首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
全球卫星导航系统(global navigation satellite system,GNSS)星载原子钟性能的优劣直接影响GNSS观测信号质量、测距精度、钟差预报与卫星自主导航能力,从而间接影响整个导航系统的服务性能。结合北斗三号系统独特的星间链路(inter-satellite link, ISL)和星地时间双向比对(two-way time transfer,TWTT)体制以及常用的精密轨道与钟差确定(orbit determination and time synchronization,ODTS)体制所估计的精密钟差数据,分析评估了北斗三号在轨原子钟服务性能。结果表明,3种钟差确定体制评估的频率准确度和漂移率结果基本一致,所有卫星频率准确度在(-4~2)×10-11范围以内,氢钟频率准确度优于铷钟,ISL钟差评估的频率漂移率精度略优于ODTS。在评估原子钟稳定度方面,3种钟差确定体制各有优势,短期稳定度方面,ODTS钟差评估优于ISL钟差,基于ODTS评估的3 000 s稳定度可达3×10-14,且氢钟的短期稳定性优于铷钟;中长期...  相似文献   

2.
北斗卫星导航系统作为复杂巨系统,需要科学、完整、高效的时频体系总体设计与工程实现。北斗三号系统的时频体系设计首先通过基于星间链路实现星载钟之间的比对与时间同步,基于星地时间比对链路实现主控站与卫星间的星地时间比对与精密同步,基于卫星双向、地面有线双向时间比对链路实现主控站各分系统之间的比对与精密同步,同时基于组合钟组和综合原子时等方法生成北斗系统时间(Bei Dou system time,BDT),从而实现北斗系统内的时间建立、保持与同步。然后,通过直接或间接的溯源比对以及时差监测,实现BDT与其他导航系统时间基准的统一。北斗三号卫星信号的长期监测数据表明,BDT天稳定度达到4.6×10-15,星载钟本地时间准确度达到1.25×10-11,星载钟万秒稳定度达到1.65×10-14,同时BDT相对于其他卫星导航系统的时差保持在50 ns以内。经系统运行检验与监测评估,证明北斗三号系统时频体系功能完备、组织架构科学、体系指标先进,能够全面支撑北斗三号的全球服务能力。  相似文献   

3.
在GNSS高精度数据处理中,卫星钟差往往是决定结果精度的核心因素之一。采用20 Hz的双频观测数据对GNSS星载原子钟0.05~100 s平滑时间下的短期稳定性进行分析,通过星间单差的方法消除接收机钟差,采用无电离层组合及夜间观测避免电离层高阶项短期变化的影响,同时采用经验模型和映射函数来进行对流层延迟改正。通过Lag 1自相关函数分析了影响GNSS卫星钟稳定性的主要噪声类型,并使用阿伦方差计算分析GPS、GLONASS及BDS各自系统内不同卫星组合之间的钟差。结果表明,GPS、GLONASS及BDS系统钟差稳定性0.05秒稳均可达到10-10量级,秒稳可达10-11量级。可以认定,GPS、GLONASS及BDS在短期内的稳定性量级相当,从而验证了基于星间单差的BDS掩星数据处理方案的可行性。  相似文献   

4.
在没有外部溯源链路,利用氢钟铯钟联合守时的情况下,针对注重短期稳定度的场合,加权平均算法分配铯钟权重较小,不能充分发挥铯钟长期稳定度的问题,论文提出一种两级卡尔曼滤波算法生成本地原子时:第一级卡尔曼滤波利用铯钟长期稳定度好的特性,计算氢钟的频漂并且对氢钟频漂校准,第二级基于频漂校准后的氢钟和铯钟数据采用单状态变量的卡尔曼滤波算法生成本地原子时. 实验结果表明,算法生成的原子时在保持短期稳定度的前提下,长期稳定度得到一定提升:十天稳的提升在10-15量级,月稳的提升在10-14量级. 说明论文所提出的算法生成的本地原子时长期稳定度更好.   相似文献   

5.
共同跟踪技术10倍地改进了GPS与GLONASS接收机的跟踪能力。改进的基础是同时用两种类型的锁相环(PLL)。第一种PLL跟踪接收机视在动力学特性(包括接收机的运动和内部振荡器),这一PLL利用的是所有可见卫星的总功率,具有20Hz左右的宽带宽。第二种锁相环是专门为跟踪某一颗卫星的动力学而设计的。这些单独的环路具有比较窄的带宽(约2Hz)。这样的两种环路的组合,既能改进跟踪能力,同时又能降低测量噪声(10倍)。  相似文献   

