首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Ignimbrites are associated with nearly most of the world’s volcanoes and are defined as a deposit from pyroclastic density currents. They consist predominantly of pumiceous lapilli and blocks, and glass shards, which shows evidence of having been emplaced as a concentrated hot and dry particulate flow. These rocks are widely used as building stone especially in ancient buildings. Bitlis valley is covered by ignimbritic products, derived from Nemrut stratovolcano, one of the significant volcanic centers in Eastern Anatolia. The Bitlis ignimbrite is separated into lower level (LL), middle level (ML) and upper level (UL) according to color, welding degree and structural features. All three levels were used extensively in many parts of the Bitlis castle as masonry materials. Studies were carried out on mineralogical and geochemical composition and on physical and mechanical properties of the ignimbrites. In addition, a freeze–thaw cycle test was executed. There are no considerable differences in mineralogical composition among the levels of ignimbrite. All levels contain plagioclase, sanidine, pyroxene, and opaque mineral. In addition, anorthoclase and quartz are seen. In general, the LL of ignimbrite shows relic perlitic and eutaxitic texture, whereas eutaxitic and vesicular texture are commonly developed in the ML and UL, respectively. Lower, middle, and upper level ignimbrite samples display similar and limited compositional spread in terms of major oxide elements. They have trachyte composition. Building stones can be classified according to mineralogy, mechanical and physical properties and processing types. Mechanical and physical properties are very important with respect to stone quality/durability. The mechanical and physical properties of the ignimbrites are controlled by the welding degree. It was found that increasing welding degree from UL to LL correlates with increasing density, compressive strength and slake durability index and with decreasing porosity. The Bitlis ignimbrites have turned out as susceptible to freeze–thaw cycles.  相似文献   

2.
Analysis of a population of dilational faults within a densely welded ignimbrite layer reveals fault zone geometries that vary greatly within a single fault and between faults, but does not correlate with displacement. Within an individual fault the thickness of the fault core can differ by up to an order of magnitude along dip. Similarly, joint density adjacent to faults varies along fault dip but does not increase with displacement. A correlation does exist however, between joint density and the degree of ignimbrite welding, which can vary vertically within an ignimbrite layer. Previous work has shown that welding increases ignimbrite strength: non-welded ignimbrites form deformation bands and densely welded ignimbrites form discrete fractures. We observe zones of densely welded ignimbrite with high joint density, while less-welded zones have lower joint density. In turn, high joint densities correlate with narrow fault cores and low joint densities with wide fault cores. We propose a joint based model for dilational fault initiation and growth. Faults initiate on precursory joints and grow by entraining joint bound slabs, hence the correlation between high and low joint density (thin and thick slabs) and narrow and wide fault cores respectively. Ultimately joint density and consequently fault zone architecture are controlled by subtle variations in mechanical strength within the ignimbrite layer.  相似文献   

3.
Salt weathering in dual-porosity building dolostones   总被引:2,自引:0,他引:2  
The influence of rock fabric on physical weathering due to the salt crystallization of selected brecciated dolostones is discussed. These dual-porosity dolostones are representative of heterogeneous and anisotropic building rocks, and present highly complex and heterogeneous rock fabric features. The pore structure of the matrix and clasts is described in terms of porosity and pore size distribution, whereas the relative strength for each textural component is assessed using the Knoop hardness test. The whole characterisation process was carried out using the same samples as those used in the standard salt durability test (EN-12370), including connected porosity, the water saturation coefficient, fissure density, compressional wave velocity and waveform energy.

