首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
<正>The Huang Shui River,a main tributary of the Yellow River,crosses a series of tectonically subsided and uplifted areas that show different patterns of terrace formation.The distribution of fluvial terrace of the Huang Shui River is studied through topographic and sedimentologic terrace mapping.Three terraces in the Haiyan Basin,four terraces in the Huangyuan Basin,19 terraces in the Xi'ning Basin(the four high terraces may belong to another river),nine terraces in the Ping'an Basin, five terraces in the Ledu Basin and 12 terraces in the Minhe Basin are recognized.Sedimentology research shows that the geomorphologic and sedimentological pattern of the Huang Shui River,which is located at the margin of Tibet,are different from that of the rivers at other regions.The formation process of the terrace is more complicated at the Huang Shui catchment:both accumulation terrace and erosion terrace were formed in each basin and accumulation terraces were developed in some basins when erosion terraces were formed in other basins,indicating fluvial aggradation may occur in some basins simultaneously with river incision in other basins.A conceptual model of the formation process of these two kinds of fluvial terraces at Huang Shui catchment is brought forward in this paper.First,the equilibrium state of the river is broken because of climatic change and/or tectonic movement,and the river incises in all basins in the whole catchment until reaching a new equilibrium state.Then,the downstream basin subsides quickly and the equilibrium state is broken again,and the river incises at upstream basins while the river accumulates at the subsidence basin quickly until approaching a new equilibrium state again.Finally,the river incises in the whole catchment because of climatic change and/or tectonic movement and the accumulation terrace is formed at the subsidence basin while the erosion terrace is formed at other basins.The existence of the accumulation terrace implied the tectonic subsidence in the sub-basins in Huang Shui catchment.These tectonic subsidence movements gradually developed from the downstream Minhe Basin to the upstream Huangyuan Basin.Dating the terrace sequence has potential to uncover the relationship between the subsidence in the catchment and the regional tectonic at the northeastern Tibetan Plateau.  相似文献   

2.
This study attempts to assess the spatial variation of fluvial hydraulics with special emphasis on hydrological components at upper, middle and lower part of the Kharsoti river basin. The study encompasses the scenario of a micro bedrock river of India in the post monsoon period. This paper includes the study of hydrological components such as discharge, velocity, shear stress, stream power, specific stream power, width-depth relation and roughness and its interrelationships with different parts of the river basin with related mathematical equations and identification of major river bed erosive zones coupled with geo-hydrological components with geological explanation. Kharsoti is a typical example of rejuvenated antecedent tributary river of Subarnarekha River basin in Chota Nagpur Plateau. It is necessary to give a new threshold to the quantitative methods regarding the fluvial hydraulic studies under a systematic scientific geographical and hydrological background. The results also involve some specific techniques, equations and GIS mapping. The result of this study will help to open the scenario of hydraulics of a micro river basin in a contemporary method.  相似文献   

3.
The Amazon River is the largest fluvial source of fresh water and sediment to the global ocean and has the longest tidally influenced reach in the world. Two major rivers, the Tapajós and Xingu, enter the Amazon along its tidal reach. However, unlike most fluvial confluences, these are not one‐way conduits through which water and sediment flow downstream towards the sea. The drowned‐river valleys (rias) at the confluences of the Tapajós and Xingu with the Amazon River experience water‐level fluctuations associated not only with the seasonal rise and fall of the river network, but also with semidiurnal tides that propagate as far as 800 km up the Amazon River. Superimposed seasonal and tidal forcing, distinct sediment and temperature signatures of Amazon and tributary waters, and antecedent geomorphology combine to create mainstem–tributary confluences that act as sediment traps rather than sources of sediment. Hydrodynamic measurements are combined with data from sediment cores to determine the distribution of tributary‐derived and Amazon‐derived sediment within the ria basins, characterize the sediment‐transport mechanisms within the confluence areas and estimate rates of sediment accumulation within both rias. The Tapajós and Xingu ria basins trap the majority of the sediment carried by the tributaries themselves in addition to ca 20 Mt year?1 of sediment sourced from the Amazon River. These findings have implications for the interpretation of stratigraphy associated with incised‐valley systems, such as those that dominated the transfer of sediment to the oceans during lowstands in sea level.  相似文献   

