首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Lateral motion of material relative to the regional thermal and kinematic frameworks is important in the interpretation of thermochronology in convergent orogens. Although cooling ages in denuded settings are commonly linked to exhumation, such data are not related to instantaneous behavior but rather to an integration of the exhumation rates experienced between the thermochronological ‘closure’ at depth and subsequent exposure at the surface. The short spatial wavelength variation of thermal structure and denudation rate typical of orogenic regions thus renders thermochronometers sensitive to lateral motion during exhumation. The significance of this lateral motion varies in proportion with closure temperature, which controls the depth at which isotopic closure occurs, and hence, the range of time and length scales over which such data integrate sample histories. Different chronometers thus vary in the fundamental aspects of the orogenic character to which they are sensitive. Isotopic systems with high closure temperature are more sensitive to exhumation paths and the variation in denudation and thermal structure across a region, while those of lower closure temperature constrain shorter-term behaviour and more local conditions.Discounting lateral motion through an orogenic region and interpreting cooling ages purely in terms of vertical exhumation can produce ambiguous results because variation in the cooling rate can result from either change in kinematics over time or the translation of samples through spatially varying conditions. Resolving this ambiguity requires explicit consideration of the physical and thermal framework experienced by samples during their exhumation. This can be best achieved through numerical simulations coupling kinematic deformation to thermal evolution. Such an approach allows the thermochronological implications of different kinematic scenarios to be tested, and thus provides an important means of assessing the contribution of lateral motion to orogenic evolution.  相似文献   

2.
Lateral variations in lithospheric strength have been adopted often in flexural modeling (both 2D and 3D) to better fit the observed basement deflections, typically supported by gravity data. This approach provides essentially a “snap-shot” of the role of lithosphere strength in determining the present day geometry.In contrast, we investigate and quantify the effects of a lateral change in lithospheric strength on the evolution of the foredeep in front of an advancing orogen. Transitions in lithospheric strength are common in the foreland of orogens and show large variations in the width of the transition zone and the strength difference. Former passive margins, for instance, will display strength changes distributed over several tens to hundreds of kilometers. Other transitions may originate from juxtaposition or accretion of pieces of lithosphere with different properties and may be characterized by a much smaller width than former passive margins.In our modeling, a constant load, representing an advancing orogenic belt, is displaced towards and across a transition from a weak to a strong plate in a 2D elastic thin plate model. The effect of different transition widths and strength contrasts on foredeep geometry and bending stress is investigated. Interference of flexural wavelengths across the transition affects foredeep geometry by causing rapid basin widening, oscillation of the bulge and volume increase. The bending stresses are found to concentrate and amplify around the strength transition. Large transition gradients, i.e. large strength contrast or small transition width, cause the highest rates of change.Basin widening caused by the orogenic load advancing towards the transition between the East European Craton and the Moesian Platform, appears to control the Sarmatian transgression over the East Carpathian foreland in Romania.  相似文献   

3.
目前使用低温年代学来恢复造山带古地形,主要是采用在造山带内部采样来做原地高度的恢复。本文提出用碎屑颗粒低温年代学来恢复造山带平均古高度变化率的方法,即通过山间盆地或山前堆积碎屑物大量的单颗粒年龄,获取蚀源区大面积的、区域性的平均剥露速率,进而通过均衡校正计算出蚀源区的平均古高度变化率,为造山带古地形恢复提供了新的途径。本文以西南天山为例进行尝试,通过已发表的339个碎屑颗粒裂变径迹年龄,获得西南天山的68 Ma(年龄峰期)的剥露速率为0.740.60km/Ma,平均古高度变化率为0.150.23km/Ma、0.120.19km/Ma(降低率)。显示西南天山在68 Ma以来发生了比较快速的剥露,如果不考虑构造抬升等因素,平均古高度也发生了比较快速的降低,如果按8 Ma以来计算,则正好降低了1 0001 500m。  相似文献   

