首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Due to the particular geographical location and complex geological conditions, the Three Gorges of China suffer from many landslide hazards that often result in tragic loss of life and economic devastation. To reduce the casualty and damages, an effective and accurate method of assessing landslide susceptibility is necessary. Object-based data mining methods were applied to a case study of landslide susceptibility assessment on the Guojiaba Town of the Three Gorges. The study area was partitioned into object mapping units derived from 30 m resolution Landsat TM images using multi-resolution segmentation algorithm based on the landslide factors of engineering rock group, homogeneity, and reservoir water level. Landslide locations were determined by interpretation of Landsat TM images and extensive field surveys. Eleven primary landslide-related factors were extracted from the topographic and geologic maps, and satellite images. Those factors were selected as independent variables using significance testing and correlation coefficient analysis, including slope, profile curvature, engineering rock group, slope structure, distance from faults, land cover, tasseled cap transformation wetness index, reservoir water level, homogeneity, and first and second principal components of the images. Decision tree and support vector machine (SVM) models with the optimal parameters were trained and then used to map landslide susceptibility, respectively. The analytical results were validated by comparing them with known landslides using the success rate and prediction rate curves and classification accuracy. The object-based SVM model has the highest correct rate of 89.36 % and a kappa coefficient of 0.8286 and outperforms the pixel-based SVM, object-based C5.0, and pixel-based SVM models.  相似文献   

2.
基于SVM多类分类的滑坡区域危险性评价方法研究   总被引:6,自引:0,他引:6  
近年来,随着新理论、新技术得发展,提出了许多新模型和方法应用于滑坡区域危险性评价中。支持向量机(support vector machine,SVM)是新一代的学习算法,已有前人利用SVM应用于滑坡灾害预测中。然而大多只是利用了SVM的两分类算法,得到的结果只有稳定不稳定两种.这对滑坡区域评价来说是远远不够的。本文尝试利用SVM的多类分类算法进行滑坡危险性区域评价,取得了较好的结果。  相似文献   

3.
滑坡位移时序预测的核函数构造   总被引:4,自引:4,他引:0  
董辉  傅鹤林  冷伍明 《岩土力学》2008,29(4):1087-1092
获得支持向量机(SVM)背景下滑坡位移时序准确预测的关键,是构造或选择一合适的核函数。通过分析滑坡位移时序曲线特征以及不同类型Mercer核的性质,从基于核函数上的封闭运算角度,构造出支持向量机背景下预测滑坡位移时序的最佳核函数。利用3组不同特征的滑坡位移时序,对构造出的核函数进行性能检验,数值实验表明:对于典型的3组滑坡时序,LPG与MPG核的学习性能要优于简单核,且前者适合复杂位移时序的回归预测,而后者更适合规律性较强的简单时序曲线的建模预测。此外,探讨了这两种核函数下的核参数取值对模型精度的影响。  相似文献   

4.
This study proposed a hybrid modeling approach using two methods, support vector machines and random subspace, to create a novel model named random subspace-based support vector machines (RSSVM) for assessing landslide susceptibility. The newly developed model was then tested in the Wuning area, China, to produce a landslide susceptibility map. With the purpose of achieving the objective of the study, a spatial dataset was initially constructed that includes a landslide inventory map consisting of 445 landslide regions. Then, various landslide-influencing factors were defined, including slope angle, aspect, altitude, topographic wetness index, stream power index, sediment transport index, soil, lithology, normalized difference vegetation index, land use, rainfall, distance to roads, distance to rivers, and distance to faults. Next, the result of the RSSVM model was validated using statistical index-based evaluations and the receiver operating characteristic curve approach. Then, to evaluate the performance of the suggested RSSVM model, a comparison analysis was performed to other existing approaches such as artificial neural network, Naïve Bayes (NB) and support vector machine (SVM). In general, the performance of the RSSVM model was better than the other models for spatial prediction of landslide susceptibility. The AUC results of the applied models are as follows: RSSVM (AUC = 0.857), followed by MLP (AUC = 0.823), SVM (AUC = 0.814) and NB (AUC = 0.783). The present study indicates that RSSVM can be used for landslide susceptibility evaluation, and the results are very useful for local governments and people living in the Wuning area.  相似文献   

