首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intra-seasonal drought episodes (extreme dry spells) are strongly linked to crop yield loss in the West African Sahel, especially when they occur at crop critical stages such as juvenile or flowering stage. This paper seeks to expose potentially predictable features in the sub-seasonal to inter-annual occurrence of “extreme dry spells” (extDS) through their links to sea surface temperature anomalies (SSTAs). We consider two kinds of extreme dry spells: more than 2 weeks of consecutive dry days following a rain event (often found at the beginning of the rainy season, after the first rain events) and more than a week (observed towards the end of the rainy season, before the last rain events). We extract dry spells from daily rainfall data at 43 stations (31 stations in Senegal over 1950–2010 and 12 stations in Niger over 1960–2000) to identify the intra-seasonal distribution of extDS and their significant correlation with local rainfall deficits. Seasonality of distribution and high spatial coherence are found in the timing and the frequency of occurrence of extDS in different rainfall regions over Niger and Senegal. The correlation between the regional occurrence index (ROI), necessary to capture the spatial extent of extDS, and observed global sea surface temperature anomalies (SSTAs) sheds light on the influence of the external factors on the decadal, interannual and sub-seasonal variability of extDS over the West African Sahel. When the global tropics and the Atlantic are warmer than normal, more coherent and delayed June–July extDS are observed after onset of rainy season, as well as early cessation type in August–September. When the Indo-Pacific is cooler and the equatorial south Atlantic is warmer than normal little to no extDS are found in the onset sub-period of the monsoon season. Mostly late types of extDS occur in October as a result of late cessation. These results show potential predictability of extreme dry spells after onset and before cessation of monsoonal rain based on global patterns of sea surface temperature anomalies.  相似文献   

2.
This study aims to trace changes in the dry spells over Peninsular Malaysia based on the daily rainfall data from 36 selected rainfall stations which include four subregions, namely northwest, west, southwest, and east for the periods of 1975 to 2004. Six dry spell indices comprising of the main characteristics of dry spells, the persistency of dry events, and the frequency of the short and long duration of dry spells will be used to identify whether or not these indices have increased or decreased over Peninsular Malaysia during the monsoon seasons. The findings of this study indicate that the northwestern areas of the Peninsular could be considered as the driest area since almost all the indices of dry spells over these areas are higher than in the other regions during the northeast (NE) monsoon. Based on the individual and the field significant trends, the results of the Mann–Kendall test indicate that as the total number of dry days, the maximum duration, the mean, and the persistency of dry days are decreased, the trend of the frequency of long dry spells of at least 4 days is also found to decrease in almost all the stations over the Peninsula; however, an increasing trend is observed in the frequency of short spells in these stations during the NE monsoon season. On the other hand, during the southwest monsoon, a positive trend is observed in the characteristics of dry spells including the persistency of two dry days in many stations over the Peninsula. The frequency of longer dry periods exhibits a decreasing trend in most stations over the western areas during both monsoon seasons for the periods of 1975 to 2004.  相似文献   

3.
Changes in the persistence of dry and wet periods are of particular interest for many sectors, as long-term deviations from normal precipitation strongly affect the water availability. Here, an indicator is introduced to explore variability and trends of long-lasting dry and wet periods by using decile based thresholds. The test of three different thresholds for ending those periods revealed only slight influences of the chosen threshold on the spatiotemporal pattern and trends. The methodology of the deciles indicator is illustrated and studied exemplarily for a spatially highly resolved data set for Saxony, Germany within 1901–2010. Within that region decile wet and dry periods, respectively, occur approximately four times within 10 years, last on average 11 months and cover on average more than 35 % of the stations. Several years to decades long periods with particularly frequent and/or long decile dry or wet periods were identified. The computed trends strongly depend upon the analysis period, as frequency, duration and spatial coverage of decile periods show strong variations up to multi-decadal time scales. Nonetheless, there is some indication that dry period coverage increased within the 20th century, while wet period coverage decreased. However, in the most recent decades the long-term trends reversed.  相似文献   

