首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we present a landslide susceptibility assessment carried out after the devastating 2008 Wenchuan earthquake. For the Zhouqu segment in the Bailongjiang basin in north-western China landslide susceptibility was computed by a logistic regression method. This region has been experiencing landslides for a long time, and numerous additional slope failures were triggered by the 2008 Wenchuan earthquake. The data used for this study consists of slope failures attributed to the 2008 earthquake, the 878 post Wenchuan earthquake landslides and collapses inventory build up by combination the field investigation, monoscopic manual interpretation, image classification and texture analysis using SPOT 5 and ALOS remote-sensing image data. All data derived from remote sensing images are validated during field investigations. The landslide pre-disposing factor database was constructed. A digital elevation model (DEM) with a 30 × 30 m resolution, orthophotos, geological and land-use maps and information on peak ground acceleration data from the 2008 earthquake is used. The statistical analysis of the relation between Wencuan earthquake-triggered landslides and pre-disposing factors show the great influence of lithological and topographical conditions for earthquake-triggered slope failures. The quality of susceptibility mapping was validated by splitting the study area into a training and validation set. The prediction capability analysis showed that the landslide susceptibility map could be used for land planning as well as emergency planning by local authorities in this region.  相似文献   

2.
The 2008 Wenchuan earthquake with Ms8.0 triggered extensive throwing-pattern landslides in the area within or near the seismic faults. The resultant landslides from this earthquake brought to the fore the effect of vertical earthquake acceleration on landslide occurrence. The pseudostatic analysis and the dynamic response on landslide stability due to the Wenchuan earthquake are studied with the Chengxi (West Town) catastrophic landslide used as a case study. The results show that the epicenter distance is an important factor which affects the vertical acceleration and thus the stability of landslide. Also, the vertical acceleration was found to have a significant impact on the FOS of landslide if the earthquake magnitude is quite large. Within the seismic fault, the amplitude effect of vertical acceleration is very dominant with the FOS of landslide, for vertical acceleration ranging from positive to negative, having a variation of 25 %. The variation of FOS of landslide for vertical acceleration ranging from positive to negative are 15 and 5 % for landslides near seismic fault and outside seismic fault, respectively. For landslide with a slope angle <45°, the FOS of landslide with both horizontal and vertical accelerations is significantly greater than the one without vertical acceleration. Further, the results computed from both the pseudostatic method and dynamic analysis reveal that the FOS during the earthquake varied significantly whether vertical acceleration is considered or not. The results from this study explain why lots of throwing-pattern catastrophic landslides occurred within 10 km of the seismic fault in the Wenchuan earthquake.  相似文献   

3.
In this study a Wenchuan earthquake-induced landslide susceptibility assessment was carried out in the Longnan area in northwestern China using a GIS-based logistic regression model. This region has frequently been affected by landslides in the past, and was intensively affected by the 5.12 Wenchuan earthquake which received considerable international attention. The data used for this study consist of the landslides triggered by the Wenchuan earthquake and a landslide pre-disposing factor database. Information regarding the landslide causative factors came from additional data sources, such as a digital elevation model (DEM) with a 30 × 30 m2 resolution, orthophotos, geological and land-use maps, precipitation records, and information on peak ground acceleration data from the 2008 earthquake. The statistical analysis of the relationship between the Wenchuan earthquake-triggered landslides and pre-disposing factors showed the great influence of lithological and topographical conditions on slope failures. The quality of susceptibility mapping was validated by splitting the study area into training and validation sections. The prediction capability analysis demonstrated that the landslide susceptibility map could be used for land planning as well as emergency planning by local authorities.  相似文献   