4.
张丁丁  张衡 《地学前缘》2022,29(1):303-315
大陆岩石圈深俯冲作用是地球科学领域的前沿热点,榴辉岩的折返机制是板块构造及动力学的关键科学问题。全球著名的大陆造山带中榴辉岩的p-T轨迹呈现差异性折返特征,为了揭示榴辉岩的折返机制,本文结合变质岩石学和地球物理学研究,选取3个典型大陆造山带——中生代—新生代的阿尔卑斯造山带、中生代的苏鲁—大别造山带和新生代的喜马拉雅造山带中的榴辉岩进行阐述。在阿尔卑斯造山带地区,地球物理研究结果发现,欧洲板块的俯冲造成了Adria地区下方的岩石圈存在明显厚度差异。同时,阿尔卑斯造山带Doria Maria和Pohorje地区以及Pohorje地区内部,榴辉岩折返历史也不尽相同,原因可能是亚德里亚大洋岩石圈断离后不同期次的逆冲推覆作用使其差异性斜向挤出。苏鲁—大别造山带中榴辉岩的快速折返,原因可能是华南板块与华北板块碰撞后岩石圈的拆沉或断离作用。在喜马拉雅造山带,西构造结和中喜马拉雅榴辉岩的折返存在差异性。在西构造结,那让和卡甘榴辉岩呈现不同的p-T轨迹和折返速率,变质岩石学和地球物理研究结果都表明它们的差异性折返很可能与印度-欧亚大陆碰撞过程中的构造挤压作用以及印度大陆岩石圈的断离作用有关。喜马拉雅造山带是年轻的正在进行造山活动的造山带,相较于古老的苏鲁-大别造山带,它更适合变质岩石学和地球物理学的综合研究。因此西构造结高压/超高压榴辉岩的折返机制——构造挤压和俯冲板块断离可应用于全球造山带。  相似文献   

5.
沉积盆地中未遭受热重置的碎屑颗粒裂变径迹(FT)热年代学正成为山前冲断带蚀源区抬升-剥露过程及其与相邻盆地沉积作用关系研究的重要方法.对于未热重置碎屑岩样品的磷灰石(或锆石)单矿物颗粒裂变径迹年龄(FTGA)数据,采用高斯或二项式拟合方法可以获得样品中不同组分碎屑颗粒矿物的FT峰值年龄或称蚀源区抬升一剥露事件的FT封闭(冷却)年龄.已有的统计分析结果表明,抬升冷却矿物的FT封闭年龄(tc)与其剥露搬运至相邻盆地的沉积年龄(td)之间具有较好的线性关系(tc=A+Btd),二者的滞后时间(△t=tc-td≈tc-te,te为抬升冷却的碎屑颗粒矿物剥露到近地表的剥露年龄)构筑了蚀源区抬升冷却矿物FT封闭深度(Zc)与抬升剥露速率(E)之间的定量关系(E=Zc/△t)和不同碎屑颗粒的滞后时间与其沉积年龄之间相关变化的统计预测模型△t=A+(B-1)td.显然,滞后时间越短,造山带蚀源区的抬升剥露速率越大、物源供应越充分,山前带沉积一沉降作用趋于增强,反之亦然.  相似文献   

6.
Extensional deformations are common within foredeep basins and generally consist of hinterland-dipping normal faults located at the foredeep–foreland transition zones. Foreland-dipping normal faults at the belt–foredeep boundaries, by contrast, are far less documented and their occurrence is not predicted by simple orogenic load models. New surface data integrated with seismic reflection profiles across the Central Apennines of Italy reveal the occurrence of foreland-dipping normal faults located in the inner edges of foredeep depressions. Extensional deformations are systematically found within sequentially younger Tortonian, Messinian and Early Pliocene foredeep basins, thus suggesting that normal fault development was an intrinsic feature of the evolving belt–foredeep–foreland system and could have influenced the stratal architectures of the host syn-orogenic deposits. Foreland extension is consistent with existing geodynamic models for the Apennines and could represent the effects of lithospheric bending: its recognition and documentation elsewhere could provide significant insights to improve our understanding of syn-orogenic basin dynamics.  相似文献   