6.
针对长基线定位中电离层延迟对定位精度造成的影响,本文提出了一种基于BDS-3四频信号(B1C/B1I/B2a/B3I)的四频消电离层(IF)组合方法,采用消电离层组合观测值消除电离层延迟误差,联合模糊度改正后的超宽巷或宽巷组合观测值构建定位方程,从而实现原始窄巷模糊度和基线位置坐标的解算。试验采用BDS-3四频数据对四频IF组合方法和基于GB-FCAR模型的电离层延迟参数估计方法的定位精度进行对比分析。结果表明,在对长度超过500 km的长基线进行定位解算时,四频IF组合方法可以实现电离层延迟误差消除。与电离层延迟参数估计方法相比,四频IF组合方法水平和垂直方向的定位精度均达分米级,提升幅度分别达35%和40%以上,定位精度显著提高,其相对定位精度可达1×10-9 m,满足长基线相对定位的要求。  相似文献   

7.
不同卫星导航系统之间时差的稳定性分析对时差的建模预报及应用具有重要价值, 因此基于由国际GNSS服务(IGS)中心提供的数据和产品从不同测站、不同观测量、不同时间长度三个方面对GPS和北斗三号全球卫星导航系统(BDS-3)的系统时差进行稳定性分析. 结果表明:不同测站因接收机、天线、时钟三种设备型号不同,提取的时差值存在差异,但稳定性相当;基于载波相位观测量解算的时差结果稳定性优于伪距观测量解算的时差结果,伪距得到的时差结果万秒频率稳定度在10?12~10?13量级,相位得到的时差结果万秒频率稳定度在10?14量级;通过单天与多天数据的时差解算结果比较,得到不同时长的时差稳定性一致.   相似文献   

8.
在进行GPS/GLONASS联合卫星钟差估计时,GLONASS码频间偏差(inter-frequency bias,IFB)因卫星频率间的差异而无法被测站接收机钟差参数吸收,其一部分将进入GLONASS卫星钟差估值中。通过引入多个"时频偏差"参数(inter-system and inter-frequency bias,ISFB)及附加基准约束对测站GLONASS码IFB进行函数模型补偿,实现其与待估卫星钟差参数的有效分离,并对所估计实时卫星钟差和实时精度单点定位(real-time precise point positioning,RT-PPP)进行精度评估。结果表明,在卫星钟差估计观测方程中忽略码IFB,会明显降低GLONASS卫星钟差估值精度;新方法能有效避免码IFB对卫星钟差估值的影响,所获得GPS、GLONASS卫星钟差与ESA(European Space Agency)事后精密钟差产品偏差平均均方根值分别小于0.2 ns、0.3 ns。利用实时估计卫星钟差进行静态RT-PPP,当观测时段长为2 h时,GPS单系统、GPS/GLONASS组合系统的3D定位精度优于10 cm,GLONASS单系统3D定位精度约为15 cm;三种模式24 h单天解的3D定位精度均优于5 cm。  相似文献   

9.
GPS/INS组合导航系统时间同步方法研究   总被引:1,自引:0,他引:1  
在设计和实现GPS/INS组合导航系统时,各子系统的时间同步是最关键的问题。首先对GPS/INS组合导航系统的时间同步问题作基本描述,然后在简要分析基于GPS接收机的1 pps脉冲信号同步采样技术的基础上,提出另外一种基于GPS和INS的1 pps脉冲信号的时间比对同步方法,这种方法能较好地解决GPS接收机由于失锁引起的1 pps信号抖动,将晶体振荡器的短期稳定度和GPS时间的长期稳定度结合起来,使各子系统数据在时间上能准确同步。  相似文献   

10.
为了解全球气候变暖背景下湿润喀斯特山区地表反照率的气候效应,本文以贵州省为例,利用MODIS地表反照率产品,结合植被、土地利用、地质岩性等数据,基于Theil-Sen Median斜率计算及Mann-Kendall统计检验等方法,分析贵州省近20年地表反照率的时空变化特征;利用地理探测器分析影响贵州地表反照率的主导驱动因子。结果表明:(1)贵州省2001—2020年的地表反照率均值为0.111 0,并以每年平均0.16×10-3的速率在缓慢波动下降,下降区域面积占总面积的58.17%。(2)多年季节平均反照率为夏(0.118 6)>秋(0.113 7)>春(0.105 0)>冬(0.103 0),年平均增长速率为夏(0.48×10-3)>秋(-0.13×10-3)>春(-0.31×10-3)>冬(-0.51×10-3)。(3)地表反照率年内变化呈“倒U”形,表现出显著的季节性特征。(4)植被、土地利用、岩组是贵州地表反照率时空异质的主导驱动因...  相似文献   