5.
由于支持向量机属于黑箱模型,因此在进行模型学习时无法直接对特征进行选择,而决策树模型在递归创建的过程中自身具有一定的特征选择能力。针对岩性分类问题,本文将决策树和支持向量机结合,通过决策树的建立,在考虑特征重要性的前提下,利用树节点的高度对特征进行提取,并将具有更高分类能力的特征送入支持向量机进行岩性分类。结果表明:通过决策树的特征提取,减少了支持向量机模型的输入特征,从而有效控制了模型的复杂度,使得模型更加稳定并具有更高的分类精度,测试集精度能够提升10%以上。  相似文献   

6.
This study compares the predictive performance of GIS-based landslide susceptibility mapping (LSM) using four different kernel functions in support vector machines (SVMs). Nine possible causal criteria were considered based on earlier similar studies for an area in the eastern part of the Khuzestan province of southern Iran. Different models and the resulting landslide susceptibility maps were created using information on known landslide events from a landslide inventory dataset. The models were trained using landslide inventory dataset. A two-step accuracy assessment was implemented to validate the results and to compare the capability of each function. The radial basis function was identified as the most efficient kernel function for LSM with the resulting landslide susceptibility map showing the highest predictive accuracy, followed by the polynomial kernel function. According to the obtained results, it concluded that using SVMs can generally be considered to be an effective method for LSM while it demands careful consideration of kernel function. The results of the present research will also assist other researchers to select the best SVM kernel function to use for LSM.  相似文献   

7.
庞河清  匡建超  王众  刘海松  蔡左花  黄耀综 《物探与化探》2012,36(6):1001-1005,1013
针对低孔、低渗致密储层识别较常规储层难这一问题,首次应用核主成分分析与支持向量机(KPCA-SVM)模型进行储层识别.该模型先通过核主成分分析(KPCA)进行非线性特征参数提取,然后将提取的特征参数作为支持向量机(SVM)的输入变量,最终实现储层识别.由于KPCA-SVM模型集成了核函数、主成分和支持向量分类机的优点,较好地解决非线性小样本的问题,能消除数据之间的噪音,降低维数,而又不缺失有效信息,达到准确快速预测的功能.将该模型应用到新场须二气藏新856井区储层预测中,预测结果验证了本模型的优越性,可作为致密储层预测的可选方法.  相似文献   

8.
Landslide displacement is widely obtained to discover landslide behaviors for purpose of event forecasting. This article aims to present a comparative study on landslide nonlinear displacement analysis and prediction using computational intelligence techniques. Three state-of-art techniques, the support vector machine (SVM), the relevance vector machine (RVM), and the Gaussian process (GP), are comparatively presented briefly for modeling landslide displacement series. The three techniques are discussed comparatively for both fitting and predicting the landslide displacement series. Two landslides, the Baishuihe colluvial landslide in China Three Georges and the Super-Sauze mudslide in the French Alps, are illustrated. The results prove that the computational intelligence approaches are feasible and capable of fitting and predicting landslide nonlinear displacement. The Gaussian process, on the whole, performs better than the support vector machine, relevance vector machine, and simple artificial neural network (ANN) with optimized parameter values in predictive analysis of the landslide displacement.  相似文献   

9.
遥感图像分类是提取图像有效信息过程中重要的一部分,为了探寻最优的分类方法,许多机器学习算法逐步应用于遥感分类中。极限学习机(extreme learning machine,ELM)以其高效、快速和良好的泛化性能在模式识别领域得到广泛应用。本文采用训练速度快、运算量小的极限学习机算法与支持向量机(support vector machines,SVM)算法和最大似然法进行分类对比,对高分辨率遥感图像进行分类,分析极限学习机算法对于遥感图像分类的准确度等性能。选取吉林省长春市部分区域的GF-2遥感数据,将融合后的影像设置为原始数据,利用3种方法进行分类。研究结果表明,极限学习机算法分类图像总体分类精度达到85%以上,kappa系数达到0.718,与其他分类方法相比分类准确度较高,且极限学习机运行时间比支持向量机运行时间约短2 480 s,约为支持向量机运行时间的1/8,因此具有良好的性能和实用价值。  相似文献   