4.
After the deadly Ms 8.0 Wenchuan earthquake, the Wenjiagou landslide produced steep topography, a narrow gully and abundant loose sediments; these factors have contributed to the high debris flow risk in the Wenjiagou area during subsequent rainy seasons. At least five debris flows have occurred in the Wenjiagou area between September 24, 2008, and September 18, 2010, which resulted in seven casualties and an economic loss of approximately 446 million RMB. To reduce the risk of debris flows and landslides, the Wenjiagou Valley Debris Flow Control Project (WVDFCP), which cost over 2 billion RMB, was carried out and completed in 2011. The control measures of the project effectively reduced the scale and damage of the following debris flows. In this paper, the recent deformation of the giant landslide and its effect on the WVDFCP are evaluated by applying a time-series interferometric synthetic aperture radar (InSAR) technique based on distributed scatterers (DSs) to the Radardat-2 SAR data collected from June 2014 to September 2015. In addition, the experimental results show that most areas of the landslide are stable, with an average deformation rate of less than 5.0 mm/year. The results demonstrate that the control measures of the WVDFCP not only reduced the damage caused by the later debris flows but also contributed to the consolidation of the loose sediments in the Wenjiagou landslide area. The time-series InSAR technique based on the DSs of high-resolution SAR images is an important tool for deformation monitoring of earthquake-induced landslides.  相似文献   

5.
The Ms8.0 Wenchuan earthquake that occurred on 12 May 2008 in southwestern China and triggered numerous landslides is one of the stronger ones in the steep eastern margins of the Tibetan Plateau. The surfaces of these landslides have recovered gradually with vegetation, which provide useful information about the evolution of geologic environment as well as the long-term assessment of landslides after earthquake. The Mianyuanhe watershed shows many co-seismic landslides. The active fault passing through its center is selected as a study area aiming to analyze the annual surface recovery rate (SRR) of landslides by interpretation of remote-sensing images in five periods from 2008 to 2013. The results are here described. (1) Although a large amount of loose deposits were transformed into debris flows, the surfaces of the landslides recovered rapidly with vegetation and almost no landslides occurred at new sites after the Wenchuan earthquake. In the year 2008, the exposed surface projected area (ESPA) of the landslides showed a total area of 56.3 km2 and covered 28.9 % of the study area, which was reduced rapidly to 19.1 % in 2011 and 15.8 % in 2013. (2) The study area was divided into four geologic units, including clastic rocks, melange zone, carbonate rocks, and magmatic rocks. Smaller ESPAs and higher SRRs were found in the former two units versus the latter ones. (3) A single large landslide shows an SRR lower than a group of smaller ones having an equal total surface, while the SRRs of debris flows are lower than those of rockfalls and landslides. (4) The vegetation cover would return to the pre-earthquake level in 2020 approximately, which indicates that the impact of the Wenchuan earthquake on landslides and debris-flows activities would cease almost completely.  相似文献   

6.
The 2008 Ms 8.0 Wenchuan earthquake triggered a large number of extensive landslides. It also affected geologic properties of the mountains such that large-scale landslides followed the earthquake, resulting in the formation of a disaster chain. On 10 July 2013, a catastrophic landslide–debris flow suddenly occurred in the Dujiangyan area of Sichuan Province in southeast China. This caused the deaths of 166 people and the burying or damage of 11 buildings along the runout path. The landslide involved the failure of ≈1.47 million m3, and the displaced material from the source area was ≈0.3 million m3. This landslide displayed shear failure at a high level under the effects of a rainstorm, which impacted and scraped an accumulated layer underneath and a heavily weathered rock layer during the release of potential and kinetic energies. The landslide body entrained a large volume of surface residual diluvial soil, and then moved downstream along a gully to produce a debris flow disaster. This was determined to be a typical landslide–debris flow disaster type. The runout of displaced material had a horizontal extent of 1200 m and a vertical extent of 400 m. This was equivalent to the angle of reach (fahrböschung angle) of 19° and covered an area of 0.2 km2. The background and motion of the landslide are described in this study. On the basis of the above analysis, dynamic simulation software (DAN3D) and rheological models were used to simulate the runout behavior of the displaced landslide materials in order to provide information for the hazard zonation of similar types of potential landslide–debris flows in southeast China following the Wenchuan earthquake. The simulation results of the Sanxicun landslide revealed that the frictional model had the best performance for the source area, while the Voellmy model was most suitable for the scraping and accumulation areas. The simulations estimated that the motion could last for ≈70 s, with a maximum speed of 47.7 m/s.  相似文献   

