首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eloctromigraiion offers a potential tool for remediating ground water contaminated with highly soluble components, such as Na+, Cl, NO3 and SO4. A field experiment was designed to lest the efficacy of electromigration for preconcontrating dissolved SO42 in ground water associated with a fossil-fuel power plant. Two shallow wells, 25 feel apart (one 25 feel deep, the other 47 feet deep), were constructed in the upper portion of an unconfined alluvial aquifer. The wells were constructed with a double-wall design, with an outer casing of 4-inch PVC and an inner lube of 2-inch FVC; both were fully slotted (0.01 inch). Electrodes were constructed by wrapping the inner lulling with a 100-foot length of rare-earth metal oxide/copper wire. An electrical potential of 10.65 volts DC Was applied, and tests were run for periods of 12, 44, and 216 hours. Results showed large changes in the pH from the initial pH of ground water of about 7.5 to values of approximately 2 and 12 at the anode and cathode, respectively. Despite the fact that the test conditions were far from ideal, dissolved SO42-; was significantly concentrated at the anode. Over a period of approximately nine days, the concentration of SO42- at the anode reached what appeared to he a steady-state value of 2200 mg/L. compared lo the initial value in ground water of approximately 1150 mg/L. The results of this field lest should encourage further investigation of electromigration as a tool in the remediation of contaminated ground water.  相似文献   

2.
Abstract
Determination of chemical constituent ratios allows distinction between two salinization mechanisms responsible for shallow saline ground water and vegetative-kill areas in parts of west Texas. Mixing of deep-basin (high Cl) salt water and shallow (low Cl) ground water results in saline waters with relatively low Ca/Cl, Mg/Cl, SO44/ Cl, Br/Cl, and NO3/Cl ratios. In scattergrams of major chemical constituents vs. chloride, plots of these waters indicate trends with deep-basin brines as high Cl end members. Evaporation of ground water from a shallow water table, in contrast, results in saline water that has relatively high Ca/Cl, Mg/Cl, SO4/Cl, and Br/CL ratios. Trends indicated by plots of this water type do not coincide with trends indicated by plots of sampled brines. Leaching of soil nitrate in areas with a shallow water table accounts for high NO3 concentrations in shallow ground water.  相似文献   

3.
Machida I  Lee SH 《Ground water》2008,46(4):532-537
We observed long-term changes in the concentrations of dissolved ions in ground water caused by leachate from new volcanic ejecta deposited on the ground surface of the volcanic Miyakejima Island, Japan. Water samples were collected from nine wells and two rain collectors over a period of more than 10 years, and samples of runoff water were collected periodically. The samples were analyzed for temperature, pH, alkalinity, Cl, and SO42−; some of the samples were also analyzed for δ13C. Because the leachate from the volcanic ejecta contained sulfate, we recorded an increase in SO42 concentrations in the (unconfined) well water. The increase in SO42 was initially detected between less than 1.4 and 5.2 years after the eruption, showing peak concentrations from 2.4 to 6.4 years after the eruption. This delayed response reflects the transit time of downward-moving SO42 in the vadose zone, corresponding to an apparent movement rate of 0.4 to 7.2 cm/d. The rate relates to the mean recharge, represented as a fraction of local mean rainfall, and is calculated using the Cl balance method. The magnitude of the recorded increases reflects the volume of volcanic mudflow on the ground surface within the basin. For the management of ground water after an eruption, it is therefore important to know the chemical properties of the volcanic ejecta and the spatial distribution of mudflow to estimate the magnitude of the effect of ejecta on ground water quality.  相似文献   

4.
A large number of ground water samples (360) was collected from 60 stations over six consecutive seasons to study the influence of the main sewerage drain on shallow ground water table beneath the municipal area of Cuttack, India. A majority of the samples collected from stations close to the drain exceeded the maximum permissible limits set by the World Health Organization (WHO). Almost all the samples near the drain exceeded the WHO limit for NO3- and Na+. However, the concentrations decreased as the distance from the drain increased. The winter season registered the maximum concentrations of NH4+, NO3-, and SO42- ions whereas the minimum values always coincided with the rainy season. R-mode factor analysis was conducted to find relationships amongst the 16 chemical parameters studied. Fluoride showed a negative correlation with Cl-, Na+, NO3-, SO42-, and PO43-. The concentration of F- may be lower in raw waste water than naturally occurs in the ground water. Therefore, a decrease in the concentration of F- near the drain may be attributed to dilution by contributions of waste water to the ground water. The rest of the parameters were found to be directly related to the distance of collection points to the sewerage. The distribution of nutrients is strongly affected by leaching of waste water into the ground water.  相似文献   

