的基础上,利用研发的软件从静动态定位精度和动态定位收敛性方面比较分析了GPS、GLONASS及GPS/GLONASS组合3种方式的精密单点定位结果。结果表明:3种方式都能获得厘米级的静动态定位精度,但组合方式较单一方式有较好的统计精度;在动态定位收敛性方面,组合方式能提高收敛速度,且在GPS卫星较少情形下尤为突出。  相似文献   

18.
选取全球52个MGEX测站连续7 d的数据对两种伪距频间偏差(IFB)模型在多系统融合精密单点定位中的性能进行统计分析,第一种IFB模型是对每个GLONASS卫星估计一个IFB参数,第二种模型则是采用频率号的一次线性函数估计IFB参数。结果表明,静态条件下两种伪距IFB模型在E、N、U三个方向上定位精度相当;动态条件下两种模型在E、U方向上精度相当,第二种模型比第一种模型在N方向上定位精度提高21%。相同条件下两种伪距IFB模型的收敛速度相差较小且均能达到指定精度,而第一种伪距IFB模型需要估计更多参数。因此综合考虑定位精度和收敛时间,在进行多系统融合精密单点定位时建议采用第二种模型进行伪距IFB估计。  相似文献   

19.
采用分析中心间互比、SLR残差检核、卫星钟差拟合以及阿伦方差等方法对MGEX和iGMAS提供的多系统轨道和钟差产品精度进行综合分析。结果表明,GPS和GLONASS卫星的轨道精度分别在1.0~1.3 cm和2.0~3.6 cm,其中iGMAS提供的轨道产品较优。Galileo卫星的轨道一致性在10~17 cm,采用ECODE2模型或附加先验模型可有效提高轨道精度。BDS GEO卫星的轨道一致性在数m级,径向精度约为25 cm;IGSO和MEO卫星的轨道一致性分别在21~40 cm和11~18 cm左右,且径向精度分别优于10 cm和5 cm。MGEX和iGMAS提供的GPS和GLONASS卫星的钟差精度较好,但稳定性和可靠性仍有待提升。Galileo卫星的钟差一致性约为0.2~0.4 ns,且钟差产品中吸收了未被模型化的轨道误差。BDS GEO、IGSO和MEO卫星的钟差一致性分别在0.35~0.46 ns、0.25~0.33 ns和0.11~0.21 ns,其中CODE提供的BDS IGSO/MEO卫星的钟差产品受偏航姿态模式影响较大。  相似文献   

20.
为探讨系统偏差最优估计策略,利用IGS提供的GPS、BDS、GLONASS和Galileo 四系统的观测数据以及GFZ提供的精密卫星钟差和精密轨道产品,将系统偏差(ISB)按照高斯白噪声、20 min、30 min、1 h、2 h分段常数进行单天静态解,分别获得E、N、U方向上的坐标偏差,分析不同系统偏差求解策略下多系统融合PPP的收敛时间和定位精度。结果表明,在多系统融合静态PPP中,从观测模型强度与定位结果稳定性和可靠性角度综合考虑,对ISB采用20 min分段常数估计策略是最优的,静态PPP收敛时间在30 min左右,收敛后的定位精度E方向优于2 cm、N方向优于1 cm、U方向优于5 cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号