10.
基于正交设计下SVM滑坡变形时序回归预测的超参数选择   总被引:2,自引:0,他引:2  
万智  董辉  刘宝琛 《岩土力学》2010,31(2):503-508
超参数的选择直接影响着支持向量机(SVM)的泛化性能和回归效验,是确保SVM优秀性能的关键。针对超参数穷举搜索方法的难点,从试验设计的角度,提出了正交设计超参选择方法,并分析了基于混合核函数(比单一核函数具有更好的收敛性和模型适应性)SVM各个超参数的取值范围,选定了每个参数的试验水平。通过考虑参数间的正交性和交互性,选取最优超参数组合下的SVM模型。应用该方法,对两种典型滑坡位移时序的SVM建模进行了超参数组合正交优化设计,获得了精度高且泛化性能良好的滑坡预测模型,其试验结果验证了方法的可靠性。正交设计超参选择方法较之其他超参选择法简单实用,其高时效的特点更有助于SVM在实践工程中的良好应用。  相似文献   

11.
Landslide susceptibility assessment using GIS has been done for part of Uttarakhand region of Himalaya (India) with the objective of comparing the predictive capability of three different machine learning methods, namely sequential minimal optimization-based support vector machines (SMOSVM), vote feature intervals (VFI), and logistic regression (LR) for spatial prediction of landslide occurrence. Out of these three methods, the SMOSVM and VFI are state-of-the-art methods for binary classification problems but have not been applied for landslide prediction, whereas the LR is known as a popular method for landslide susceptibility assessment. In the study, a total of 430 historical landslide polygons and 11 landslide affecting factors such as slope angle, slope aspect, elevation, curvature, lithology, soil, land cover, distance to roads, distance to rivers, distance to lineaments, and rainfall were selected for landslide analysis. For validation and comparison, statistical index-based methods and the receiver operating characteristic curve have been used. Analysis results show that all these models have good performance for landslide spatial prediction but the SMOSVM model has the highest predictive capability, followed by the VFI model, and the LR model, respectively. Thus, SMOSVM is a better model for landslide prediction and can be used for landslide susceptibility mapping of landslide-prone areas.  相似文献   

12.
Preparation of landslide susceptibility maps is considered as the first important step in landslide risk assessments, but these maps are accepted as an end product that can be used for land use planning. The main objective of this study is to explore some new state-of-the-art sophisticated machine learning techniques and introduce a framework for training and validation of shallow landslide susceptibility models by using the latest statistical methods. The Son La hydropower basin (Vietnam) was selected as a case study. First, a landslide inventory map was constructed using the historical landslide locations from two national projects in Vietnam. A total of 12 landslide conditioning factors were then constructed from various data sources. Landslide locations were randomly split into a ratio of 70:30 for training and validating the models. To choose the best subset of conditioning factors, predictive ability of the factors were assessed using the Information Gain Ratio with 10-fold cross-validation technique. Factors with null predictive ability were removed to optimize the models. Subsequently, five landslide models were built using support vector machines (SVM), multi-layer perceptron neural networks (MLP Neural Nets), radial basis function neural networks (RBF Neural Nets), kernel logistic regression (KLR), and logistic model trees (LMT). The resulting models were validated and compared using the receive operating characteristic (ROC), Kappa index, and several statistical evaluation measures. Additionally, Friedman and Wilcoxon signed-rank tests were applied to confirm significant statistical differences among the five machine learning models employed in this study. Overall, the MLP Neural Nets model has the highest prediction capability (90.2 %), followed by the SVM model (88.7 %) and the KLR model (87.9 %), the RBF Neural Nets model (87.1 %), and the LMT model (86.1 %). Results revealed that both the KLR and the LMT models showed promising methods for shallow landslide susceptibility mapping. The result from this study demonstrates the benefit of selecting the optimal machine learning techniques with proper conditioning selection method in shallow landslide susceptibility mapping.  相似文献   