Results show the most important rock fabric elements to be considered are the matrix and clast properties and the nature of fissures. Firstly, a relatively weak matrix was the focus of major granular disintegration as it presents high porosity, low pore radius and reduced strength. Secondly, narrow micro-fissures appear to be important in the decay process due to the effectiveness of crystallization pressure generated by salt growth. On the contrary, macro-fissures do not contribute greatly to rock decay since they act as sinks to consume the high supersaturations caused by growth of large crystals. Additionally, an analysis of stress generated by crystallization was carried out based on the general situation of a lenticular crystal geometry. Finally, the relationships between whole petrophysical properties and durability were established using a principal component analysis. This analysis has clearly established that the durability of rocks affected by salt crystallization mechanisms diminishes in weaker and anisotropic rocks with high porosity and fissure density.  相似文献   


4.
Building stone of Anahita Temple seriously suffers from weathering due to long term freezing-thawing and salt crystallization processes. This article investigates possible changes of physical and mechanical characteristics of this stone subjected to freeze–thaw and salt crystallization ageing tests. Fresh samples obtained from the Chelmaran quarry (the main quarry supplying for Anahita Temple stone) were tested under freeze–thaw and salt crystallization experiments. The freeze–thaw and sodium sulfate salt crystallization are suggested to be the most effective factors affecting in apparent deterioration of the stone in compare to the magnesium sulfate salt crystallization test. Significant decreases in mechanical properties of the stone were observed after freeze–thaw and salt crystallization tests. However, more mechanical losses were recorded after the salt crystallization cycles than the freeze–thaw cycles. This is probably due to crystallization pressure of salt crystals in compare to ice wedging force, which promoted more development of micro-fractures in the specimens. Probably, intrinsic factors of the stone such as frequent calcite veins and stylolites, are the main factors that control the durability of Anahita Temple stone. Preferential weakening along these features during freeze–thaw and salt crystallization cycles led to physical destruction and strength loss of the stone. Based on comparison between experimentally induced damages and field observations, reasonably freeze–thaw process is major factor in weathering of Anahita Temple stone. It should be noted that recorded 102 frozen days for the region imply high destruction potential of the stone during freeze–thaw cycles.  相似文献   

5.
袁璞  马芹永 《岩土力学》2013,34(9):2557-2562
由于降雨、季节引起地下水位升降等原因,地壳中岩体常处于干湿循环状态。为研究干湿循环对岩石动态力学性能的影响,以安徽恒源煤矿北风井-259 m处砂岩为研究对象,采用?50 mm变截面分离式霍普金森压杆试验装置,对长径比为0.5的煤矿砂岩试件经干湿循环作用后实施单轴冲击压缩试验,获得了砂岩动态单轴压缩应力-应变曲线。研究发现,由于自由水的Stefan效应,干湿循环1次对砂岩具有增强作用,单轴动态抗压强度最高;其后,随着干湿循环次数的增加,砂岩受水侵蚀物理弱化作用,砂岩动态单轴抗压强度呈乘幂关系降低,砂岩试件的冲击破碎块度逐渐变小。试验结果表明,干湿循环12次时砂岩动态抗压强度比干湿循环1次降低约24%,表现出较强的劣化效应。  相似文献   

6.
Precipitation of salts in confined spaces is the key mechanism for rock weathering and damage to building materials. To date there is no comprehensive study of the parameters influencing the reduction of pore space by salt crystals and the consequences for transport and damage by crystallization pressure. A novel method is presented to quantify pore clogging (i.e., the degree to which crystallization of salts interferes with transport of solution in porous materials). After drying capillary-saturated stone specimens containing salt solutions, the rate of capillary uptake of decane into the salt-contaminated specimens is measured. By treating the salt-contaminated material as a bilayer, the width of the crystallization front and the degree of pore filling can be determined. Two model materials with different pore size distributions (Indiana and Highmoor limestone) and three salts (sodium chloride, sodium sulfate and magnesium sulfate) are selected for this study. It is shown that pore clogging results from the interplay between pore size distribution and salt properties. Different scenarios are discussed to link pore clogging with salt damage.  相似文献   