7.
利用舟曲气象和地质资料,分析了2010年8月8日发生的"8.8"舟曲特大山洪泥石流灾害形成的气候特征和地质地理环境.这次泥石流是在舟曲特殊的地质地貌和地理环境下,由于前期干旱,突遇强降水而发生的一次特大地质灾害.崩塌、滑坡、地震和人为因素,特别是"5.12"汶川地震,较大程度上破坏了舟曲地质,为泥石流提供了丰富的物质来源;前期干旱在一定程度上加剧了这次灾害;超历史极值的强降水是触发泥石流的直接因素.通过对舟曲气候研究表明,7、8月降雨频繁,而且过程雨量大,尤其8月上旬大雨发生频率最高,应密切关注可能引发的地质灾害.加强对地质地貌的保护,研究历史气候及月季气候特征对泥石流发生的影响,确定在不同地形和地质地貌背景下的泥石流降水量阈值,对泥石流灾害发生的预报有着十分重要的意义.  相似文献   

8.
An Ms7.0 earthquake, focal depth 13 km, struck Lushan on April 20, 2013, caused 196 deaths and 21 missing, 13,484 injuries, and affected more than two million people. A field investigation was taken immediately after the quake, and the induced hazards were analyzed in comparison with the Wenchuan earthquake. We have identified 1,460 landslides and avalanches and four dammed lakes, which were generally small and concentrated on high elevation. Avalanches and rockfalls developed in cliffs and steep slopes of hard rocks, including Jinjixia of Baosheng Town and Dayanxia of Shuangshi Town, Lushan, and the K317 section the Xiaoguanzi section north to Lingguan Town along the provincial highway S210. Landslides were relatively less, mainly in moderate and small scales, developing in sandstone, shale, and loose colluviums. Only one single large landslide was observed to turn into debris slide-flow. Dammed lakes were formed by avalanches and landslides, all in small size and of low danger degree. The earthquake-induced hazards distributed in belt on the hanging wall along the faults, and their major controlling factors include tectonics, lithology, structure surface, and landform. More than 99 % landslides were within 30 km to the epicenter, and 678 within 10 km, accounting for 46 % of the total; about 50 % landslides were distributed on slopes between 35° and 55°, and 11 % on slope exceeding 75°; 60 % on slopes at the altitudes between 1,000 and 1,500 m, 77 % on slopes between 900 and 1,500 m; and 24 and 62 % in hard rocks and section between hard and soft rocks, respectively. Compared with the case of Wenchuan earthquake, both the number and extension of landslides and avalanches in Lushan earthquake-affected area are much smaller, only 5.53 % in number and 0.57 % in area. The earthquake has increased the instability of slope and potentiality of landslide and debris flow. Accordingly, the active period is expected to be relatively short comparing with that in Wenchuan earthquake-hit area. However, the insidious and concealed hazards bring difficulty for risk investigation.  相似文献   

9.
The study of deep-seated gravitational slope deformations (DSGSD) in Mexico is scarce; therefore, their localization and causes are highly overlooked. The present paper examines the characterization of the DSGSD of Jungapeo and Las Pilas in eastern Michoacan state, currently active and endangering their inhabitants. An integrated study, including detailed lithology, morpho-structural inventories, analysis of land use, and pluviometric regime, was performed and complemented with differential global positioning system monitoring networks. Both landslides developed over highly weathered volcano-sedimentary rocks. On the one hand, the Jungapeo landslide has an estimated volume of 990,455 m3 with steady decreasing velocity rates from 41 to 15 cm/month in the first monitoring period to 13–3 cm/month in the last one. On the other hand, the Las Pilas landslide estimated volume is about 1,082,467 m3 with a stable velocity rate of 1.3 to 0.1 cm/month. Despite the multi-storeyed style of activity, two behaviors of instability were distinguished: slow deformation and secondary landslide stages. The conditioning factors for slow deformation in both DSGSD are the combination of weathered lithology with clay- and sand-rich content, and the shift toward intensive monoculture. The triggering factor is related to excess water produced by an inefficient flood-irrigation system that also generates an atypical acceleration behavior in both landslides during the dry season. The DSGSD activity thus predisposes the generation of tension cracks and secondary scarps from which the collateral landslides are triggered by atypical rainfall, such as that of 2010.  相似文献   