4.
Precise specification of the vertical distribution of cloud optical properties is important to reduce the uncertainty in quantifying the radiative impacts of clouds. The new global observations of vertical profiles of clouds from the CloudSat mission provide opportunities to describe cloud structures and to improve parameterization of clouds in the weather and climate prediction models. In this study, four years (2007–2010) of observations of vertical structure of clouds from the CloudSat cloud profiling radar have been used to document the mean vertical structure of clouds associated with the Indian summer monsoon (ISM) and its intra-seasonal variability. Active and break monsoon spells associated with the intra-seasonal variability of ISM have been identified by an objective criterion. For the present analysis, we considered CloudSat derived column integrated cloud liquid and ice water, and vertically profiles of cloud liquid and ice water content. Over the South Asian monsoon region, deep convective clouds with large vertical extent (up to 14 km) and large values of cloud water and ice content are observed over the north Bay of Bengal. Deep clouds with large ice water content are also observed over north Arabian Sea and adjoining northwest India, along the west coast of India and the south equatorial Indian Ocean. The active monsoon spells are characterized by enhanced deep convection over the Bay of Bengal, west coast of India and northeast Arabian Sea and suppressed convection over the equatorial Indian Ocean. Over the Bay of Bengal, cloud liquid water content and ice water content is enhanced by ~90 and ~200 % respectively during the active spells. An interesting feature associated with the active spell is the vertical tilting structure of positive CLWC and CIWC anomalies over the Arabian Sea and the Bay of Bengal, which suggests a pre-conditioning process for the northward propagation of the boreal summer intra-seasonal variability. It is also observed that during the break spells, clouds are not completely suppressed over central India. Instead, clouds with smaller vertical extent (3–5 km) are observed due to the presence of a heat low type of circulation. The present results will be useful for validating the vertical structure of clouds in weather and climate prediction models.  相似文献   

5.
The purpose of this paper is to analyze the trends and variability in extreme temperature indices and its impact on rice–wheat productivity over two districts of Bihar, India, which is part of the middle Indo-Gangetic Basin. Mann–Kendall non-parametric test was employed for detection of trend and Sen slope was determined to quantify the magnitude of such trends. We have analyzed 10 extreme temperature indices for monthly and seasonally. The influence of extreme temperature indices on rice–wheat productivity was determined using correlation analysis. As far as Patna is concerned, if the number of cool days during September ≥10, the rice productivity will increase due to the availability of sufficient duration to fill up the grain. However, higher warm days during all the months except June will affect the productivity. A significant negative correlation was noticed between maximum value of minimum temperature during September and rice productivity. Highly significant positive correlation was noticed between number of cool days during September with rice productivity while it was highly significant negative correlation in the case of number of warm days during the same month. As far as Samastipur is concerned, a negative correlation was noticed between wheat productivity and maximum value of maximum temperature (TXx) during February, but not statistically significant. The higher temperature may affect the kernel weight and thereby yield. It is seen that a critical value of TXx ≥29.2 °C will be harmful to wheat crop during February. A significant positive correlation of number of cool nights with wheat productivity also supports the above relationship. The critical values of extreme temperature indices during rice and wheat growing months provide an indicator to assess the vulnerability of rice–wheat productivity to temperature for Patna and Samastipur districts and there is a need to prepare an adaptive strategy and also develop thermo-insensitive rice–wheat high yielding varieties suitable for this region to sustain rice–wheat productivity under projected climate change situation.  相似文献   

6.
Jharkhand is one of the eastern states of India which has an agriculture-based economy. Uncertain and erratic distribution of precipitation as well as a lack of state water resources planning is the major limitation to crop growth in the region. In this study, the spatial and temporal variability in precipitation in the state was examined using a monthly precipitation time series of 111 years (1901–2011) from 18 meteorological stations. Autocorrelation and Mann–Kendall/modified Mann–Kendall tests were utilized to detect possible trends, and the Theil and Sen slope estimator test was used to determine the magnitude of change over the entire time series. The most probable change year (change point) was detected using the Pettitt–Mann–Whitney test, and the entire time series was sub-divided into two parts: before and after the change point. Arc-Map 9.3 software was utilized to assess the spatial patterns of the trends over the entire state. Annual precipitation exhibited a decreasing trend in 5 out of 18 stations during the whole period. For annual, monsoon and winter periods of precipitation, the slope test indicated a decreasing trend for all stations during 1901–2011. The highest variability was observed in post-monsoon precipitation (77.87 %) and the lowest variability was observed in the annual series (15.76 %) over the 111 years. An increasing trend in precipitation in the state was found during the period 1901–1949, which was reversed during the subsequent period (1950–2011).  相似文献   