4.
The purpose of this paper is to analyze downstream effects of freshwater flow diversion from a small, active-continental-margin river basin. The Skokomish River delta is a tributary estuary to Hood Canal in Washington state that receives drainage from the southeastern side of the Olympic Mountains. Its drainage basin is steep, and rainfall is high. Approximately 40% of the annual average runoff of the entire system has been diverted from the North Fork Skokomish River for power production since completion of two dams in 1930; this water does not pass through the lower river or over the delta. Extensive logging has occurred in the remainder of the basin. Comparison of prediversion (1885) and postdiversion (1972) bathymetric surveys shows that deposition (about 0.013 to 0.022 m yr?1) has occurred on the inner delta and erosion (up to 0.033 m yr?1) on the outer delta. This steepening of the delta surface has apparently been caused by a loss of sediment transport capacity in the lower river and estuary combined with an increased sediment supply due to logging. Although the total area of unvegetated tidal flats thas decreased by only about 6%, there has been a more than 40% loss of highly productive low intertidal surface area. A conservative estimate of loss of eelgrass (Zostera marina) beds is 18%; a reduction in the size of mesohaline mixing zone has also occurred. These habitat losses are similar to those observed elsewhere in the world in larger river basins that have suffered water withdrawals of the same magnitude, but their impacts cannot either be evaluated or understood causally through consideration of simple measures like changes total estuarine deltaic area. Evaluation of estuarine effects of anthropogenic modification must, therefore, include consideration of both changes in habitat function and in the physical processes. These must be evaluated within the totality of the river basin-estuary system that cause these changes. In this case, sediment transport constitutes the critical link between fluvial alterations and the remote downstream, estuarine consequences thereof.  相似文献   

5.
Urbanisation and climate change can have adverse effects on the streamflow and water balance components in river basins. This study focuses on the understanding of different hydrologic responses to climate change between urban and rural basins. The comprehensive semi-distributed hydrologic model, SWAT (Soil and Water Assessment Tool), is used to evaluate how the streamflow and water balance components vary under future climate change on Bharalu (urban basin) and Basistha (rural basin) River basins near the Brahmaputra River in India based on precipitation, temperature and geospatial data. Based on data collected in 1990–2012, it is found that 98.78% of the water yield generated for the urban Bharalu River basin is by surface runoff, comparing to 75% of that for the rural Basistha basin. Comparison of various hydrologic processes (e.g. precipitation, discharge, water yield, surface runoff, actual evapotranspiration and potential evapotranspiration) based on predicted climate change scenarios is evaluated. The urban Bharalu basin shows a decrease in streamflow, water yield, surface runoff, actual evapotranspiration in contrast to the rural Basistha basin, for the 2050s and 2090s decades. The average annual discharge will increase a maximum 1.43 and 2.20 m3/s from the base period for representative concentration pathways (RCPs) such as 2.6 and 8.5 pathways in Basistha River and it will decrease a maximum 0.67 and 0.46 m3/s for Bharalu River, respectively. This paper also discusses the influence of sensitive parameters on hydrologic processes, future issues and challenges in the rural and urban basins.  相似文献   

6.
Climate change is expected to have a significant impact on the Himalayan region, which may ultimately affect the water security and agriculture productivity in the region. Investigations of hydrologic regimes and their linkage to climatic trends are therefore gaining importance to reduce vulnerability of growing implications in the region. In the present study, the eWater source software implementation of GR4JSG snow melt model was used for snow melt runoff modeling of the Astore river basin, western Himalayas. The model calibration and validation indicated a close agreement between the simulated and observed discharge data. The scenario of 0.9 °C increase in temperature indicated 33% rise in the river discharge, while an increase of 10% in precipitation may exaggerate the river flows by 15%. The scenario of 100% increase in glaciated area showed 41% increase in the Astore river discharge. On the other hand, reduction of 50% glacier cover may result in 34% decline in the river discharge, while 0% glacier coverage may reduce the river discharges by 49% from that of the base year 2014. It is essential to develop a long-term water resource monitoring process and adapt water management systems taking into account the socio-economic and ecological complexities of the region.  相似文献   

