首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
新闻速递     
谢天 《天文爱好者》2014,(11):16-19
拥有超大质量黑洞的最小星系 使用美国宇航局的哈勃空间望远镜,天文学家发现—个超大质量黑洞出现在了一个十分不可能的地方。对超致密矮星系M60-UCD1的观测显示,在其中心存在一个超大质量黑洞,由此使得它成为了拥有超大质量黑洞的最小星系。这说明可能还有更多的超大质量黑洞被错过了,它们对于大质量星系的形成会具有重要的意义。  相似文献   

2.
综述了以下几个方面的工作:(1)依巴谷卫星30个月观测资料的初步处理结果;(2)空间望远镜精密导星传感器的性能测试;(3)依巴谷卫星和空间望远镜近期在观测和仪器改进上的进展;(4)我们开展空间天体测量工作的概况。  相似文献   

3.
“钱德拉”率先升空 1999年7月23日,美国“钱德拉”X射线空间望远镜(以下简称“钱德拉”)率先升空。其造价高达15.5亿美元之巨,加上航天飞机发射和在轨运行费用,项目总成本为28亿美元。它是迄今人类建造的最为先进、也最为复杂的空间望远镜之一,  相似文献   

4.
新闻速递     
使用美国宇航局钱德拉X射线天文台、斯皮策空间望远镜以及地面望远镜的观测数据,天文学家们在星团如何形成这个问题上获得了重要的进展。结果表明,之前对这一过程的认识肯定存在问题或者不足。  相似文献   

5.
大多数天文学家认为黑洞在宇宙中并不罕见,但由于它们不寻常特征,从未有人直接观测到一个黑洞。最近,戈达德空间飞行中心的多兰认为哈勃空间望远镜可能提供了黑洞存在的第一个直接证据。  相似文献   

6.
HAPI-1是我国第一个用于空间高能天文观测的硬X射线望远镜系统,由面积145cm~2厚0.5cm的CsI(T1)主探测晶体及其下部厚5cm的NaI(T1)反符合晶体构成复合晶体探测器,采用脉冲形状甄别技术区分两种晶体的输出信号,多种物质构成的夹层式屏蔽筒和准直器使望远镜具有约4°视场角(HWHM),电子学、姿态控制和数据获取系统使望远镜具有对20—200keV能区高能光子到达时刻和能量进行空间定向观测的能力。本文介绍HAPI-1的构成和主要性能,以及1984年5月利用该望远镜在我国高空科学气球上对蟹状星云脉冲星的观测结果。  相似文献   

7.
万同山 《天文学进展》1999,17(3):217-227
“下一代大型空间天文望远镜”(NGST)、“空间干涉测量飞行任务”(SIM)和“天体物理的全天球天体测量干涉仪”(GAIA)是21世纪初的大型空间天文望远镜的计划。NGST和SIM是NASA“起源计划”的关键项目,可用于探索宇宙最早期形成的第一批星系,星团,NGST是大孔径被动控制冷望远镜,口径4-8m,是哈毂空间望远镜(HST)和红外空间望远镜(SIRTF)的后续项目,它强大的观测能力特别体现在  相似文献   

8.
宇宙信息     
宇宙信息哈勃空间望远镜发现裸黑洞哈勃空间望远镜在室女座活动星系NGC6251中拍摄到一个翘曲的尘埃盘,遇到来自一个疑似黑洞的紫外光迸发。欧洲南方天文台的菲利普斯·克兰说,这是以前从未看到的新现象。哈勃空间望远镜观测到的其他黑洞大部分是隐匿的,因为它们...  相似文献   

9.
追寻那些逝去的光子,时光又退回到二十年前那个乍暖还寒的春天。话说在西元1990年4月24日这一天,孤居宇宙一隅的地球人的天文史上发生了一件大事:在太平大水坑一端的美国佛罗里达州卡纳维拉尔角,亚特兰蒂斯号航天飞机背负着跨时代的大型空间望远镜——“哈勃空间望远镜”——和全人类的厚望,发射升空。  相似文献   

10.
目前 ,已有 1 0架口径 8~ 1 0m的地面大望远镜建成并投入科学观测。在近红外波段 ,自适应光学和干涉术已在大望远镜上获得成功。Hubble空间望远镜发射至今已逾 1 2年。为了研究早期宇宙 ,探测类地行星等 ,2 0 0 2年 9月NASA已与TWR公司签约 ,研制口径≥ 6m的下一代空间望远镜JWST ,计划2 0 1 0年发射。许多口径 30~ 1 0 0m的地面未来巨型望远镜FGT项目已经提出。本报告 ,也介绍了我国正在研制或预研中的三个大项目 :LAMOST、FAST和SST ,这些项目虽较小 ,但完成后都会对天文学的一个方面作出有份量的贡献。最后 ,报告人建议我国参与到与国外合作研制FGT或NGST的工作中 ,特别强调要有天文学家和工程专家参与进去  相似文献   

11.
《天文爱好者》2010,(7):96-96
WorldWide Telescope——万维天文望远镜,简称WWT,一款能把你的计算机武装成一架强大的虚拟望远镜的开创性软件。包括哈勃空间望远镜在内的世界上最好的望远镜观测的图片被融合成一个数字宇宙。参见本刊2008年第7期文章《天文学的GS—WWT时代》。  相似文献   