7.
Climate change interacts with social, economic, and political forces in ways that can shape demographic behavior. Yet, the link between environmental stress and marriage has received limited attention. Using survey data from 615 Bangladeshi households, we examine the relationship between extreme weather in the form of heat waves and dry spells, and the risk of marriage over the period from 1989 to 2013. We find that girls and women are at an increased risk of marrying in the year of or following heat waves. The link is strongest for women aged 18 to 23, and weakest for those 11 to 14. We also explore the hypothesis that extreme weather leads families to accept less desirable marriage proposals for daughters. We find that those who wed during periods of extreme heat married into poorer households and to husbands with less education. Similarly, those who married during abnormally dry periods married men man with less education and who were more supportive of intimate partner violence. Together these results suggest that, when Bangladeshi families face environmental shocks, they cope by hastening the marriage of daughters or accepting less desirable marriage proposals. Such practices are likely to have long-term impacts on the health and well-being of women and children, and underscore the unique vulnerabilities faced by women as climate change intensifies.  相似文献   

8.
Thirty-two weather diaries written in astronomical calendars in central Europe in the late fifteenth and sixteenth centuries are presented and discussed. Systematic weather observations were promoted by the rise of planetary astronomy and its application in astro-meteorology. The practice of keeping weather diaries spread from Cracow (Poland) to Ingolstadt (Germany) and from there to other universities. The data obtained from these sources provided the backbone for setting up series of precipitation indices for Poland, Germany and Switzerland. Monthly statistics of days with precipitation, snowfall and frost were computed by counting the relevant entries in the most important diaries. The results were compared with either those obtained from instrumental measurements in the same place or with those from modern instrumental measurements in a neighbouring place. The final results show that autumn was considerably colder in the early sixteenth century. April was considerably drier and July was wetter during the period 1508-1531 than during 1901-1960. In order to highlight the impact of weather patterns on grain prices in a year of crisis, the timing of wet and dry spells in southern Poland and southern Germany is compared for the year 1529. Winters became 1.7°C colder from 1564 to 1576 and the month of July tended to be wetter than in 1901-1960. Details noted in the diaries kept between 1585 and 1600 by the astronomers Brahe (near Copenhagen) and Fabricius (in the Ostfriesland region of northwestern Germany) closely agree. It rained more often in June and July and temperatures dropped. The winter months were more frequently dominated by winds from easterly directions, the frequency of snowfall was higher and a deficit occurred in precipitation. This points to a higher frequency of high pressure in the Fennoscandian area with cold air advection from the east or northeast.  相似文献   

9.
We present the first tree-ring based reconstruction of rainfall for the Lake Tay region of southern Western Australia. We examined the response of Callitris columellaris to rainfall, the southern oscillation index (SOI), the southern annular mode (SAM) and surface sea temperature (SST) anomalies in the southern Indian Ocean. The 350-year chronology was most strongly correlated with rainfall averaged over the autumn-winter period (March–September; r = ?0.70, < 0.05) and SOI values averaged over June–August (r = 0.25, < 0.05). The chronology was not correlated with SAM or SSTs. We reconstructed autumn-winter rainfall back to 1655, where current and previous year tree-ring indices explained 54% of variation in rainfall over the 1902–2005 calibration period. Some variability in rainfall was lost during the reconstruction: variability of actual rainfall (expressed as normalized values) over the calibration period was 0.78, while variability of the normalized reconstructed values over the same period was 0.44. Nevertheless, the reconstruction, combined with spectral analysis, revealed that rainfall naturally varies from relatively dry periods lasting to 20–30 years to 15-year long periods of above average rainfall. This variability in rainfall may reflect low-frequency variation in the El Niño-Southern Oscillation rather than the effect of SAM or SSTs.  相似文献   