13.
基于TM和ETM+影像数据的东沙环礁珊瑚礁监测   总被引:1,自引:0,他引:1  
以东沙环礁为研究区域,选取1999年Landsat-7 ETM+影像数据和2001年、2009年Landsat-5 TM影像数据为主要数据源,应用基于统计学习理论的支持向量机(SVM)分类技术,通过选择训练时间较短的“一对一”SVM方法和RBF核函数,对3个年度的影像数据进行珊瑚礁信息提取。结果表明:2009年东沙环礁珊瑚礁面积为140.93 km2;1999-2009年,东沙环礁珊瑚礁面积减少了17.54 km2,珊瑚礁破碎化、白化现象趋于明显,珊瑚礁退化处于中期阶段。空间分辨率的提高可得到更准确详尽的珊瑚礁信息,尤其对小面积珊瑚礁的信息提取。  相似文献   

14.
基于粗糙集的支持向量机滑坡易发性评价   总被引:4,自引:0,他引:4  
区域滑坡易发性评价对灾害中长期预测预报具有重要意义。以三峡库区秭归至巴东段为研究区,利用粗糙集理论对20个初始评价因子进行属性约简,去掉冗余或干扰信息,得到13个核心评价因子,并以此作为支持向量机的输入特征集,构建支持向量机模型,实现滑坡易发性评价。在易发性分区图中高易发区占8.2%,主要分布在童庄河右岸、归州河沿岸、青干河左岸、树坪至范家坪长江右岸、牛口到东壤口长江左岸和巴东附近;不易发区占 52.7%,主要分布于店子湾至巴东旧城以及远离长江水系及植被覆盖度高的区域。通过验证与分析,粗糙集-支持向量机模型在高中易发区中的预测精度为85.6%,其预测能力优于支持向量机模型;与野外调查对比,预测结果与实际情况吻合较好。研究表明,应用粗糙集和支持向量机相结合进行滑坡易发性评价具有预测能力强、计算效率高等优点。  相似文献   

15.
基于模糊模式识别的支持向量机的回归预测方法   总被引:7,自引:2,他引:7       下载免费PDF全文
尝试把最近发展起来的支持向量机引入水文预测中,建立了支持向量机水文回归预测模型,为小样本情况下水文预测提供一种行之有效的可选择的方法。在此基础上,为了更好地处理水文系统中广泛存在的不确定、模糊信息,进一步把模糊模式识别理论引入支持向量机,提出一种模糊模式识别核函数。该核函数具有更明确合理的物理意义。冰凌预测实例表明了SVM水文回归预测方法及模糊模式识别核函数的有效性和可行性。  相似文献   

16.
The determining of landslide-prone areas in mountainous terrain is essential for land planning and hazard mitigation. In this paper, a comparative study using three statistical models including weight of evidence model (WoE), logistic regression model (LR) and support vector machine method (SVM) was undertaken in the Zhouqu to Wudu segment in the Bailong River Basin, Southern Gansu, China. Six conditionally independent environmental factors, elevation, slope, aspect, distance from fault, lithology and settlement density, were selected as the explanatory variables that may contribute to landslide occurrence based on principal component analysis (PCA) and Chi-square test. The relation between landslide distributions and these variables was analyzed using the three models and the results then used to calculate the landslide susceptibility (LS). The performance of the models was then evaluated using both the highly accurate deformation signals produced by using the Small Baseline Subset Interferometric Synthetic Aperture Radar technique and Receiver Operating Characteristic (ROC) curve. Results show more deformation points in areas with high and very high LS levels, and also more stable points in areas with low and very low LS levels for the SVM model. In addition, the SVM has larger area under the ROC curve. It indicates that the SVM has better prediction accuracy and classified ability. For the interpretability, the WoE derives the class of factors that most contributed to landsliding in the study area, and the LR reveals that factors including elevation, settlement density and distance from fault played major roles in landslide occurrence and distribution, whereas the SVM cannot provide relative weights for the variables. The outperformed SVM could be employed to determine potential landslide zones in the study area. Outcome of this research would provide preliminary basis for general land planning such as choosing new urban areas and infrastructure construction in the future, as well as for landslide hazard mitigation in Bailong River Basin.  相似文献   