7.
Arsenic mobility in fluvial environment of the Ganga Plain,northern India   总被引:1,自引:1,他引:0  
In the northern part of the Indian sub-continent, the Gomati River (a tributary of the Ganga River) was selected to study the dynamics of Arsenic (As) mobilization in fluvial environment of the Ganga Plain. It is a 900-km-long, groundwater-fed, low-gradient, alluvial river characterized by monsoon-controlled peaked discharge. Thirty-six water samples were collected from the river and its tributaries at low discharge during winter and summer seasons and were analysed by ICP-MS. Dissolved As and Fe concentrations were found in the range of 1.29–9.62 and 47.84–431.92 μg/L, respectively. Arsenic concentration in the Gomati River water has been detected higher than in its tributaries water and characteristically increases in downstream, attributed to the downstream increasing of Fe2O3 content, sedimentary organic carbon and silt-clay content in the river sediments. Significant correlation of determination (r 2 = 0.68) was also observed between As and Fe concentrations in the river water. Arsenic concentrations in the river water are likely to follow the seasonal temperature variation and reach the level of World Health Organization’s permissible limit (10 μg/L) for drinking water in summer season. The Gomati River longitudinally develops reducing conditions after the monsoon season that mobilize As into the river water. First, dissolved As enters into pore-water of the river bed sediments by the reductive dissolution of Fe-oxides/hydroxides due to microbial degradation of sedimentary organic matter. Thereafter, it moves upward as well as down slope into the river water column. Anthropogenically induced biogeochemical processes and tropical climatic condition have been considered the responsible factors that favour the release of As in the fluvial environment of the Ganga Plain. The present study can be considered as an environmental alarm for future as groundwater resources of the Ganga–Brahmaputra Delta are seriously affecting the human–environment relationship at present.  相似文献   

8.
Changes in the supply of water and sediment to high‐latitude rivers related to contemporary climate change and glacier fluctuations largely determine the activity of fluvial processes. This study reconstructs fluvial dynamics since the end of the Little Ice Age (LIA) in two small, partially glaciated basins in the southern part of Spitsbergen, Svalbard Archipelago. We use a combination of aerial photograph interpretation, field mapping and dendrochronological analysis. Sequences of abandoned channels and glacifluvial terraces are distinctly visible in middle and lower parts of the Brattegg and Arie basins in this area. The advance of glaciers during the LIA in the upper part of the basins led to the development of a braiding pattern and to channel aggradation corresponding to the highest glacifluvial levels. The decreasing activity of these braidplains occurred at the turn of the 19th and 20th centuries, immediately prior to a significant incision period. A second generation of braided channels developed during the first half of the 20th century. Ice‐marginal lake development, less input of fine‐grained sediment to the river channel, and fast incision began from the second half of the 20th century onward. During the last two decades, the main fluvial response to the climatic warming has been contraction of flow within a narrower channel and the abandonment of braidplains. The increased lateral erosion and rate of downcutting and the formation of the most downstream reaches of the modern valley bottom occurred in the 1980s and 1990s. This process was intensified under flood conditions generated by extreme rainfall events. These micro‐scale (small partially glaciated basins) observations concerning the changes of the activity of fluvial processes since the end of LIA may be helpful for the reconstruction of past fluvial changes over longer time scales.  相似文献   