10.
Strong earthquakes in mountainous areas can trigger a large number of landslides that generate deposits of loose and unconsolidated debris across the landscape. These deposits can be easily remobilised by rainfalls, with their movement frequently evolving into catastrophic debris flows and avalanches. This has been the fate of many of the 200,000 co-seismic deposits generated by the 2008 Mw 7.9 Wenchuan earthquake in Sichuan, China. Here we present one of the first studies on the post-seismic patterns of landsliding through a detailed multi-temporal inventory that covers a large portion of the epicentral area (462.5 km2). We quantify changes of size-frequency distribution, active volumes and type of movement. We analyse the possible factors controlling landslide activity and we discuss the significance of mapping uncertainties. We observe that the total number of active landslides decreased with time significantly (from 9189 in 2008 to 221 in 2015), and that post-seismic remobilisations soon after the earthquake (2008–2011) occurred stochastically with respect to the size of the co-seismic deposits. Subsequently (2013–2015), landslide rates remained higher in larger deposits than in smaller ones, particularly in proximity to the drainage network, with channelised flows becoming comparatively more frequent than hillslope slides. However, most of the co-seismic debris remained along the hillslopes and are largely stabilised, urging to rethink the way we believe that seismic activity affects the erosion patterns in mountain ranges.  相似文献   

11.
The original Badong County, Hubei, China, was mainly below the highest water level of the Three Gorges Reservoir, which is 175 m above sea level. The new downtown of Badong was rebuilt in the Huangtupo area between 1982 and 1991. After detailed geological investigation in the Huangtupo area, four independent landslides were identified, making it one of the largest and most harmful landslide group in the Three Gorges Reservoir area. Since 2003, abundant data have been obtained from the Huangtupo No. 1 sliding mass about rainfall, water level, earth surface deformation and deep deformation. The monitoring data indicate that the earth surface and deep deformation of this landslide is closely related to the seasonal rainfall and water level fluctuation of the reservoir. During increases in the water level, the earth surface deformation velocity decreases, and then increases obviously in the subsequent water level decreasing stage. Because the water level drawdown period overlaps with the rainy season in this area, the earth surface deformation is affected by both rainfall and water level. The deformation velocity of the earth surface caused by rainfall is about 5 mm/month, while that caused by water level decrease is 5–7 mm/month. On the contrary, the deformation velocity of the deep sliding mass accelerates 2 to 3 times faster than average during water level increase. The distinction of surface and deep deformation regulations indicates that the effects of seasonal rainfall and water level fluctuation on the stability of reservoir wading landslides are different. Based on all monitoring data, we also found that the Huangtupo No. 1 riverside sliding mass is creeping seasonally during the seasonal rainfall and periodic reservoir water level fluctuation. The deformation velocities of the east regions of the sliding body indicate acceleration, making these regions even more dangerous.  相似文献   