5.
A six year field experiment has shown that a sand-bentonite mixture used to seal monitoring wells in aquitards contributes solutes to the ground water sampled from these wells. Monitoring wells were installed at field sites with hydraulic conductivity (K) ranging from 5 × 10 -9 m/s to 3 × 1011 m/s. In most cases the boreholes remained dry during installation which allowed the placement of a dry powdered bentonite/sand mixture tagged with potassium bromide (KBr) to seal and separate sampling points. Over six years, wells were sampled periodically and ground-water samples were analyzed for Br and Cl and other major ions. Typical Br results ranged from 10 mg/1 to 35 mg/1 in the first 700 days, as compared to an estimated initial concentration in the seal material of about 75 mg/1. After six years the bromide concentrations had decreased to between 3 mg/1 and 5 mg/1. The total mass of Br removed in six years is less than 50% of that placed; therefore the contamination effects, although considerably diminished, persist. The trends of Br, Cl, Na, and SO4 indicate that varying degrees of contamination occur. These data show that the materials used to seal monitoring wells in aquitards can have a significant and long-lasting impact on the chemistry of the water in the wells.  相似文献   

6.
Soil-solution samplers and shallow ground water monitoring wells were utilized to monitor nitrate movement to ground water following H2O2 application to a clogged soil absorption system. Nitrate-nitrogen concentrations in soil water and shallow ground water ranged from 29 to 67 mg/L and 9 to 22 mg/L, respectively, prior to H2O2 treatment. Mean nitrate-nitrogen concentrations in soil water and ground water increased and ranged from 67 to 115 mg/L and 23 to 37 mg/L, respectively, one week after H2O2 application. Elevated concentrations of nitrate-nitrogen above background persisted for several weeks following H2O2 treatment. The H2O2 treatment was unsuccessful in restoring the infiltrative capacity of a well-structured soil. Application of H2O2 to the soil absorption system poses a threat of nitrate contamination of ground water and its usefulness should be fully evaluated before rehabilitation is attempted.  相似文献   

7.
Sharma S  Frost CD 《Ground water》2008,46(2):329-334
Recovery of hydrocarbons commonly is associated with coproduction of water. This water may be put to beneficial use or may be reinjected into subsurface aquifers. In either case, it would be helpful to establish a fingerprint for that coproduced water so that it may be tracked following discharge on the surface or reintroduction to geologic reservoirs. This study explores the potential of using δ13C of dissolved inorganic carbon (DIC) of coalbed natural gas (CBNG)–coproduced water as a fingerprint of its origin and to trace its fate once it is disposed on the surface. Our initial results for water samples coproduced with CBNG from the Powder River Basin show that this water has strongly positive δ13CDIC (12‰ to 22‰) that is readily distinguished from the negative δ13C of most surface and ground water (−8‰ to −11‰). Furthermore, the DIC concentrations in coproduced water samples are also high (more than 100 mg C/L) compared to the 20 to 50 mg C/L in ambient surface and ground water of the region. The distinctively high δ13C and DIC concentrations allow us to identify surface and ground water that have incorporated CBNG-coproduced water. Accordingly, we suggest that the δ13CDIC and DIC concentrations of water can be used for long-term monitoring of infiltration of CBNG-coproduced water into ground water and streams. Our results also show that the δ13CDIC of CBNG-coproduced water from two different coal zones are distinct leading to the possibility of using δ13CDIC to distinguish water produced from different coal zones.  相似文献   

8.
This paper describes a dual-column laboratory setup consisting of a glass column and a stainless-steel column filled with aquifer material. The setup was used to replicate a ground water recirculation well that serves as an in situ reactor and a combined injection/withdrawal well. The treatment solution consisted of a buffered titanium (III) citrate/vitamin B12 mixture. The first column, representing the well, was made of glass, allowing for visual inspection of the mixing. The stainless-steel column was instrumented with redox (Eh) probes to monitor the changes in redox conditions. The redox measurement showed that, although the sand contained large quantities of iron oxides, the oxidation rate was relatively slow and the titanium solution would remain reduced for some time in the aquifer, continuing to react with the contaminants. This laboratory setup was used to optimize the reagent concentrations and rate of delivery for field implementation. It was found that 4 mM titanium citrate and 3 mg/L vitamin B12 were sufficient to degrade 1,1,2,2-tetrachloroethane and carbon tetrachloride within one day, but not trichloroethylene, which required five days with 10 mM titanium citrate and 5 mg/L vitamin B12.  相似文献   