9.
Algal blooms and fish kills were reported on a river in coastal Georgia (USA) downstream of a poultry-processing plant, prompting officials to conclude the problems resulted from overland flow associated with over-application of wastewater at the plant’s land application system (LAS). An investigation was undertaken to test the hypothesis that contaminated groundwater was also playing a significant role. Weekly samples were collected over a 12-month period along an 18 km reach of the river and key tributaries. Results showed elevated nitrogen concentrations in tributaries draining the plant and a tenfold increase in nitrate in the river between the tributary inputs. Because ammonia concentrations were low in this reach, it was concluded that nitrate was entering via groundwater discharge. Data from detailed river sampling and direct groundwater samples from springs and boreholes were used to isolate the entry point of the contaminant plume. Analysis showed two separate plumes, one associated with the plant’s unlined wastewater lagoon and another with its LAS spray fields. The continuous discharge of contaminated groundwater during summer low-flow conditions was found to have a more profound impact on river-water quality than periodic inputs by overland flow and tributary runoff.  相似文献   

10.
渭河上游典型小流域水文特征差异性分析   总被引:3,自引:2,他引:1  
根据渭河流域两个典型小流域的实测水文和气象资料,分析了不同气候和下垫面条件的流域水文特征及其差异性.结果表明:清源河和牛谷河流域的年平均气温呈上升趋势,降水、径流、泥沙、降水径流系数均呈减少趋势;两个流域的降水、径流和泥沙历年变化不一致,1998-2013年清源河流域降水量相对牛谷河流域减少了8.6%,1993-2013年牛谷河的径流相对减少了21.4%,2000-2013年清源河的泥沙相对减少了24.0%;两个流域的面积、河长、海拔、植被覆盖率等流域特征值相对差在-29.4%~-4.5%之间,气温、降水等气候特征值相对差在-27.4%~16.7%之间,而径流特征值相差较大,相对差在-90.2%~-84.7%之间,泥沙特征差异性更大,相对差在292%~347%之间.对气候、下垫面和人类活动对水文要素的影响进行了研究,受人类活动的影响,清源河流域1996-2013年年径流减少11.6%,牛谷河流域1993-2006年年径流减少25.9%,2007-2013年再减少10.5%,研究人类活动的调水减沙效应,对流域综合治理、生态环境建设具有一定的指导意义.同时,充分利用不同小流域实测水文气象数据,分析水文气象要素的变化规律,可以为分布式水文模型研究和中小河流洪水预警预报提供重要依据.  相似文献   

11.
王波  张华  王宇  张贵  张文鋆  高瑜  罗为群 《中国岩溶》2020,39(3):319-326
在详细调查基础上,采用系统科学及水文地质分析方法,依据地形地貌、地层岩性、地质构造、示踪试验、地下水排泄基准面、喀斯特发育条件及发育规律等剖析论证流域边界,并通过钻探及示踪试验进行验证。研究结果:(1)对泸西喀斯特断陷盆地南东部的水系统边界向北移进行了修正,证实了三塘一带深部不发育的喀斯特是地下水分水岭边界,使得泸西喀斯特断陷盆地流域的径流系统和边界圈化更加准确;(2)泸西喀斯特断陷盆地流域地表水、地下水转化频繁,地表水径流特征主要以小江河在水库、河流、伏流间的径流转化过程为体现,地下水在侵溶山区接受大气降水补给后,上层径流以泉、暗河的形式在泸西盆地底面排泄后转化成地表水,最终汇集于盆地南部、通过工农隧洞及落水洞排向小江,而下层径流则以小江水面为基准,通过深层径流排泄。   相似文献   

12.
Economic and urban development in the province of Tucumán is closely associated with its hydrological network. In spite of the regulatory efforts to preserve the quality of the water resources, the lower basins of the majority of the rivers are contaminated with organic effluents derived from sugar-mill and citrus industry. In this paper, the conditions of the Colorado River basin are described. At its headwater, the lithology and geology determine the chemical composition. Calcite and gypsum dissolution and silicate influence water composition, which is slightly perturbed a few kilometers downstream by geothermal waters discharged by a tributary. Close to the discharge into the Salí River, the Colorado River receives a high organic matter load from the highly polluted Calimayo stream, which produces an increase in the organic matter and depletion of dissolved oxygen with redox conditions that promote the reduction of sulfate to sulfide.  相似文献   