7.
通过利用裂变径迹热史模拟来探讨山盆之间剥蚀沉积关系为定量对比山盆之间剥蚀沉积关系提供了一种可能的途径。其原理主要是通过裂变径迹热史曲线,求取造山带区域平均剥露速率,再将其与毗邻盆地沉积速率对比,进而判断山盆之间剥蚀沉积比例关系。通过计算可以得到大别造山带65~25 Ma区域体积平均剥露速率为1189.67 km3/Ma(当古地温梯度为25℃/km时)、1487.08 km3/Ma(当古地温梯度为20℃/km时)。其剥蚀速率至少占到了毗邻盆地古近纪平均总沉积速率的一半以上。其原理主要是通过裂变径迹热史曲线,求取造山带区域平均剥露速率,再将其与毗邻盆地沉积速率对比,进而判断山盆之间剥蚀沉积比例关系。  相似文献   

8.
At the eastern margin of the Bohemian Massif (Variscan belt of Central Europe), large bodies of felsic granulite preserve mineral assemblages and structures developed during the early stages of exhumation of the orogenic lower continental crust within the Moldanubian orogenic root. The development of an early steep fabric is associated with east–west-oriented compression and vertical extrusion of the high-grade rocks into higher crustal levels. The high-pressure mineral assemblage Grt-Ky-Kfs-Pl-Qtz-Liq corresponds to metamorphic pressures of ∼18 kbar at ∼850 °C, which are minimum estimates, whereas crystallization of biotite occurred at 13 kbar and ∼790 °C during decompression with slight cooling. The late stages of the granulite exhumation were associated with lateral spreading of associated high-grade rocks over a middle crustal unit at ∼4 kbar and ∼700 °C, as estimated from accompanying cordierite-bearing gneisses. The internal structure of a contemporaneously intruded syenite is coherent with late structures developed in felsic granulites and surrounding gneisses, and the magma only locally explored the early subvertical fabric of the felsic granulite during emplacement. Consequently, the emplacement age of the syenite provides an independent constraint on the timing of the final stages of exhumation and allows calculation of exhumation and cooling rates, which for this part of the Variscan orogenic root are 2.9–3.5 mm yr−1 and 7–9.4 °C Myr−1, respectively. The final part of the temperature evolution shows very rapid cooling, which is interpreted as the result of juxtaposition of hot high-grade rocks with a cold upper-crustal lid.  相似文献   

9.
The Central Bohemian Plutonic Complex (CBPC) consists of episodically emplaced plutons, the internal fabrics of which recorded tectonic evolution of a continental magmatic arc. The ~354–350 Ma calc-alkaline plutons were emplaced by multiple processes into the upper-crustal Teplá-Barrandian Unit, and their magmatic fabrics recorded increments of regional transpression. Multiple fabrics of the younger, ~346 Ma Blatná pluton recorded both regional transpression and the onset of exhumation of mid-crustal orogenic root (Moldanubian Unit). Continuous exhumation-related deformation during pluton cooling resulted in the development of a wide zone of sub-solidus deformation along the SE margin of the CBPC. Finally, syn-exhumation tabular durbachitic pluton of ultrapotassic composition was emplaced atop the intrusive sequence at ~343–340 Ma, and the ultrapotassic Tábor pluton intruded after exhumation of the orogenic root (~337 Ma). We suggest that the emplacement of plutons during regional transpression in the upper crust produced thermally softened domain which then accommodated the exhumation of the mid-crustal orogenic root, and that the complex nature of the Teplá-Barrandian/Moldanubian boundary is a result of regional transpression in the upper crust, the enhancement of regional deformation in overlapping structural aureoles, the subsequent exhumation of the orogenic root domain, and post-emplacement brittle faulting.  相似文献   