17.
如何准确地判识和评价滑坡的稳定性一直是滑坡研究中的关键问题。基于多分类支持向量机的基本理论,利用三峡库区的37个典型滑坡(27个训练样本,10个测试样本),建立了滑坡稳定性判识的多分类支持向量机模型,并与距离判别分析方法进行了比较。结果表明,SVM模型对测试样本和训练样本的判识准确率均达到100%,而距离判别法对测试样本和训练样本的判识准确率分别为80%和77.8%,前者的判识精度明显优于后者。在此基础上,将SVM模型运用于溪洛渡库区牛滚凼滑坡的稳定性判识中,结果与实际情况吻合较好。  相似文献   

18.
基于支持向量机分类算法的湖泊水质评价研究   总被引:11,自引:1,他引:10  
支持向量机(SVM)是由Vapnik等人提出的建立在统计学习理论基础上的一种小样本机器学习方法,最初用于解决二分类问题。由于使用结构风险最小化原则代替经验风险最小化原则,使它较好地解决了小样本情况下的学习问题。又由于采用了核函数思想,使它将非线性问题转化为线性问题来解决,降低了算法的复杂度。利用支持向量机多类分类算法,构建湖泊水环境评价模型。实验结果表明,该方法能够正确地对湖泊水环境质量进行分类评价。  相似文献   

19.
基于灰色关联度模型的区域滑坡敏感性评价   总被引:2,自引:0,他引:2       下载免费PDF全文
数理统计和机器学习模型如支持向量机(support vector machine,SVM)等,在区域滑坡敏感性评价中得到广泛的应用.但这些模型的建模过程往往较复杂,如在对机器学习进行训练和测试时难以选取合理的非滑坡栅格单元,而且有较多的模型参数需要确定.为提高滑坡敏感性评价建模的效率和精度,提出基于灰色关联度的敏感性评价模型.灰色关联度模型能有效计算各比较样本与参考样本之间的定量的关联度,具有建模过程简洁和评价精度高的优点,该模型目前在区域滑坡敏感性评价中的应用还没有引起研究人员的足够关注且有待进一步拓展.拟将灰色关联度模型用于浙江省飞云江流域南田—雅梅图幅(南田地区)的滑坡敏感性评价,并将得到的评价结果与SVM模型的敏感性评价结果作对比分析.结果显示,灰色关联度模型在高和极高敏感区的滑坡预测精度优于SVM模型,而在中等敏感区的滑坡预测精度略低于SVM模型;整体而言,灰色关联度模型对整个南田地区滑坡敏感性分布的预测精度略高于SVM模型.对两个模型建模过程的对比结果显示,灰色关联度模型建模较简单,具有比SVM模型更高的建模效率,为滑坡敏感性评价提供了一种新思路.  相似文献   

20.
Landslide identification is critical for risk assessment and mitigation.This paper proposes a novel machinelearning and deep-learning method to identify natural-terrain landslides using integrated geodatabases.First,landslide-related data are compiled,including topographic data,geological data and rainfall-related data.Then,three integrated geodatabases are established;namely,Recent Landslide Database(Rec LD),Relict Landslide Database(Rel LD)and Joint Landslide Database(JLD).After that,five machine learning and deep learning algorithms,including logistic regression(LR),support vector machine(SVM),random forest(RF),boosting methods and convolutional neural network(CNN),are utilized and evaluated on each database.A case study in Lantau,Hong Kong,is conducted to demonstrate the application of the proposed method.From the results of the case study,CNN achieves an identification accuracy of 92.5%on Rec LD,and outperforms other algorithms due to its strengths in feature extraction and multi dimensional data processing.Boosting methods come second in terms of accuracy,followed by RF,LR and SVM.By using machine learning and deep learning techniques,the proposed landslide identification method shows outstanding robustness and great potential in tackling the landslide identification problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号