7.
Nowadays, improving the strength and deformation properties of soft soils by deep soil mixing is a commonly used technique. There is also an increasing interest in the use of this technique for foundation/structural elements and excavation retaining walls applications. The compressive strength and elastic modulus of the soil mix material are key parameters in the design of these structures. However, there is very limited information available on the impact of exposure to air drying (in the case of retaining wall) on the strength and stiffness of cement stabilized soils. The aim of this study is to investigate the effects of different curing conditions (immersion in water, cycles of wetting and drying, continuous air drying) on the mechanical properties of soils treated with cement in the laboratory. Free–free resonance tests and unconfined compression tests were performed on specimens of silt and sand treated with blastfurnace slag cement. Strength increases more rapidly than stiffness between 7 and 30 days. The strength of stabilized soils submitted to cyclic wetting and drying before the cement hydration process is complete continues to increase. As long as the periods of drying do not induce microcracks, the stiffness of the treated soil specimens also increases with time. However, the stiffness is lower than for the specimens cured in water indicating a disruptive effect of the imposed wetting–drying cycles on stiffness. Continuous exposure to air drying inhibits strength development due to insufficient water for hydration. Significant stiffness decreases were observed on specimens of stabilized silt and are attributed to microcracking.  相似文献   

8.
In the present work, the relationship between intrinsic factors, mechanical properties and durability of Miocene sandstones used in the architectural heritage of Tunisia, specifically in the Roman aqueduct of Oued Miliane and Uthina site, are studied. The petrographic study and the characterisation of porous network have been carried out using optical microscopy, mercury intrusion porosimetry and laser scanner confocal microscopy (LSCM). The hygric behaviour has also been determined from water absorption under vacuum, drying, capillary water absorption and water vapour permeability. The mechanical properties have been assessed from compressive strength and abrasion tests. Rock durability has been evaluated from salt crystallization (sodium sulphate) accelerated aging tests. The results show good hygric behaviour characterised by a high evaporation rate and almost no retention of water; due to the macroporous character of the rock and the good connectivity of the pore network. Because of the poor lithification, the stone has a very low mechanical strength which makes it very vulnerable to the salt crystallization effects. The absence of chemically unstable minerals preserves the rock from chemical alteration. The durability of the building stone is mainly conditioned by salt loading of the monument.  相似文献   

9.
Current assessments of slope stability rely on point sensors, the results of which are often difficult to interpret, have relatively high costs and do not provide large-area coverage. A new system is under development, based on integrated geophysical–geotechnical sensors to monitor groundwater conditions via electrical resistivity tomography. So that this system can provide end users with reliable information, it is essential that the relationships between resistivity, shear strength, suction and water content are fully resolved, particularly where soils undergo significant cycles of drying and wetting, with associated soil fabric changes. This paper presents a study to establish these relationships for a remoulded clay taken from a test site in Northumberland, UK. A rigorous testing programme has been undertaken, integrating the results of multi-scalar laboratory and field experiments, comparing two-point and four-point resistivity testing methods. Shear strength and water content were investigated using standard methods, whilst a soil water retention curve was derived using a WP4 dewpoint potentiometer. To simulate seasonal effects, drying and wetting cycles were imposed on prepared soil specimens. Results indicated an inverse power relationship between resistivity and water content with limited hysteresis between drying and wetting cycles. Soil resistivity at lower water contents was, however, observed to increase with ongoing seasonal cycling. Linear hysteretic relationships were established between undrained shear strength and water content, principally affected by two mechanisms: soil fabric deterioration and soil suction loss between drying and wetting events. These trends were supported by images obtained from scanning electron microscopy.  相似文献   