10.
The Cervarola Sandstones Formation, Aquitanian–Burdigalian in age, was deposited in an elongate, north‐west stretched foredeep basin formed in front of the growing northern Apennines orogenic wedge. As other Apennine foredeep deposits, such as the Marnoso‐arenacea Formation, the stratigraphic succession of the Cervarola Sandstones Formation records the progressive closure of the basin due to the propagation of thrust fronts towards the north‐east, i.e. towards the outer and shallower foreland ramp. This process produces a complex foredeep that is characterized by syn‐sedimentary structural highs and depocentres that strongly influence lateral and vertical turbidite facies distribution. This work describes and discusses this influence, providing a high‐resolution physical stratigraphy with ‘bed by bed’ correlations of an interval ca 1000 m thick, parallel and perpendicular to the palaeocurrents and to the main structural alignments, on an area of ca 30 km that covers the proximal portion of the Cervarola basin in the northern Apennines. The main aim is to show, for the first time ever, a detailed facies analysis of the Cervarola Sandstones Formation, based on a series of bed types that have proven fundamental to understand the morphology of the basin. The knowledge of the vertical and lateral distribution of these bed types, such as contained‐reflected and slurry (i.e. hybrid) beds, together with other important sedimentary structures, i.e. cross‐bedded bypass facies and delamination structures, is the basis for better understanding of facies processes, as well as for proposing an evolutionary model of the foredeep in relation to the syn‐sedimentary growth of the main tectonic structures. This makes the Cervarola Sandstones, like the Marnoso‐arenacea Formation, a typical example of foredeep evolution.  相似文献   

11.
苏鲁造山带位于华北和华南板块之间,是中国东部最显著的陆内造山带之一,约束其新生代剥露过程对于理解中国东部盆山格局分布及其动力学机制具有重要意义.低温热年代学方法由于封闭温度较低,能更准确地约束上地壳地质体的剥露过程.利用磷灰石(U-Th)/He方法,对苏鲁造山带东部的多福山和锯齿山开展研究.磷灰石(U-Th)/He年龄...  相似文献   

12.
自中三叠世扬子与华北板块发生碰撞—深俯冲作用以来,大别造山带南界上的襄樊—广济断裂带主要经历过两次变形事件: 1)早期变形事件发生在中三叠世末—晚三叠世初的造山带折返阶段,表现为造山带南边界上的韧性剪切带。这期北西—南东走向的剪切带向南西陡倾,发育北西—南东向的矿物拉伸线理,主要为右行走滑的运动性质,属于造山带斜向折返的侧边界走滑剪切带。造山带折返过程中将前陆褶断带北缘原先东西向褶皱改造为北西—南东走向。2)晚期变形事件发生在晚侏罗世,表现为脆性逆冲断层,使得前陆褶断带向北东逆冲在造山带南缘之上,同时在前陆上形成了一系列的逆冲断层。该断裂带的晚期逆冲活动与郯庐断裂带左行平移同时发生,代表了滨太平洋构造活动的开始。  相似文献   

13.
Sequence stratigraphy in marine foredeep and thrust-top basins is controlled by the conventional variations in eustatic sea-level and sedimentation rate together with tectonics. Vertical motions reflect combinations of subsidence due to regional flexure and uplift on local thrust anticlines which act to modify the volume and shape of accommodation space together with syn-depositional slopes. Plio-Pleistocene successions on Sicily were deposited in thrust-top and foredeep basins, above and ahead of evolving structures of the Maghrebian fold and thrust belt. Collectively the sediments represent a single megasequence defined at its base by a maximum flooding surface of earliest Pliocene age following reconnection with global sea-level at the end of the Messinian. The internal stratigraphy of this megasequence consists of Trubi chalks, blue marls and a coastal calcarenite package with subordinate silciclastic sand. Plankton biostratigraphy allows these facies to be placed in a chronostratigraphic framework. Regionally the upper assemblage progrades away from the orogenic hinterland, recording a tectonically forced regression in response to regional uplift from late Pliocene times. This uplift may be associated with isostatic unloading in the orogenic hinterland due to tectonic collapse of the more internal thrust sheets. Prior to this, flexure from orogenic loading is inferred to have been sufficient for regional subsidence locally to outstrip uplift associated with the growth of some thrust structures. For shallow-water facies the competition between thrust-related uplift and flexural subsidence can be investigated from the stacking patterns of parasequence sets. For structures developed at greater palaeobathymetries receiving fine-grained pelagic sediment, active tectonics may be recognized from depositional hiatuses.  相似文献   