11.
K波段微波测距系统(KBR)是低-低卫星跟踪卫星模式(SST-LL)重力测量卫星最关键的测量设备,其性能直接影响反演的地球时变重力场模型。超稳定振荡器(USO)作为整个KBR系统的频率基准,其稳定度对KBR系统测距精度有着重要影响。本文根据双向测量载波相位对比原理构建KBR仿真系统,利用幂率法模拟不同频率稳定度下的USO噪声误差,馈入到KBR仿真系统中进行仿真。结果表明,利用该模型当USO频率稳定度的阿伦方差达到1×10-12/s时,可满足公布的GRACE卫星KBR系统10μm的测距误差要求。  相似文献   

12.
本文研究了一种提高恒温晶振长期稳定性的方法,以GPS/BDS接收机输出的秒脉冲信号为参考信号,校正补偿恒温晶振的频率偏移,在不破坏晶振短期稳定性的前提下,获得更好的长期稳定性. 采用中位值平均滤波和卡尔曼滤波消除相位差的跳变和随机抖动,使用带死区的增量式PID算法控制晶振频率,使其和GPS/BDS接收机输出的秒脉冲信号同步. 测试结果表明:驯服后的晶振和铯钟的钟差峰-峰值不超过47 ns,100 s采样Allan方差为6.22×10?11,10 000 s采样的Allan方差约为1.02×10?12. 证明该驯服方法可以使晶振的长期稳定性得到有效提升,是一种可靠有效的驯服方法.   相似文献   

13.
重力梯度仪校准参数的确定是GOCE重力梯度观测数据处理的关键环节。本文对GOCE卫星重力梯度观测值中的时变信号与粗差进行了分析,利用高精度全球重力场模型,确定了GOCE重力梯度观测值各分量的尺度因子与偏差,并对校准结果进行了精度评定。结果表明,在测量带宽内,海潮对重力梯度观测值影响在mE量级,与重力梯度仪的精度水平相当,陆地水等非潮汐重力场时变信号略小于海潮,量级约为10-4E;各分量重力梯度观测值的粗差比例均大于0.2%;除EGM96模型外的其他模型对GOCE重力梯度仪进行校准后,Vxx、Vyy、Vzz、Vyz分量上尺度因子的稳定性均在10-4量级,Vxz分量能达到10-5量级,Vxy分量为10-2量级,这与梯度观测值各分量的精度水平一致。  相似文献   

14.
针对北斗在轨卫星Rb原子钟2013年的实测数据,采用二次多项式拟合得到BDS卫星钟差模型,采用哈达玛总方差公式计算了北斗卫星钟的短期频率稳定度指标,进而分析了北斗在轨卫星钟特性指标的变化规律。通过实例计算,揭示了BDS不同在轨卫星钟的相位、频率、频漂及残差指标的变化规律;计算得出BDS卫星钟万秒频率稳定度维持在10-13量级左右,其中GEO卫星钟的稳定度相对较差,4号和8号卫星在运行期间出现跳变,跳变之后稳定性得到提高,其他在轨卫星钟稳定度变化趋势则相对平稳。  相似文献   

15.
俄罗斯全球卫星导航系统(global navigation satellite system,GLONASS)于2011-10恢复提供全球服务,分析其星载原子钟特性对系统性能评估、完好性监测、卫星钟差确定和预报等具有重要意义。首先基于俄罗斯联邦航天局GLONASS定位、导航、授时信息与分析中心(Information and Analysis Center for Positioning,Navigation and Timing,IAC)提供的2016-01-01—2019-05-11多星定轨解算的GLONASS精密卫星钟差产品,利用包含原子钟相位、频率与频漂参数的二次多项式拟合卫星钟差模型,分析了GLONASS在轨铯钟相位、频率、频漂与星钟模型噪声的长期变化特性;然后采用重叠哈达玛方差计算了铯钟的频率稳定度。结果表明,GLONASS在轨铯钟的相位和频率变化相对平稳;在轨铯钟模型的噪声水平和频漂均值分别为0.7 ns和5.94×10~(-15)/d;GLONASS在轨铯钟千秒频率稳定度保持在10~(-13)量级,频率稳定度随着星钟模型噪声增大而降低;新的卫星钟具有更优良的物理特性和更低的模型噪声。  相似文献   