10.
干湿循环作用下红黏土收缩特征研究   总被引:5,自引:1,他引:4  
以贵州某高速公路沿线红黏土为研究对象,开展了干湿循环作用后红黏土的收缩特性试验研究,探讨了干湿循环次数和初始含水率对红黏土收缩性状的影响.试验结果表明:同一循环次数内,各试样的环向收缩率在6~8 h时达到稳定,而轴向线缩率则需更长的稳定时间;随着初始含水率增加,各试样的初始轴向线缩率减小,而初始环向收缩率增加;28%含水率试样具有相近的最终轴向变形和环向变形量,而34%含水率的试样环向变形量高于轴向变形量;初始含水率变化不大,但体缩率的变化率却明显不同,说明干湿循环过程使得土体内部结构变得不稳定,但颗粒间相互作用的本质未发生明显变化;干湿循环作用对重塑红黏土最优含水率位置的基本无影响,这说明其未能改变黏土集聚体内对结合水的最大吸附能力.通过压汞试验得到了不同干湿循环作用后试样的孔隙分布情况,随着干湿循环次数的增加小孔径尺寸和分布密度改变较小,而大孔径尺寸减小,分布密度也在减小.干湿循环作用对聚集体内孔径的影响大于对微聚体内孔隙影响,与所测得的宏观收缩规律相吻合.  相似文献   

11.
Ala?at? tuff has been used extensively as a source of building stone for outdoor and indoor decorations since the historical times in and around the tourist town of Ala?at? (western Turkey). The use of the Alacati tuff in buildings has been made compulsory by the Ala?at? municipality, for preserving the historical appearance of the buildings, after 2005 in Ala?at?. It has been noticed that, evident deteriorations developed in tuff surfaces of the stone buildings and garden walls within 5?C6?years of their emplacement. Durability properties of the Ala?at? tuff are evaluated by determining the mineralogical, chemical, and physico-mechanical properties of the fresh tuff samples obtained from the only operative quarry in the area. Ageing tests such as Na2SO4 and MgSO4 salt crystallization, freezing?Cthawing, and wetting?Cdrying were conducted on the fresh tuff samples to assess their durability. Additionally, the durability of the tuff is also evaluated by determining its average pore diameter, saturation coefficient, wet-to-dry strength ratio, static rock and slake-durability indices. Fresh Ala?at? tuff has high porosity and low unit weight and strengths and are classified to be very poor to moderately durable stone based on the test results of different durability assessment methods. Mineralogical and geochemical analyses have also been carried out on the deteriorated tuff samples collected from the surfaces of the stone buildings to determine the effect of weathering on tuff and the test results have been compared with those of the fresh tuff samples. There is no major difference observed between the mineralogy and chemistry of the fresh and weathered tuff samples thus, it has been concluded that physical weathering has been dominant in the area in deterioration of tuff.  相似文献   

12.
傅晏  袁文  刘新荣  缪露莉  谢文博 《岩土力学》2018,39(9):3331-3339
为研究酸性环境中砂岩在干湿循环作用下强度的劣化规律,在溶液pH值分别为7、5、3的浸泡环境中,对砂岩试样进行循环次数为1、5、10、15、20次的干湿循环试验。根据每个循环阶段后的强度数据,得到Mohr-Coulomb强度准则参数和Hoek-Brown强度准则参数,并对这些参数的干湿循环劣化效应做简要的分析。再根据应力空间中偏应力与强度准则参数的关系式,分别作出pH值为7、5、3的浸泡溶液作用下π平面上的破坏面随不同循环次数的变化图。结果表明:各准则参数随着干湿循环次数的增加呈下降趋势,循环次数较小时劣化较为严重,而后呈缓和趋势;pH值越低,劣化越严重,劣化效应由大至小依次为:单轴抗压强度、黏聚力、材料常数、内摩擦角;同一pH值浸泡环境中,循环次数较小时,π平面上的破坏曲线较为稀疏,循环次数越大,破坏曲线越密集;不同pH值浸泡环境中,pH越低,破坏曲面越小;偏应力与单轴抗压强度、黏聚力正相关,与材料常数、内摩擦角负相关。  相似文献   