14.
The Balfour Formation represents a fully fluvial succession of late Late Permian–earliest Triassic age which accumulated in the foredeep of the Karoo Basin during the overfilled phase of the foreland system. The lack of a coeval marine environment within the limits of the preserved Karoo Basin provides an opportunity to study the stratigraphic cyclicity developed during a time when accommodation was solely controlled by tectonics. The Balfour stratigraphy is composed of a succession of six third-order fluvial depositional sequences separated by subaerial unconformities. They formed in isolation from eustatic influences, with a timing controlled by orogenic cycles of loading and unloading. Sediment accumulation took place during stages of flexural subsidence, whereas the bounding surfaces are related to stages of isostatic uplift. The vertical profile of all sequences displays an overall fining-upward trend related to the gradual decrease in topographic slope during orogenic loading. At the same time, an upward change in fluvial styles can be observed within each sequence, from initial higher to final lower energy systems. The actual fluvial styles in each location depend on paleoslope gradients and the position of the stratigraphic section relative to the orogenic front. Proximal sequences show transitions from braided to meandering systems, whereas more distal sequences show changes from sand-bed to fine-grained meandering systems. The average duration of the Balfour stratigraphic cycles was 0.66 My, i.e. six cycles during 4 My. No climatic fluctuations are recorded during this time, with the long-term climatic background represented by temperate to humid conditions.  相似文献   

15.
低温热年代技术已经广泛应用于造山带的剥露作用和古地形演化的研究。本文对黄陵隆起进行了裂变径迹和(U-Th)/He热年代学研究,分析计算其隆升剥露速率和厚度,恢复黄陵隆起中新生代古地形。依据岩石样品冷却历史计算出的剥露速率以及剥露厚度结果,综合黄陵隆起现今地形起伏,均衡回弹作用以及古海平面变化情况,获得了黄陵隆起早侏罗世、早白垩世、晚白垩世、晚始新世以及现今5个时期的古地形变化情况。结果表明黄陵隆起地形表现为持续降低的趋势,并存在两期剧烈的隆升剥露阶段。分析认为,白垩纪(140~80 Ma±),黄陵隆起的快速隆升剥露作用与秦岭大别造山带大规模的挤压作用密切相关,晚始新世以来(40~0 Ma)黄陵隆起的快速抬升剥露作用则是对喜山期构造运动的响应。  相似文献   

16.
A large database of structural, geochronological and petrological data combined with a Bouguer anomaly map is used to develop a two‐stage exhumation model of deep‐seated rocks in the eastern sector of the Variscan belt. An early sub‐vertical fabric developed in the orogenic lower and middle crust during intracrustal folding followed by the vertical extrusion of the lower crustal rocks. These events were responsible for exhumation of the orogenic lower crust from depths equivalent to 18?20 kbar to depths equivalent to 8?10 kbar, and for coeval burial of upper crustal rocks to depths equivalent to 8–9 kbar. Following the folding and vertical extrusion event, sub‐horizontal fabrics developed at medium to low pressure in the orogenic lower and middle crust during vertical shortening. Fabrics that record the early vertical extrusion originated between 350 and 340 Ma, during building of an orogenic root in response to SE‐directed Saxothuringian continental subduction. Fabrics that record the later sub‐horizontal exhumation event relate to an eastern promontory of the Brunia continent indenting into the rheologically weaker rocks of the orogenic root. Indentation initiated thrusting or flow of the orogenic crust over the Brunia continent in a north‐directed sub‐horizontal channel. This sub‐horizontal flow operated between 330 and 325 Ma, and was responsible for a heterogeneous mixing of blocks and boudins of lower and middle crustal rocks and for their progressive thermal re‐equilibration. The erosion depth as well as the degree of reworking decreases from south to north, pointing to an outflow of lower crustal material to the surface, which was subsequently eroded and deposited in a foreland basin. Indentation by the Brunia continental promontory was highly noncoaxial with respect to the SE‐oriented Saxothuringian continental subduction in the Early Visean, suggesting a major switch of plate configuration during the Middle to Late Visean.  相似文献   