9.
Installation of a permeable reactive barrier to intercept a phosphate (PO4) plume where it discharges to a pond provided an opportunity to develop and test methods for monitoring the barrier's performance in the shallow pond-bottom sediments. The barrier is composed of zero-valent-iron mixed with the native sediments to a 0.6-m depth over a 1100-m2 area. Permanent suction, diffusion, and seepage samplers were installed to monitor PO4 and other chemical species along vertical transects through the barrier and horizontal transects below and near the top of the barrier. Analysis of pore water sampled at about 3-cm vertical intervals by using multilevel diffusion and suction samplers indicated steep decreases in PO4 concentrations in ground water flowing upward through the barrier. Samples from vertically aligned pairs of horizontal multiport suction samplers also indicated substantial decreases in PO4 concentrations and lateral shifts in the plume's discharge area as a result of varying pond stage. Measurements from Lee-style seepage meters indicated substantially decreased PO4 concentrations in discharging ground water in the treated area; temporal trends in water flux were related to pond stage. The advantages and limitations of each sampling device are described. Preliminary analysis of the first 2 years of data indicates that the barrier reduced PO4 flux by as much as 95%.  相似文献   

10.
This paper is devoted to study the effect of saturation, with distilled water, on AC electrical conductivity and dielectric constant of a fully and partially saturated hematitic sandstone sample (Aswan area, Egypt). The saturation of the sample was changed from full saturation to partial saturation by air drying. Complex resistivity measurements at room temperature (∼16° C) were performed in the frequency range from 10 Hz to 100 kHz. We used non-polarizing Cu/CuSO4 gel electrodes. Experimental electrical spectra indicate, generally, that the electrical conductivity and dielectric constant vary strongly with water saturation and frequency. The low-frequency electrical conductivity and dielectric constant are supposed to be mainly controlled by surface conduction and polarization of the electrical double layer. Power law behaviours with frequency were noticed. The change in electrical conductivity and dielectric constant with increasing water content is fast at low saturations and slow at high saturations. The behaviour of the electrical conductivity and dielectric constant, with increasing water content, was argued to be the orientational polarization of bound water for very low saturations, displacement of the excess surface charges for relatively low saturations and free exchange of excess ions in double layer with the bulk electrolyte and generation of transient diffusional potentials, which lag behind the applied field for high saturations in addition to membrane polarization on clay and at inter-grain and grain surface water throats having selective charge transport properties. Also, from the data a semi-percolation behaviour was found that has a peak of dielectric constant at a certain concentration and an abrupt change in conductivity at another saturation.  相似文献   

11.
Tomohiro  Toki  Toshitaka  Gamo  Urumu  Tsunogai 《Island Arc》2006,15(3):285-291
Abstract   We collected free-gas and in situ fluid samples up to a depth of 200.6 m from the Sagara oil field, central Japan (34°44'N, 138°15'E), during the Sagara Drilling Program (SDP) and measured the concentrations and stable carbon isotopic compositions of CH4 and C2H6 in the samples. A combination of the CH4/C2H6 ratios with the carbon isotope ratios of methane indicates that the hydrocarbon gases are predominantly of thermogenic origin at all depths. The isotope signature of hydrocarbon gases of δ13      < δ13     suggests that these gases in the Sagara oil field are not generated by polymerization, but by the decomposition of organic materials.  相似文献   

12.
Treatment of nitrogen in landfill leachate has received considerable attention recently because of the relatively low levels at which some nitrogen species (i.e., NH3) can be toxic to aquatic life forms. This study reports on the results of a three-year, pilot-scale field trial demonstrating the use of infiltration bed and nitrate barrier technology to achieve nitrogen removal in landfill leachate. The infiltration bed comprises an unsaturated sand layer overlying a saturated layer of waste cellulose solids (sawdust), which acts as a carbon source for heterotrophic denitrification. When loaded at a rate of 1 to 3 cm/day, the infiltration bed was successful at lowering leachate inorganic nitrogen (NH4++ NO3-) levels averaging 24.8 mg/L N by 89%, including 96% in the third year of operation. The surface water discharge criteria for un-ionized ammonia (NH3) were met on all occasions in the treated leachate during the second and third years of operation. Nitrogen attenuation is presumed to occur by a two-step process in which leachate NH4+ is first oxidized to NO3- in the unsaturated sand layer and then is converted to nitrogen gas (N2) by denitrification occurring in the underlying sawdust layer. Mass balance calculations suggest that the sawdust layer has sufficient carbon to allow denitrification to proceed for long periods (1.0 to 30 years) without replenishment. Because this technology is simple to construct and is relatively maintenance free, it should be attractive for use at smaller landfills where the installation of conventional treatment plants may not be feasible.  相似文献   