13.
Environmental controls on stone decay processes are rapidly changing as a result of changing climate. UKCP09 projections for the 2020s (2010–2039) indicate that over much of the UK seasonality of precipitation will increase. Summer dryness and winter wetness are both set to increase, the latter linked to projected precipitation increases in autumn and spring months. If so, this could increase the time that stone structures remain wet and possibly the depth of moisture penetration, and it appears that building stone in Northern Ireland has already responded through an increased incidence of algal ‘greening’. This paper highlights the need for understanding the effects of climate change through a series of studies of largely sandstone structures. Current and projected climatic trends are therefore considered to have aesthetic, physical and chemical implications that are not currently built into our models of sandstone decay, especially with respect to the role played by deep-seated wetness on sandstone deterioration and decay progression and the feedbacks associated with, for example surface algal growth. In particular, it is proposed that algal biofilms will aid moisture retention and further facilitate moisture and dissolved salt penetration to depth. Thus, whilst the outer surface of stone may continue to experience frequent wetting and drying associated with individual precipitation events, the latter is less likely to be complete, and the interiors of building blocks may only experience wetting/drying in response to seasonal cycling. A possible consequence of deeper salt penetration could be a delay in the onset of surface deterioration, but more rapid and effective retreat once it commences as decay mechanisms ‘tap into a reservoir of deep salt’.  相似文献   

14.
Durability of building stones is an important issue in sustainable development. Crystallization of soluble salts is recognized as one of the most destructive weathering agents of building stones. For this reason, durability of Ghaleh-khargushi rhyodacite and Gorid andesite from Iran was investigated against sodium sulfate crystallization aging test. Petrographic and physico-mechanical properties and pore size distribution of these stones were examined before and after the aging test. The characteristics of the microcracks were quantified with fluorescence-impregnated thin sections. Durability and physico-mechanical characteristics of Ghaleh-khargushi rhyodacite are mainly influenced by preferentially oriented preexisting microcracks. Stress induced by salt crystallization led to the widening of preexisting microcracks in Ghaleh-khargushi rhyodacite, as confirmed by the pore size distributions before and after the aging test. The preexisting microcracks of Gorid andesite were attributed to the mechanical stress induced by contraction of lava during cooling. The number of transcrystalline microcracks was significantly increased after the aging test. The degree of plagioclase microcracking was proportional to its size. Durability of the studied stones depends on initial physico-mechanical properties, pore size distribution, and orientation of microcracks. Initial effective porosity is found to be a good indicator of the stones’ durability. Salt crystallization resulted in an increase in the effective porosity with a parallel decrease in the wave velocities. Surface microroughness parameters increased with the development of salt crystallization-induced microcracking. Gorid andesite showed higher quality and durability than Ghaleh-khargushi rhyodacite.  相似文献   

15.
膨胀土强度干湿循环试验研究   总被引:17,自引:2,他引:15  
吕海波  曾召田  赵艳林  卢浩 《岩土力学》2009,30(12):3797-3802
通过南宁地区原状膨胀土干湿循环试验,探讨了膨胀土抗剪强度与含水率、循环次数、循环幅度等循环控制参数的关系。研究结果表明:膨胀土抗剪强度随干湿循环次数增加而衰减,最终趋于稳定,强度稳定值与稳定时所需循环次数均随含水率变化幅度的增加而减小。在此基础上,利用压汞试验测定了膨胀土干湿循环过程中的孔径分布,发现干湿循环对土的粒间联结产生不可逆的削弱,使得土体形成更大的孔隙空间,在高含水率时主要表现为集聚体间孔体积增加,在低含水率时集聚体内孔体积增加,从而降低土的抗剪强度。  相似文献   