12.
空间天文学诞生的四十多年来,极大地影响了人类对宇宙的认识。通过空间望远镜来观测星空是空间天文的一个非常重要的组成部分,它使得我们的视野更为广阔。所以,我们有必要认识一下这几十年来对现代天文做出了重大贡献的空间望远镜。  相似文献   

13.
斯皮策空间望远镜(Spitzer Space Telescope,SST)是现役口径最大的红外望远镜之一。可能是出于担心与我们国家的空间太阳望远镜混淆(Space Solar Telescope),所以在国内一般简称其为Spitzer,我们下面也将这样称呼它。它是继红外天文卫星(IRAS)之后美国宇航局(NASA)的又一个红外线望远镜。  相似文献   

14.
题图说明:一个新发现的黑洞潜伏在一个年轻且拥有大量恒星的星系中心:美国宇航局斯必泽空间望远镜曾发现了两个类似的遥远天体。它们是周遭没有尘埃的类星体。  相似文献   

15.
空间太阳望远镜1m主镜支撑结构的研究   总被引:8,自引:0,他引:8  
本文对正在预研中的空间太阳望远镜的关键部件之一1m主镜,提出一种合理的支撑结构系统,此系统可以兼顾空间太阳望远镜光学系统的地面装校调试的有效性和火箭发射力学环境中的安全性以及入轨后正常观测时的高精度性。  相似文献   

16.
我国预计2025年发射的巡天空间望远镜(Chinese Space Station Telescope, CSST),主要用于开展大规模的多色成像与无缝光谱巡天工作。发射前需要利用地基望远镜对空间望远镜的光学成像系统、探测器,以及设备长时间运行稳定性进行地面测试。设计了兴隆观测基地80 cm望远镜的无缝光谱地面测试,利用A型恒星、B型恒星和沃尔夫拉叶星HD4004的强吸收和发射线特征,拟合色散方程,并发现色散方程具有空间分布特征。对HR3173的53条数据的零级谱位置信息及色散方程系数进行了二次曲面拟合,并利用该曲面对HR3173零级像位置范围内的HR718数据进行了波长定标,得到的CCD上8×13 pixels范围内的平均视向速度精度为51 km/s。  相似文献   

17.
空间望远镜的研制一直要求系统的轻量化,美国宇航局(NASA)最近研制的韦伯太空望远镜,其主镜系统面密度相对于哈勃空间望远镜已大幅减轻。在韦伯望远镜主镜系统的研制过程中,NASA开展了一系列关于超轻量镜面系统的验证计划,多家机构拿出多个方案参与竞标。本文选取几个比较典型的方案,介绍这些镜面系统的设计思想、结构、材料、加工以及相关测试结果,期望能对国内相关方面的工作提供参考。  相似文献   

18.
《天文爱好者》2008,(4):28-29
3月6日,位于美国亚利桑那东南部格雷厄姆(Graham)山上的世界最大双简望远镜开光。这是一个新的里程碑,通过它人们可以看到比以前更远古的影像,比哈勃望远镜的图像还清晰十倍!耗资1亿2千万美元的“大双简望远镜”(Large Binocular Telescope,简写为LBT),两个镜子的主镜均为8.4米,有效口径等同于一架11.8米的望远镜,分辨率则等同于22.8米的天文望远镜。望远镜终端所使用的全景照相机的CCD像素高达3600百万像素,再加上其聚光能力远超哈勃空间望远镜、分辨率更胜于夏威夷的十米口径凯克望远镜,为目前的世界之冠。  相似文献   

19.
伽马射线作为宇宙中极端事件的独特探针,探测伽马射线是人们了解宇宙构成、星体演化和宇宙线起源等的重要途经.伽马天文涉及了宇宙中的各种前沿科学问题并且观测所需能谱跨度极宽(102 keV–102 TeV),针对不同的科学目标和细分谱段,必须利用不同的伽马望远镜探测技术.总结了空间和地面的共5大类伽马射线观测技术,分别是编码孔径望远镜、康普顿望远镜、电子对望远镜、成像大气切伦科夫望远镜和广延大气簇射阵列;回顾了70 yr来在观测设备和技术进步的推动下伽马射线天文学领域的巨大进展,其中包含高能和甚高能谱段取得的大量成就,中低能段由于已有观测任务有限以及灵敏度低,超高能和极高能段由于观测难度大、起步时间晚,数据和成果相对其他谱段产出较少;展望了未来已经规划的伽马望远镜任务、能力及预期科学产出,其中,中低能段空间望远镜增强型ASTROGAM望远镜(e-ASTROGAM)、全天区中能伽马射线观测站(AMEGO)和甚高能段地面望远镜阵列高海拔宇宙线观测站(LHAASO)、切伦科夫望远镜阵列(CTA),由于灵敏度较同谱段已有任务灵敏度有大幅提升,极有可能在20 yr内从不同角度再度扩展人类对伽马宇宙的认知.  相似文献   

20.
上一期我们讲了Spitzer空间望远镜,按照顺序,这一期应该介绍日本的AKARI望远镜。但由于5月14日欧洲的赫歇尔空间天文台(Herschel Space Observatory)成功发射(图1),是近来天文界瞩目的一件大事,所以这里我们把二者的顺序对调一下,本期先介绍赫歇尔空间天文台(以下简称“赫歇尔”)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号