13.
Backwater effects in the Amazon River basin of Brazil   总被引:4,自引:0,他引:4  
The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Purús rivers, causes falling river stages to be as much as 2–3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300–400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River.  相似文献   

14.
This paper analyzes downstream effects of freshwater flow diversion from a small, active-continental-margin river basin. The Skokomish River delta, a tributary estuary to Hood Canal in Washington state, receives drainage from the southeastern side of the Olympic Mountains. Its drainage basin is steep, and rainfall is high. Since completion of two dams in 1930, approximately 40% of the annual average runoff of the entire system has been diverted from the North Fork Skokomish River for power production; this water does not pass through the lower river or over the delta. Extensive logging has occurred in the remainder of the basin. Comparison of prediversion (1885) and postdiversion (1941 and 1972) bathymetric surveys suggest that deposition (about 0.013 m yr?1 to 0.022 m yr?1) has occurred on most of the inner delta and erosion (up to 0.011 m yr?1 to 0.033 m yr?1) on much of the outer delta. More rapid postconstruction deposition occurred within the river mouth itself, where the 1926 to 1941 deposition rate was 0.04–0.11 m yr?1. Nine of 12 historical bathymetric change cross-sections show steepening of the delta surface, two are neutral, and one shows aggradation. This steepening has apparently been caused by a loss of sediment transport capacity in the lower river and estuary combined with steady or increased (due to logging) sediment supply. Although the total area of unvegetated tidal flats has decreased by only about 2%, there has been a 15–19% loss of highly productive low intertidal surface area and an estimated 17% loss of eelgrass (Zostera marina) habitat. A reduction in the size of mesohaline mixing zone has also occurred. These habitat losses are similar to those observed elsewhere in the world in larger river basins that have suffered water withdrawals of the same magnitude, but their impacts either cannot be evaluated or understood casually through consideration of simple measures like changes in total estuarine deltaic area. Evaluation of estuarine effects of anthropogenic modification must, therefore, include consideration of both changes in habitat function and in the physical processes. These must be evaluated within the totality of the river basin-estuary system that cause these changes. In this case, sediment transport constitutes the critical link between fluvial alterations and the remote downstream, estuarine consequences thereof.  相似文献   

15.
    
Almost the entire suspended load of Yamuna River is transported during the monsoon period; quartz and illite are the dominant minerals of these suspended sediments. Basin lithology, tributary contributions, and sediment grain size seem to control mineral distribution in the sediments. Trace metal concentrations of Yamuna core sediments reflect their mineralogical composition. Illite is the chief clay mineral of the Himalayan river sediments. The mineralogical characteristics of the Himalayan river sediments differ significantly from the Peninsular Indian rivers, which chiefly carry montmorillonite.  相似文献   

16.
本文通过对海河流域的38个子流域及内陆河流域的7个子流域的逐年降水、径流及实际蒸散发和蒸发能力的分析,证明了基于Budyko假设的流域水热耦合平衡关系在海河及西北内陆河流域是成立的。根据各子流域的长期水量平衡结果,本文验证了水热耦合平衡模型中的唯一参数综合反映流域的下垫面条件且具有显著的区域分布规律,与此同时,本文还在海河流域及内陆河流域对根据流域平均坡度(tanβ),相对土壤最大蓄水能力(Smax/0)和相对土壤入渗能力(Ks/■r)估算模型参数■的经验公式进行了验证,计算结果较好。  相似文献   

17.
The lowest part of the Ebro River is a microtidal salt-wedge estuary. Penetration of the salt-wedge is largely controlled by the fluvial discharge and the morphology of the river bed, although sea level variations caused by tides and atmospheric conditions can also play significant roles. The concentration and distribution of suspended particulate matter in this part of the river and the fluvial sediment discharge are strongly influenced by the dynamics of the salt-wedge. Damming of the river has caused sediment to be trapped in reservoirs and has regulated the fluvial discharge. Intrusion of the salt wedge has thus also been regulated. At present, sediment discharge is between 1 and 1·5 × 105 tons per year, which is less than 1% of the sediment that the Ebro River discharged into the sea before construction of the dams. This extreme reduction in sediment supply has allowed marine erosional processes to dominate in the delta.  相似文献   