12.
Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China   总被引:35,自引:16,他引:19  
The 2008 Wenchuan earthquake (M s = 8.0; epicenter located at 31.0° N, 103.4° E), with a focal depth of 19.0 km was triggered by the reactivation of the Longmenshan fault in Wenchuan County, Sichuan Province, China on 12 May 2008. This earthquake directly caused more than 15,000 geohazards in the form of landslides, rockfalls, and debris flows which resulted in about 20,000 deaths. It also caused more than 10,000 potential geohazard sites, especially for rockfalls, reflecting the susceptibility of high and steep slopes in mountainous areas affected by the earthquake. Landslide occurrence on mountain ridges and peaks indicated that seismic shaking was amplified by mountainous topography. Thirty-three of the high-risk landslide lakes with landslide dam heights greater than 10 m were classified into four levels: extremely high risk, high risk, medium risk, and low risk. The levels were created by comprehensively analyzing the capacity of landslide lakes, the height of landslide dams, and the composition and structure of materials that blocked rivers. In the epicenter area which was 300 km long and 10 km wide along the main seismic fault, there were lots of landslides triggered by the earthquake, and these landslides have a common characteristic of a discontinuous but flat sliding surface. The failure surfaces can be classified into the following three types based on their overall shape: concave, convex, and terraced. Field evidences illustrated that the vertical component of ground shaking had a significant effect on both building collapse and landslide generation. The ground motion records show that the vertical acceleration is greater than the horizontal, and the acceleration must be larger than 1.0 g in some parts along the main seismic fault. Two landslides are discussed as high speed and long runout cases. One is the Chengxi landslide in Beichuan County, and the other is the Donghekou landslide in Qingchuan County. In each case, the runout process and its impact on people and property were analyzed. The Chengxi landslide killed 1,600 people and destroyed numerous houses. The Donghekou landslide is a complex landslide–debris flow with a long runout. The debris flow scoured the bank of the Qingjiang River for a length of 2,400 m and subsequently formed a landslide dam. This landslide buried seven villages and killed more than 400 people.  相似文献   

13.
四川汶川地震-滑坡-泥石流灾害链形成演化过程   总被引:3,自引:0,他引:3  
张永双  成余粮  姚鑫  王军  吴树仁  王猛 《地质通报》2013,32(12):1900-1910
2008年“5·12”汶川Ms 8.0级地震之后,地震灾区表现出显著的强震地质灾害后效应。地震造成山体分水岭及山脊部位产生大量的崩塌和滑坡,崩滑体大多散落在山体的中上部,在强降雨作用下大量松散堆积物沿陡峻的沟道汇聚、加速,形成破坏性极大的高位泥石流,从而构成典型的地震-滑坡-泥石流灾害链。在回顾汶川地震灾区同震地质灾害的基础上,调查分析了震后汛期地质灾害的主要类型及其6种表现形式,将地震-滑坡-泥石流灾害链形成、演化过程划分为4个阶段:孕育阶段、地震同震滑坡阶段、震后滑坡-泥石流发育阶段、高位泥石流的动态演化阶段,提出高位泥石流的判识指标,并探讨其分布特征、动态变化趋势及其防治对策。  相似文献   

14.
Sliding mass of landslides highly endangered the area along travel path, especially landslides with long travel distance. It is necessary to develop an effective prediction model for preliminarily evaluating landslide travel distance so as to improve disaster prevention and relocation. This paper collected 54 landslides with 347–4,170 m travel distance triggered by the 2008 Wenchuan earthquake to discuss the effectiveness of various influential factors on landslide travel distance and obtained an empirical model for its prediction. The results revealed that rock type, sliding source volume, and slope transition angle were the predominant factors on landslide travel distance. The validity of proposed model was verified by the satisfactory agreement between observations and predictions. Therefore, this model might be practically applicable in Wenchuan earthquake area and other similar geomorphological and geological regions.  相似文献   

15.
汶川MS8.0级地震、芦山MS7.0级地震和鲁甸MS6.5级地震均引发了大量的滑坡灾害。由于震级差异和地质地形条件的不同,地震滑坡分布情况有较大区别。本文综合已有的研究成果,从地震、地质和地貌3个方面,对比分析了地震滑坡的分布规律。结果表明:(1)3次地震滑坡数量和密度随着PGA和震级的增加而增加。汶川和鲁甸地震随烈度的增加,滑坡数量呈现递增的趋势。但芦山地震在较低烈度区也发育着大量滑坡。(2)断层影响滑坡分布的最大距离随着震级的增加而增加。在最大影响距离0.2倍的范围内,汶川地震分布有80%的滑坡,而其他两次地震仅30%。此外,汶川地震滑坡数量随断层距离呈指数衰减关系。(3)地震滑坡的分布受到地形的强烈影响。Ⅶ度及以上烈度区地形切割深度越大,地震触发的滑坡集中分布区域相对高差越大。同时,滑坡集中发育的坡度会随之增加。切割深度越大,地震滑坡更易发生在地势较陡的山脊或者上坡处,这可能与地形放大效应有关。  相似文献   