13.
The goal of this study was the cleanup of residual solvents in the saturated zone using an in situ biochemical treatment. Perchloroethylene (PCE) was chosen as a model compound because it is the most commonly found organic ground water contaminant. A mixture of vitamin B12 with titanium citrate was pumped as the remedial solution through a column containing 100 μL of PCE residual. The rate of reaction was found to be first order with respect 10 the concentration of PCE and to the concentration of vitamin B2. At 10 ppm B12, more than 85 percent PCM was degraded to trichloroelhylene (TCE) and dichloroelhylene (DCE) in two hours. The presence of low to moderate concentrations of organic carbon had no significant effect on the reaction. Vitamin B12 reduced by titanium citrate was found lo be compatible with the survival of anaerobic bacteria. The four major advantages of the biochemical system over the use of anaerobic bacteria are that (1) the rate is faster: (2) there is no need for the careful balance of nutrients or the addition of an extraneous carbon source: (3) there is no restriction in the concentration range of the compound to be treated; and (4) the remedial solution is mobile, even in the presence of organic carbon.  相似文献   

14.
Hydrogen gas was discovered within the steel casing above standing water in a percussion-drilled borehole on the Hanlord Site in south-central Washington state. In situ measurements of the borehole fluids indicated anoxic, low-Eh (<-400 mV) conditions. Ground water sampled from adjacent wells in the same formation indicated that the ground water was oxygenated. H2 was generated during percussion drilling, due to the decomposition of borehole waters as a result of aqueous reactions with drilled sediment and steel from the drilling tools or casing. The generation of H2 within percussion-drilled boreholes that extend below the water table may be more common than previously realized. The ambient concentration of H2 produced during drilling was limited by microbial activity within the casing-resident fluids. H2 was generated abiotically in the laboratory, whereby sterilized borehole slurry samples produced 100 times more H2 than unsterilizcd samples. It appears that H2 is metabolized by microorganisms and concentrations might be significantly greater if not for microbial metabolism.  相似文献   

15.
Large differences in chemistry between sampling points separated In short vertical intervals are often observed in contaminant plumes in both granular and fractured aquifers. However, most regional models assume that such differences will be reduced by dispersive mixing during transport. At a field site located in a discharge area on the Oak Ridge Reservation, Tennessee, ground water flows along discrete flowpaths, as evidenced by the presence of four distinct water types—Ca-HCO3, Ca-Na-HCO3, and Na-Ca-HCO3, and Na-Ca-HCO3-S04—in samples collected from shallow (< 3D in) multilevel wells. The preservation of distinct chemical signatures suggests that ground water must he contained in discrete flow zones during much of its transport time. The chemical composition of the water types can be explained primarily by strata-bound flow over varying flowpath lengths and secondarily by mixing of waters during cross-formational flow in a discharge zone. The hydrochemical facies identified by correlation of water types between the boreholes indicate the general orientation of ground water How paths. These inferred flowpaths are oblique to the orientation of the measured hydraulic gradient and are more closely aligned with bedding and the calculated flow direction. Results of this study indicate that discrete multilevel sampling for analysis of major ions, in addition to information gathered from tracer tests, borehole flow tests. and visual core observations, can provide valuable information on flow directions and preferential flowpaths for contaminant transport.  相似文献   