18.
Glaciers in the Tuotuo River basin, western China, have been monitored in recent decades by applying topographical maps and high-resolution satellite images. Results indicate that most of glaciers in the Tuotuo River basin have retreated in the period from 1968/1971 to 2001/2002, and their shrinkage area is 3.2% of the total area in the late 1960s. To assess the influence of glacier runoff on river runoff, a modified degree–day model including potential clear-sky direct solar radiation has been applied to the glaciated regions of the river basin over the period 1961–2004. It was found that glacier runoff has increased in the last 44 years, especially in the 1990s when a two-thirds increase in river runoff was derived from the increase in glacier runoff caused by loss of ice mass in the entire Tuotuo River basin.  相似文献   

19.
Flood Events in the Rhine Basin: Genesis,Influences and Mitigation   总被引:4,自引:1,他引:4  
Disse  Markus  Engel  Heinz 《Natural Hazards》2001,23(2-3):271-290
The paper analyses the hydrological regime of the Rhine catchment,the genesis of recent floods,and recommends some research and practical activities to mitigate flood damage. The catchment of the Rhine River can be divided into four main subcatchments: the alpine region with the Aare River as its main tributary and downstream the lower mountain regions of the tributaries Neckar, Main and Moselle. These four basins generate very different hydrographs. Due to the geographical conditions, the average discharge maximums shift from summer to winter downstream the Rhine. Moreover, the spatial and temporalprecipitation patterns of each river have a strong influence on the individual flood events. Some recent extraordinary floods are used to illustrate the parameters that have influenced these events.A strong relationship between recent climate change observationsand the occurrence of flood levels cannot be proven. However, the consequences of human interventions and the resulting changes to the river system (the Rhine and its tributaries) for the hydrograph can be quantified precisely.The influences of different land-use and climatic scenarios on flood conditions in the Rhine basin have not yet been separately identified. Thus, the Dutch-German project LAHoR was established. The primary aim of this project is to giveadvice for the ``Action Plan on Flood Defence' of the International Commission for the Protection of the Rhine (IKSR). In this plan a multidisciplinary approach to mitigating floods is suggested.It is anticipated that the plan willgenerate synergistic effects between flood prevention, water management, regional planning, agriculture, forestry and ecological demands.  相似文献   

20.
In the Apalachicola-Chattahoochee-Flint (ACF) river basin in Alabama, Georgia, and Florida (USA), population growth in the city of Atlanta and increased groundwater withdrawal for irrigation in southwest Georgia are greatly affecting the supply of freshwater to downstream regions. This study was conducted to understand and quantify the effect of irrigation pumpage on the karst Upper Floridan Aquifer and river–aquifer interactions in the lower ACF river basin in southwest Georgia. The groundwater MODular Finite-Element model (MODFE) was used for this study. The effect of two drought years, a moderate and a severe drought year, were simulated. Comparison of the results of the irrigated and non-irrigated scenarios showed that groundwater discharge to streams is a major outflow from the aquifer, and irrigation can cause as much as 10 % change in river–aquifer flux. The results also show that during months with high irrigation (e.g., June 2011), storage loss (34 %), the recharge and discharge from the upper semi-confining unit (30 %), and the river–aquifer flux (31 %) are the major water components contributing towards the impact of irrigation pumpage in the study area. A similar scenario plays out in many river basins throughout the world, especially in basins in which underlying karst aquifers are directly connected to a nearby stream. The study suggests that improved groundwater withdrawal strategies using climate forecasts needs to be developed in such a way that excessive withdrawals during droughts can be reduced to protect streams and river flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号