16.
汶川8级地震地质灾害的类型及实例   总被引:11,自引:2,他引:9  
吴珍汉  张作辰 《地质学报》2008,82(12):1747-1757
龙门山地区活动断裂右旋斜冲运动与汶川8级强烈地震存在成因联系。汶川8级地震造成了惨重的人员伤亡和巨大的财产损失,地震地质灾害主要类型有地震灾害、地震触发地质灾害和地震引发地质灾害隐患。严重地震灾害包括房屋倒塌与部分坍塌、房屋平移、房屋倾斜变形、墙体破裂与结构破坏、桥梁垮塌等。地震触发严重地质灾害包括山体滑坡、山体滑塌、岩块崩塌,局部产生泥石流与沙土液化。地震引发地质灾害隐患包括潜在滑坡、不稳定边坡与滑塌隐患、危岩体与崩塌隐患及泥石流灾害隐患。地震地质灾害分布与活动断层存在密切关系,沿北川映秀断裂地震地质灾害最为严重,沿汉旺漩口断裂、茂县汶川断裂、青川断裂地震地质灾害也比较严重。在活动断裂之间相对稳定地块远离活动断裂超过3~5 km,地震灾害和地震触发地质灾害显著减轻。  相似文献   

17.
2008年汶川"5.12"特大地震诱发了为数众多的崩塌、滑坡、泥石流等次生地质灾害,安县高川乡政府滑坡就是其中之一。本文在综合分析滑坡区地质环境条件、滑坡灾害体特征的基础上,进行了滑坡稳定性计算,给出了滑坡稳定性影响因素。  相似文献   

18.
2008年汶川地震滑坡详细编目及其空间分布规律分析   总被引:3,自引:0,他引:3  
最新研究成果表明, 2008年5月12日汶川MS 8.0级地震触发了超过197000处滑坡。首先,基于GIS与遥感技术构建了汶川地震滑坡的3类编目图,分别为单体滑坡面分布数据、滑坡中心点位置和滑坡后壁点位置。构建方法为基于地震前后高分辨率遥感影像的目视解译方法,区分单体滑坡并圈定其边界,对滑坡后壁进行识别与定点,并开展了部分滑坡的野外验证工作。这些滑坡分布在一个面积大约为110000km2的区域内,滑坡总面积约为1160km2。选择一个面积约为44031km2的区域作为研究区,区内滑坡数量为196007个,滑坡面积为1150.622km2,这是最详细完整的汶川地震滑坡编录成果,也是单次地震事件触发滑坡最多的记录。其次,开展研究区内的地震滑坡空间分布规律的研究。基于滑坡面与滑坡中心点分别构建滑坡空间分布面积密度图与点密度图,结果表明:滑坡多沿着映秀北川断裂分布,多发生在断裂的上盘。滑坡的高密度区位于映秀北川同震地表破裂的南西段(映秀镇与北川县之间)的上盘区域,这一区域恰对应着逆冲分量为主的断裂上盘,表明逆冲断裂对上盘区域发生滑坡的极强烈的控制作用,而该区域正是形变最大的区域,因此说明是地震滑坡发生的强烈控制作用。基于滑坡面密度(LAP)、滑坡中心点密度(LCND)与滑坡后壁点密度(LTND)这3个衡量指标,使用统计分析方法,评价了汶川地震滑坡与地震参数、地质参数、地形参数的关系。结果表明:LAP、LCND与LTND这3个衡量指标与坡度、地震烈度与PGA存在明显的正相关关系; 与距离震中、距离映秀北川同震地表破裂存在负相关关系; 斜坡曲率越接近0,滑坡越不易发生; LAP、LCND与LTND的高值高程区间为1200~3000m; 滑坡发生的优势坡向为E、SE、S方向; 滑坡发育的易发岩性为砂岩与粉砂岩(Z)、花岗岩; 滑坡与坡位的相关关系不太明显。统计结果还表明LCND与LTND两个衡量指标的差异对地震与地质因子不敏感,而对地形因子较敏感。最后将本文的统计结果与以往的汶川地震滑坡空间分布规律统计成果进行了一些对比,对比结果表明,对于某些因子,如高程、岩性、距离震中、距离映秀北川断裂的统计分析结果,采用不完整的滑坡分布数据或点数据,与采用较完整的滑坡分布面数据会有一定的差异,这种差异并未出现在针对坡度与坡向等因子的统计对比结果中。总之,作者认为一个完备、详细的地震滑坡分布面要素编目图是地震滑坡空间分布规律定量分析、危险性定量分析与滑坡控制的地震区地貌演化研究的重要基础,否则,与实际情况相比,得到统计结果会有一定的偏差,本文的研究成果与以往成果的对比结果证明了这一点。  相似文献   