10.
Extreme weather conditions can strongly affect agricultural production, with negative impacts that can at times be detected at regional scales. In France, crop yields were greatly influenced by drought and heat stress in 2003 and by extremely wet conditions in 2007. Reported regional maize and wheat yields where historically low in 2003; in 2007 wheat yields were lower and maize yields higher than long-term averages. An analysis with a spatial version (10?×?10?km) of the EPIC crop model was tested with regards to regional crop yield anomalies of wheat and maize resulting from extreme weather events in France in 2003 and 2007, by comparing simulated results against reported regional crops statistics, as well as using remotely sensed soil moisture data. Causal relations between soil moisture and crop yields were specifically analyzed. Remotely sensed (AMSR-E) JJA soil moisture correlated significantly with reported regional crop yield for 2002–2007. The spatial correlation between JJA soil moisture and wheat yield anomalies was positive in dry 2003 and negative in wet 2007. Biweekly soil moisture data correlated positively with wheat yield anomalies from the first half of June until the second half of July in 2003. In 2007, the relation was negative the first half of June until the second half of August. EPIC reproduced observed soil dynamics well, and it reproduced the negative wheat and maize yield anomalies of the 2003 heat wave and drought, as well as the positive maize yield anomalies in wet 2007. However, it did not reproduce the negative wheat yield anomalies due to excessive rains and wetness in 2007. Results indicated that EPIC, in line with other crop models widely used at regional level in climate change studies, is capable of capturing the negative impacts of droughts on crop yields, while it fails to reproduce negative impacts of heavy rain and excessively wet conditions on wheat yield, due to poor representations of critical factors affecting plant growth and management. Given that extreme weather events are expected to increase in frequency and perhaps severity in coming decades, improved model representation of crop damage due to extreme events is warranted in order to better quantify future climate change impacts and inform appropriate adaptation responses.  相似文献   

11.
Sahelian rainfall has recorded a high variability during the last century with a significant decrease (more than 20 %) in the annual rainfall amount since 1970. Using a linear regression model, the fluctuations of the annual rainfall from the observations over Burkina Faso during 1961–2009 period are described through the changes in the characteristics of the rainy season. The methodology is then applied to simulated rainfall data produced by five regional climate models under A1B scenario over two periods: 1971–2000 as reference period and 2021–2050 as projection period. As found with other climate models, the projected change in annual rainfall for West Africa is very uncertain. However, the present study shows that some features of the impact of climate change on rainfall regime in the region are robust. The number of the low rainfall events (0.1–5 mm/d) is projected to decrease by 3 % and the number of strong rainfall events (>50 mm/d) is expected to increase by 15 % on average. In addition, the rainy season onset is projected by all models to be delayed by one week on average and a consensus exists on the lengthening of the dry spells at about 20 %. Furthermore, the simulated relationship between changed annual rainfall amounts and the number of rain days or their intensity varies strongly from one model to another and some changes do not correspond to what is observed for the rainfall variability over the last 50 years.  相似文献   

12.
Ethiopian decadal climate variability is characterized by application of singular value decomposition to gridded rainfall data over the period 1901–2007. Two distinct modes are revealed with different annual cycles and opposing responses to regional and global forcing. The northern zone that impacts the Nile River and underlies the tropical easterly jet has a unimodal rainy season that is enhanced by Atlantic Multidecadal Oscillation warm phase. This rainfall mode is linked with the Atlantic zonal overturning circulation and exhibits 10–12-year cycles through much of the twentieth century. The southern zone has a bimodal rainy season that is enhanced by Pacific Decadal Oscillation cool phase and the southern meridional overturning circulation. Multiyear wet and dry spells are characterized by sympathetic responses in the near-equatorial trough extending from Central America across the African Sahel to Southeast Asia. The interaction of Walker and Hadley cells over Africa appears to be a key feature that modulates Ethiopian climate at decadal frequency through anomalous north–south displacement of the near-equatorial trough.  相似文献   

13.
Climate change caused by anthropogenic activities has generated a variety of research focusing on investigating the past climate, predicting the future climate and quantifying the change in climate extreme events by using different climate models. Climate extreme events are valuable to evaluate the potential impact of climate change on human activities, agriculture and economy and are also useful to monitor the climate change on global scale. Here, a Regional Climate Model (RCM) simulation is used to study the future variations in the temperature extreme indices, particularly change in frequency of warm and cold spells duration over Pakistan. The analyses are done on the basis of simulating two 30 years simulations with the Hadley Center’s RCM PRECIS, at a horizontal resolution of 50 km. Simulation for the period 1961–1990 represents the recent climate and simulation for the period 2071–2100 represents the future climate. These simulations are driven by lateral boundary conditions from HadAM3P GCM of Hadley centre UK. For the validation of model, observed mean, maximum and minimum temperatures for the period 1961–1990 at all the available stations in Pakistan are first averaged and are then compared with the PRECIS averaged grid-box data. Also the observed monthly gridded data set of Climate Research Unit (UK) data is used to validate the model. Temperature indices in the base period as well as in future are then calculated and the corresponding change is observed. Percentile based spatial change of temperature shows that in summer, increase in daily minimum temperature is more as compared to the increase of daily maximum temperature whereas in winter, the change in maximum temperature is high. The occurrence of annual cold spells shows significantly decreasing trend while for warm spells there is slight increasing trend over Pakistan.  相似文献   