17.
An exhumation model of the south Peloponnesus, Greece   总被引:1,自引:0,他引:1  
An exhumation model comprising forward and backward thrusting and late orogenic collapse is proposed in order to explain the kinematics of the tectonic windows in the south Peloponnesus. The model is based on mapping, mesoscopic structural data and strain analysis. Syn-compressional thickening took place throughout the Oligocene and Early Miocene which includes the subduction of the Pindos Ocean at the western margin of the Pelagonian microcontinent and the intracontinental subduction of the Phyllite–Quartzite and the Plattenkalk series. The latter subduction was associated with blueschist metamorphism, westward-directed ductile thrusting, and folding. The exhumation history of the deeper parts of the orogen began at the Oligocene–Miocene boundary with the progressive entrance of the low-density crust and the Plattenkalk carbonates in the subduction zone. Increased buoyancy caused: (a) the initiation of the Phyllite–Quartzite series extrusion; (b) vertical coaxial stretching; and (c) the evolution of two pop-up structures, i.e. the Parnon and Taygetos anticlines. This syn-compressional exhumation was taking place in the lower Miocene with decreasing rates from 7 to 1.5 mm/year. The change in the local stress field from compression to extension began in the middle Miocene with the formation of hinterland-dipping normal faults. The exhumation/denudation rate caused by the footwall uplift along these faults does not exceed 0.2 mm/year. Received: 16 April 1999 / Accepted: 19 January 2000  相似文献   

18.
Exhumation has been recognised as a key factor in understanding the dynamics of a mountain belt. Normal faulting, erosion and ductile thinning are the three basic mechanisms to exhume the deeper high grade metamorphic rocks to the surface. Convergent orogenic belts are characterised by over-thickening of the crust due to thrusting and folding. The interplay of uplift due to over-thickening of crust and climatic-erosion is the most plausible mechanism of exhumation as suggested by the numerical models and analogue experiments. The analysis of 534 thermo-chronological dates through 1D-thermal numerical model in the Himalaya suggest that the exhumation is dominantly due to erosion but the pattern of erosion is controlled by local tectonic activities in different sector of the Himalaya since Miocene, indicating that tectonic force as the prime mechanism of exhumation in Himalaya.  相似文献   

19.
The exhumation of metamorphic domes within orogenic belts is exemplified by the Tauern window in the Eastern Alps. There, the exhumation is related to partitioning of final orogenic shortening into deep-seated thrusts, near-surface antiformal bending forming brachyanticlines, and almost orogen-parallel strike-slip faults due to oblique continental plate collision. Crustal thickening by formation of an antiformal stack within upper to middle crustal portions of the lower lithosphere is a prerequisite of late-stage orogenic window formation. Low-angle normal faults at releasing steps of crustal-scale strike-slip faults accomodate tectonic unloading of synchronously thickened crust and extension along strike of the orogen, forming pull-apart metamorphic domes. Initiation of low-angle normal faults is largely controlled by rock rheology, especially at the brittle-ductile transitional level within the lithosphere. Several mechanisms may contribute to uplift and exhumation of previously buried crust within such a setting: (1) Shortening along deep-seated blind thrusts results in the formation of brachyanticlines and bending of metamorphic isograds; (2) oversteps of strike-slip faults within the wrench zone control the final geometry of the window; (3) unloading by tectonic unroofing and erosional denudation; and (4) vertical extrusion of crustal scale wedges. Rapid decompression of previously buried crust results in nearly isothermal exhumation paths, and enhanced fluid circulation along subvertical tensile fractures (hydrothermal ore and silicate veins) that formed due to overall coaxial stretching of lower plate crust.  相似文献   

20.
Apatite fission-track analysis performed on eighteen Mesozoic sediment samples of the Neuquén Basin from the Southern Central Andes orogenic front between 35°30′ and 37°S has revealed Campanian-Paleocene (75-55 Ma), late Eocene-early Oligocene (35-30 Ma) and middle Miocene (15-10 Ma) cooling episodes. Each cooling episode corresponds closely with major unconformities observed in the preserved sedimentary sequences, and is associated with kilometer-scale additional burial and subsequent exhumation. A similar degree of cooling is inferred from associated vitrinite reflectance data. Late Eocene-early Oligocene exhumation is recognized only near the eastern orogenic front adjacent to the foreland in the southernmost part of the study area and may be related partly to within-plate magmatism and associated extension in the Palaoco Basin. The Campanian-Paleocene and middle Miocene cooling episodes are recognized more widely in the fold and thrust belt and appear to coincide with periods of eastward arc expansion and mountain building processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号