16.
GPS高精度时间/频率同步设备设计和实现   总被引:1,自引:0,他引:1  
研究分析了GPS接收机的定时特性,以及高精度时间/频率同步设备对GPS定时信号丢失后的指标要求,提出了GPS定时信号的滑动平均滤波算法和信号丢失后的保持算法,取得了频率稳定度优于1×10^-11/天和无时间漂移误差的成果,初步实现铯原子频标的性能,满足时间同步精度和频率稳定度的需求。  相似文献   

17.
在基于精密单点定位(PPP)的授时方法中,卫星钟差产品的高精度时间基准至关重要.针对实时卫星钟差产品时间基准不够稳定的问题,本文采用一组具有原子钟外部输入的国际全球卫星导航系统(GNSS)服务(IGS)跟踪站建立了顾及原子钟变化特性的基准精化方法.该方法首先采用阿伦方差对不同的IGS跟踪站外接原子钟进行稳定度分析,挑选出一组稳定度高的原子钟用以精化时间基准.在此基础上,利用阿伦方差分析各台原子钟的噪声参数特征,并确定不同原子钟之间的权比关系.最终,建立时间基准改正量的随机模型,并计算出精化后的时间基准.通过实例验证表明:与IGS事后精密钟差产品定义的时间基准比较,改正后的实时钟差基准单天内的标准差(STD)优于0.1 ns,相比于改正前最高提升了93%.同时,基准改正后的天内万秒稳达到10-15量级,实现了一个量级的提高.此外,通过相对钟差精度的分析,表明钟差基准修正不影响PPP的定位精度.  相似文献   

18.
根据广义相对论,两地之间的重力位差导致两地之间时钟的运行速率差或频率差。反之,通过比对两地之间高精度时钟的守时速率之差或频率差,则可确定两地之间的重力位差及海拔高程差。本文选取国际度量局(BIPM)发布的5个台站2013年4月1日至21日的卫星双向时频传递(TWSTFT)数据,采用卫星双向时间频率传递技术,并基于重力频移法确定两地之间重力位差和高程差。与EGM2008模型结果的比对结果表明,重力位差和高程差的标准差分别为129.2m~2·s~(-2)和13.2m。实验结果与目前守时台站所采用原子钟的稳定度10×10~(-15)量级基本一致。迅速发展的时频技术及原子钟(光钟)精度不断提高,为利用卫星双向时间频率传递确定重力位差和高程差提供了应用空间。  相似文献   

19.
接收机中射频前端的本振和采样时钟的相位噪声对测量精度有重要影响,因此,有必要研究低相噪的频率源。介绍了锁相环中相噪传递的基本原理,设计了基于HMC820的锁相环电路,并通过实验验证了鉴相频率和环路滤波器对HMC820电路的影响,得出了一些有用的结论,给出了较优的环路参数。测试结果表明:在合理设置环路参数及鉴相频率的情况下,HMC820在相位噪声方面有一定优势。  相似文献   

20.
理想情况下,数字锁相环(DPLL)的环路参数可以通过直接计算输入原子钟与压控振荡器(VCO)的相位噪声功率谱交点来确定. 但该方法不能考虑到锁相环(PLL)其他模块的噪声,这会导致输出性能恶化. 针对这一问题,文中从PLL模型出发,基于PLL环路传递函数和幂律谱模型,提出PLL模块噪声的等效方法. 该方法将PLL各模块噪声分别等效到输入和VCO的相位噪声上,使得PLL的噪声传递模型只含有等效输入噪声和等效VCO噪声. 然后可以直接计算两者相位噪声交点并设置合理的环路参数. 通过该方法确定的环路参数可以充分结合输入原子钟信号和VCO信号的相位噪声和频率稳定度特性,弥补了直接计算交点法不能考虑模块噪声的缺点. 实验表明:文中方法所选择的环路参数能使得输出信号具备良好的稳定度,可以为应用于净化原子钟信号的数字锁相装置环路参数的确定提供理论指导.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号