14.
The North Western Mediterranean basin (NWMB) is characterised by a highly complex topography and an important variability of temperature and precipitation patterns. Downscaling techniques are required to capture these features, identify the most vulnerable areas to extreme changes and help decision makers to design strategies of mitigation and adaptation to climate change. A Regional Climate Model, WRF-ARW, is used to downscale the IPCC-AR4 ECHAM5/MPI-OM General Circulation Model results with high resolution (10 km), considering three different emissions scenarios (B1, A1B and A2) for 2001–2050. Model skills to reproduce observed extremes are assessed for a control period, 1971–2000, using the ERA40 reanalysis to drive the WRF-ARW simulations. A representative set of indices for temperature and precipitation extremes is projected. The modelling system correctly reproduces amplitude and frequency of extremes and provides a high degree of detail on variability over neighbouring areas. However, it tends to overestimate the persistence of wet events and consequently slightly underestimate the length of dry periods. Drier and hotter conditions are generally projected for the NWMB, with significant increases in the duration of droughts and the occurrence of heavy precipitation events. The projected increase in the number of tropical nights and extreme temperatures could have a negative effect on human health and comfort conditions. Simulations allow defining specifically vulnerable areas, such as the Ebro Valley or the Pyrenees, and foreseeing impacts on socio-economic activities in the region.  相似文献   

15.
We assess the likely changes in climate extremes under enhanced greenhouse gases over the southern extratropics, with emphasis in southern South America and sub-Antarctic seas, through the analysis of extreme indices measured from models participating in the IPCC 4th Assessment Report. We discuss how the anthropogenic climate change under A1B scenario influences both the patterns of mean change of extreme indices and the likelihood of occurrence of severe extreme indices. The likelihood of occurrence of a year with a large number of days with “warm” minimum temperatures is estimated to increase by a factor of 4 by the end of this century over most of the southern extratropics. By that time, the risk of “severe” precipitation intensity is projected to rise in most areas with the exception of the subtropical anticyclones, which experience particularly strong drying. Over the Southern Ocean this likelihood has increased to over 60%. Corresponding estimates of the changing likelihood for very long dry spells show a banded structure with positive ratios to the north of about 50° S and negative ratios in the sub Antarctic seas. In southern South America this risk about doubled between present and future climates. Then, we explore if the Southern Annular Mode influences the occurrence of severe extreme indices during the period 2070–2099. Its positive phase inhibits the extremely warm minimum temperatures in the Southern Ocean, with the exception of the eastern Bellingshausen Sea, and favors severe frost days to the north of the Ross Sea. Temperature indices show very little change induced by the SAM to the north of 50° S. Severe dry spells are inhibited during the positive phase along the sub Antarctic seas, while the mid-latitudes, including most of Patagonia, show the opposite behaviour. The Southern Ocean reveals a non-uniform distribution with both increases and decreases in the occurrence of heavier precipitation during positive SAM.  相似文献   

16.
In this paper, we used the Outgoing Longwave Radiation (OLR) data to compare the intraseasonal atmospheric variability patterns over Central Africa, during the last three decades. The spectral analysis indicates that for the three decades, the intraseasonal variability is dominated by 20–80 days periods band with the center near 40–50 days. The results of Empirical Orthogonal Functions (EOFs) analysis have shown that the amount of variance explained by the three retained EOFs are 41.6 % for 1981–1990, 44.2 % for 1991–2000 and 42.6 % for 2001–2010. For the three decades, the three leading EOFs retained exhibit high spatial loadings over Northern Congo, Southern Ethiopia, and Southwestern Tanzania. The power spectra of the leading principal components have their peaks near 40 days for the three decades, indicating MJO signal. The PCs time series revealed that the amplitude of intraseasonal oscillations (ISO) globally decreases from decade to another. The plot of ISO and El Niño-Southern Oscillation (ENSO) indices revealed that the lowest values of ISO strength generally correspond to the relatively large values of ENSO indices and inversely. The mean ISO strength and ISO fluctuations were highest during 1981–1990, and this period also corresponds to the highest fluctuations of ENSO signal.  相似文献   