16.
Electro-osmosis (EO), the movement of water through porous media in response to an electric field, offers a means for extracting contaminated ground water from fine-grained sediments, such as clays, that are not easily amenable to conventional pump-and-treat approaches. The EO-induced water flux is proportional to the voltage gradient in a manner analogous to the flux dependence on the hydraulic gradient under Darcy's law. The proportionality constant, the soil electro-osmotic conductivity or keo, is most easily measured in soil cores using bench-top tests, where flow is one-dimensional and interfering effects attributable to Darcy's law can be directly accounted for. In contrast, quantification of EO fluxes and keo in the field under deployment conditions can be difficult because electrodes are placed in ground water wells that may be screened across a heterogeneous mixture of lithologies. As a result, EO-induced water fluxes constitute an approximate radial flow system that is superimposed upon a Darcy flow regime through permeable pathways that may or may not be coupled with hydraulic head differences created by the EO-induced water fluxes. A single well comparative tracer test, which indirectly measures EO fluxes by comparing wellbore tracer dilution rates between background and EO-induced water fluxes, may provide a means for routinely quantifying the efficacy of EO systems in such settings. EO fluxes measured in field tests through this technique at a ground water contamination site were used to estimate a mean keo value through a semianalytic line source model of the electric field. The resulting estimate agrees well with values reported in the literature and with values obtained with bench-top tests conducted on a soil core collected in the test area.  相似文献   

17.
The area surrounding the Colorado Department of Transportation Materials Testing Laboratory in Denver was the subject of intense investigation, involving the collection of thousands of ground water, soil-gas, and indoor air samples in order to investigate indoor air impacts associated with a subsurface release of chlorinated solvents. The preremediation portion of that data set is analyzed and reduced in this work to ground water–to-indoor air attenuation factors (αgw= the ratio of the measured indoor air concentration to the soil-gas concentration predicted to be in equilibrium with the local ground water concentration). The empirical αgw values for this site range from about 10−6 to 10−4 with an overall average of 3 × 10−5 (μg/L indoor air)/(μg/L soil gas). The analysis of this data set highlights the need for a thorough data review and data screening when using large data sets to derive empirical relationships between subsurface concentrations and indoor air. More specifically, it is necessary to identify those parts of the data that contain a strong vapor intrusion pathway signal, which generally will require concentrations well above reported detection levels combined with spatial or temporal correlation of subsurface and indoor concentrations.  相似文献   

18.
Susumu  Kato  Amane  Waseda  Hideki  Nishita 《Island Arc》2006,15(3):304-312
Abstract   Six oil samples collected from the Sagara oil field, Shizuoka Prefecture, were geochemically analyzed. Unlike the Niigata oils, the Sagara oils: (i) are low-sulphur light oils dominated by gasoline and kerosene fractions; (ii) have low values of environment index in light hydrocarbon compositions; (iii) have high Pr/ n -C17 and low Ph/ n -C18 ratios and high oleanane/hopane ratios; (iv) have high relative abundance of C29 and low relative abundance of C28 regular steranes; and (v) have 'light' stable carbon isotope compositions. These characteristics show that the source rocks of the Sagara oils contain mainly marine organic matter, but with more input of terrigenous organic matter deposited under more oxic conditions compared to those of the Niigata oils. The light carbon isotope compositions and the low relative abundance of C28 regular steranes of the Sagara oils suggest that their source rock is not Miocene, but probably Paleogene in age. The Sagara oils probably migrated along faults from deeper parts of the basin.  相似文献   

19.
Air Channel Formation, Size, Spacing, and Tortuosity During Air Sparging   总被引:4,自引:0,他引:4  
Characterizing mass transfer during in situ air sparging requires knowledge of the size, shape, and interfacial area of air channels. These characteristics were determined by analysis of digital images of air channels passing through submerged glass beads having particle size in the sand range. Pore-scale channeling occurred in all cases. The analysis showed that the air channels were narrower, more tortuous, more closely spaced, and moved nearly vertically through the coarser media. In the finer media, air channels had larger diameter, were spaced further apart, and passed nearly horizontally through the media. The mean diameter of the channels varied between 2.8 and 8.1 mm, and the mean spacing varied between 8.3 and 19.4 mm. Estimates of the area of the air-water interface per unit volume of soil (a0), computed using data from the digital images and an assumed arrangement of channels, ranged from 0.02 to 0.2 mm2/mm3. Larger a0 were obtained for coarser media and uniformly graded media. These estimates of a0 compare well with published values for common packed-column materials and for unsaturated soils.  相似文献   

20.
A model for the diffusion of gases through polymeric tubing was derived which predicts that the amount of gas transferred is proportional to the tubing length and inversely proportional to the pumping rate. The model was experimentally tested and confirmed for oxygen transfer through fluorinated ethylene-propylene copolymer (FEP) tubing using tubing lengths and flow rates typical of ground water sampling. Diffusion can introduce measurable concentrations of oxygen into initially anoxic water. Diffusive loss of carbon dioxide from water that is oversaturated with respect to atmospheric CO2 does not measurably affect pH under similar usage conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号