19.
To investigate the formation mechanism and the stability of Wanjia middle school slope in Wenchuan Earthquake Area, the macroscopic geological characteristics and the failure process of the landslide are researched by engineering geology analysis method, limit equilibrium method, and finit element method. The results show that after the Wenchuan Earthquake, retaining walls, houses and other infrastructure on the foot of Wanjia middle school slope were severely destroyed, 10 cm wide tension fracture appeared at the trailing edge of the slope. Wanjia middle school slope is a type of medium-sized soil landslide. The area of the deformation body is about 19,314 m2, the total volume of the deformation body is about 23 × 104 m3. There may be two potential sliding surfaces in the unstable slope: shallow and deep landslide. The analysis results of the limit equilibrium method and the finite element method show that: under dead weight, dead weight + rainstorm, dead weight + earthquake conditions, the plastic zone occurs mainly at the middle part or the trailing edge of the slope, and it doesn’t fully cut through the deep landslide body, so the deep landslide is stable. However, under rainstorm or earthquake conditions, the plastic zone almost completely cut thorough the shallow landslide body, it shows that the shallow landslide is in the understable–basic stable state. It is found that the results of finite element method is concordant with the results of the limit equilibrium method (F s = 1.06–1.29, the shallow landslide is in the basic stable–stable state). The calculation results show that shallow landslides are likely to occur in Wanjia middle school slope during a rainstorm or an earthquake, so monitoring and control of the slope should be strengthened. The shallow landslide should be managed by some measures, such as anti slide pile retaining structures and drainage works, and the dangerous rock bodies on the slope surface should be cleaned up.  相似文献   

20.
汶川地震发生后,灾区暴雨泥石流活动进入一个新的活跃期。根据对北川震区2008年9月24日暴雨泥石流调查,泥石流流域中地震诱发大量滑坡导致松散物源巨大,泥石流过程的洪峰流量比通常的要大数倍,应用以往泥石流危险范围预测模型进行计算的结果与实际的误差较大。因此,需要建立适用于强震区的泥石流危险范围预测方法。本文以9.24北川暴雨泥石流为典型实例,结合野外调查,利用震后高分辨航空图像和9.24暴雨后SPOT5图像分别提取泥石流发生前流域中滑坡物源储量及发生后形成的堆积扇特征数据,应用多元回归方法建立了汶川震区泥石流危险范围预测模型,该方法可用于估算泥石流最大堆积距离和堆积宽度。验证和应用结果表明:该模型适用于强震区泥石流危险范围的预测,模型方法可为震区重建中安全地段选择和未来地震区风险管理提供重要依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号