17.
A variable resolution version of the global GCM ARPEGE is constructed, so that Morocco has maximum resolution. A 30-year simulation, driven by observed sea surface temperature 1971–2000, is carried out. This paper examines the precipitation over northern Morocco during the extended winter season (from October to March), comparing model simulations with daily values at 14 stations. An approach utilising weather regimes has been adopted. The model is successful in representing the frequency and the interannual variability of the regimes. The precipitation over Morocco differs from one regime to another, but the model is not enough rainy along the Atlantic coast in general. The model is too persistent with too long dry spells, but is able to produce heavy rainfall as well as long dry periods in the centre of the area.  相似文献   

18.
The boreal summer intraseasonal oscillation (BSISO) of the Asian summer monsoon (ASM) is one of the most prominent sources of short-term climate variability in the global monsoon system. Compared with the related Madden-Julian Oscillation (MJO) it is more complex in nature, with prominent northward propagation and variability extending much further from the equator. In order to facilitate detection, monitoring and prediction of the BSISO we suggest two real-time indices: BSISO1 and BSISO2, based on multivariate empirical orthogonal function (MV-EOF) analysis of daily anomalies of outgoing longwave radiation (OLR) and zonal wind at 850 hPa (U850) in the region 10°S–40°N, 40°–160°E, for the extended boreal summer (May–October) season over the 30-year period 1981–2010. BSISO1 is defined by the first two principal components (PCs) of the MV-EOF analysis, which together represent the canonical northward propagating variability that often occurs in conjunction with the eastward MJO with quasi-oscillating periods of 30–60 days. BSISO2 is defined by the third and fourth PCs, which together mainly capture the northward/northwestward propagating variability with periods of 10–30 days during primarily the pre-monsoon and monsoon-onset season. The BSISO1 circulation cells are more Rossby wave like with a northwest to southeast slope, whereas the circulation associated with BSISO2 is more elongated and front-like with a southwest to northeast slope. BSISO2 is shown to modulate the timing of the onset of Indian and South China Sea monsoons. Together, the two BSISO indices are capable of describing a large fraction of the total intraseasonal variability in the ASM region, and better represent the northward and northwestward propagation than the real-time multivariate MJO (RMM) index of Wheeler and Hendon.  相似文献   

19.
Spatial and temporal analysis of dry spells in Croatia   总被引:3,自引:1,他引:2  
Systematic statistical analysis of dry day sequences, which are defined according to 0.1, 1, 5 and 10 mm of precipitation-per-day thresholds, is performed on seasonal and yearly basis. The data analysed come from 25 Croatian meteorological stations and cover the period 1961–2000. Climatological features of the mean and maximum dry spell durations, as well as the frequency of long dry spells (>20 days) are discussed. The results affirm the three main climatological regions in Croatia, with the highlands exhibiting shorter dry spells than the mainland, and the coastal region exhibiting longer dry spells. The prevailing positive trend of both mean and maximal durations is detected during winter and spring seasons, while negative trend dominate in autumn for all thresholds. Positive field significant trends of mean dry spell duration with 5 and 10 mm thresholds are found during spring and the same is valid for annual maximum dry spell duration with a 10 mm threshold. It is found that the Discrete Autoregressive Moving Average (DARMA(1,1)) model can be used to estimate the probabilities of dry spells in Croatia that are up to 20–30 days long.  相似文献   

20.
Spatial and temporal precipitation variability in Chhattisgarh State in India was examined by using monthly precipitation data for 102 years (1901–2002) from 16 stations. The homogeneity of precipitation data was evaluated by the double-mass curve approach and the presence of serial correlation by lag-1 autocorrelation coefficient. Linear regression analysis, the conventional Mann–Kendall (MK) test, and Spearman’s rho were employed to identify trends and Sen’s slope to estimate the slope of trend line. The coefficient of variation (CV) was used to analyze precipitation variability. Spatial interpolation was done by a Kriging process using ArcGIS 9.3. Results of both parametric and non-parametric tests and trend tests showed that at 5 % significance level, annual precipitation exhibited a decreasing trend at all stations except Bilaspur and Dantewada. For both annual and monsoon precipitation, Sen’s test showed a decreasing trend for all stations, except Bilaspur and Dantewada. The highest percentage of variability was observed in winter precipitation (88.75 %) and minimum percentage variability in annual series (14.01 %) over the 102-year periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号