16.
Ground penetrating radar (GPR) method is used as a tool to identify the zonation boundaries in ignimbrite series through their columnar section. Ignimbrites can be classified in terms of welding degree, colour, texture and mineralogical compositions. The research area comprises a part of İncesu (Kayseri) ignimbrite at Central Anatolia, Turkey. This ignimbrite is divided into three levels and each level has clear differences in terms of macroscopic and microscopic views. This paper presents the results of an application of GPR for the determination of zonation boundary within the ignimbrite flow unit in the view of their textural and petrological features. RAMAC CU II equipment was used with 250 MHz shielded antenna on parallel ten profiles to observe the physical difference among the ignimbrite levels of the study area. Two levels out of three have been defined at the İncesu ignimbrite and supported by field geology and petrographical studies. The first level, which is extremely fractured structure, is about 1.5 m thick and matches with middle level of the İncesu ignimbrite. The second level has an average 50–75 cm thickness and matches with lower level of the ignimbrite. In this manner, vertical lithological variations should be taken into consideration during petrological investigation of the ignimbrites.  相似文献   

17.
Black cotton soil (BCS) deposits, stabilized with waste materials-wood-ash and organic matter (leaves, grass, etc.) exist in BCS areas of North Karnataka, India. These ash-modified soils (AMS) are apparently stabilized by hydrated lime produced by biochemical, dissolution, and hydration reactions. The influence of cyclic wetting and drying on the swelling behaviour of wood-ash-modified BCS and laboratory lime-treated BCS specimens are examined in this study. Such a study is required to assess the long-term behaviour of chemically stabilized soils in geotechnical applications. Cyclic wetting and drying caused the AMS specimens to become more porous and less saturated. Consequently, the cyclically wetted and dried (or desiccated) AMS specimens collapsed significantly at the experimental flooding pressures. The beneficial effects of lime-stabilization of the BCS specimens were also partially lost in cyclically wetting and drying them. The clay contents of the lime-treated BCS specimens increased on cyclic wetting and drying. The increased clay contents in turn, affected their Atterberg limits and swell–shrink potentials. Partial loss of inter-particle cementation, increased porosity, and reduced degree of saturation, also imparted small to moderate collapse potentials to the desiccated lime-treated BCS specimens.  相似文献   

18.
干湿交替对砂岩力学特性影响的试验研究   总被引:5,自引:0,他引:5  
姚华彦  张振华  朱朝辉  施一春  李元 《岩土力学》2010,31(12):3704-3708
由于地下水位的升降等原因,岩体经常处于干湿交替状态,这对岩体工程的长期稳定性不利。以红砂岩为研究对象,进行了干燥-饱水干湿交替作用后的常规单轴和三轴压缩试验研究,获得了砂岩应力-应变曲线,分析了其变形破坏特征。相对于没有经过干湿交替作用的干燥试件,经过不同次数的干燥-饱水交替作用后,砂岩的弹性模量、单轴和三轴抗压强度、黏聚力、内摩擦角等都有不同程度的降低。各力学指标的总体变化趋势是在第1次饱水之后均有较大幅度的下降,此后,随着干湿交替作用次数增加其降低的幅度逐渐减小,干湿交替作用使岩石的延性增强。在围压作用下,砂岩的峰值强度均随着围压的增大而增大,干燥试件强度的围压效应要比多次干湿交替作用后的试件显著。  相似文献   

19.
20.
The aim of the present article is to identify the influence of the pore morphology on the physical behaviour and durability of natural stone. Fifteen sedimentary rocks commonly used in the cultural and architectural heritage of Aragon (Spain) were characterized. The petrography, porous structure, fluid transport properties and durability of these rocks were analysed. They were classified into two different groups according to the results of the different tests. For each of these groups the physical behaviour was established. A principal components analysis was used in order to examine the correlation between pore structure, hydric properties and durability. The results show that the percentage of pore throats <0.1 μm control the fluid transport properties, have an important influence on stone durability, and can be used to predict resistance to salt decay while the average pore size does not. Stones with a high percentage of pore throats <0.1 μm are less susceptible to salt decay than stones with higher pore size if their pore network is characterized by high tortuosity and low connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号