首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 176 毫秒
1.
改进的有自由面渗流问题的Bathe算法   总被引:5,自引:2,他引:5  
郑宏  戴会超  刘德富 《岩土力学》2005,26(4):505-512
建议了一个新的有自由面渗流问题的变分不等式提法,该提法通过将潜在出渗面上的边界条件提为Signorini型条件,从而从理论上消除了出渗点的奇性,解决了出渗点的定位问题。同时在离散求解时,通过引进依赖于网格参数的连续型Heaviside函数,克服了Bathe算法中所固有的网格依赖性,提高了这类方法的数值稳定性。  相似文献   

2.
裂隙网络无压渗流分析的初流量法   总被引:1,自引:0,他引:1  
姚池  姜清辉  叶祖洋  周创兵 《岩土力学》2012,33(6):1896-1903
借鉴初流量法的思想,引入初流速来抵消在裂隙网络干区实际不存在的流速,将Darcy定理扩展到整个区域,定义了在整个区域上的非线性边值问题,并将潜在溢出面边界条件归纳为Signorini型边界条件,建律了等价的变分不等式提法。通过结合连续型的Heaviside函数,给出了基于变分不等式的初流量有限元迭代算法,研制开发了相应的计算程序,通过两个典型算例验证了本文算法在求解复杂裂隙网络渗流自由面的有效性和鲁棒性。  相似文献   

3.
《岩土力学》2017,(3):762-768
Signorini型变分不等式在求解有出渗点的渗流自由面问题时,消除了出渗点的奇性,克服了网格的依赖性。在迭代求解过程中多采用约束迭代法,这种数学约束比较严格,对于自由面穿过的单元计算不容易收敛,会造成结果在两种解中震荡。笔者在变分不等式的基础上修改了迭代公式,对数学约束进行了修改,建立了变带宽的迭代方法。通过修改迭代算法提高了Signorini型变分不等式方法的数值稳定性,同时减少了迭代时间。地下厂房开挖后地下水会从洞室的边墙渗出,临界出渗点的确定对分析渗漏量和排水孔效果起到关键作用。通过对工程中开挖边界和排水孔边界的渗流计算模拟分析,证明了改进迭代算法后的Signorini型变分不等式在复杂非线性强的三维渗流计算中收敛性较好。  相似文献   

4.
白正雄  陈益峰  胡冉  张勤  周创兵 《岩土力学》2012,33(9):2829-2836
排水是岩土体及工程构筑物渗流控制的主要措施之一,其实质是通过在渗流域内形成潜在溢出边界或低水位边界而实现渗流控制的。在排水渗控条件下,渗流场往往具有强烈的边界非线性特征,Signorini型变分不等式方法从理论上为稳定和非稳定排水渗流问题提供了有效的分析方法,但其实际效果还需要得到试验的验证。通过开展含5个排水廊道的排水砂槽模型试验,研究了复杂排水条件下砂土渗流的基本规律,并通过试验数据与数值计算成果的对比分析,论证了Signorini型变分不等式方法的有效性和正确性。试验结果表明,在稳定渗流条件下,排水砂槽上游侧3个排水廊道对渗流控制起主导作用,而下游侧2个廊道则失去排水功能,数值计算与试验成果吻合较好;在非稳定渗流条件下,受测压管精度、砂样均匀性和毛细效应的影响,数值计算与试验成果存在一定偏差,但也较好地揭示了复杂排水条件下砂槽中的非稳定渗流特征。排水砂槽试验结果验证了Signorini型变分不等式方法的有效性和正确性,为复杂排水条件下岩土体及工程构筑物的渗控结构优化设计提供了有效的分析手段。  相似文献   

5.
周斌  严俊  刘斯宏  杨茂盛 《岩土力学》2018,39(1):349-355
含自由面的无压渗流问题本质上是一类非线性自由边值问题,固定网格的结点虚流量法在全域范围内不断扣除虚域流量贡献,从而使该问题得到求解。它具有网格依赖性小、出逸点收敛快等优点,但其内在理论基础尚未被完全揭示。通过引入互补型约束条件建立了结点虚流量法和Signorini型变分不等式提法的等价性桥梁,在此基础上引入过渡区放大系数 对自由面判别准则进行优化,并以砂槽模型试验为例进行验证。对比结果表明,优化后算法数值稳定性更好,计算结果与试验数据吻合度更高。研究成果为超大规模网格的渗控结构优化设计提供了有效分析手段。  相似文献   

6.
岩体裂隙网络非稳定渗流分析与数值模拟   总被引:1,自引:0,他引:1  
叶祖洋  姜清辉  姚池  周创兵 《岩土力学》2013,34(4):1171-1178
针对裂隙岩体的非稳定渗流问题,通过将Darcy定理扩展到包含干区的整个裂隙网络区域,并令潜在溢出边界条件为Signorini型互补边界条件,将湿区上的非稳定渗流问题转化为全域上的一个新的初边值问题。为降低试探函数选取的难度,建立与定义在整个裂隙网络区域上的偏微分方程(PDE)提法等价的抛物型变分不等式(PVI)提法,并给出裂隙网络非稳定渗流分析的有限元数值分析格式和迭代算法,与砂槽模型试验数据的对比分析,验证其有效性。最后,将文中发展的计算方法应用到含复杂裂隙网络的边坡非稳定渗流分析,计算结果很好地反映出边坡内部自由面随库水降落的变化规律,并能准确地描述裂隙网络内部渗流运动特征及流量分布的不均匀性。  相似文献   

7.
面板坝垂直缝及止水失效渗流场有限元模拟   总被引:2,自引:0,他引:2  
潘少华  毛新莹  白正雄 《岩土力学》2008,29(Z1):145-148
以金川面板堆石坝为例,用有限元方法计算了当面板缝及止水局部失效时各种工况下的渗流场,系统分析了大坝在面板垂直缝及止水局部失效后的稳定渗流场的规律和特点。采用无厚度的二维平面单元来模拟面板垂直缝及止水结构周边缝,同时采用理论上严密的Signorini型变分不等式方法进行求解,此方法能对渗流出渗点和浸润线进行准确定位。通过分析计算结果,指出了面板缝及止水结构周边缝的失效位置,失效缝宽对等势线、浸润线以及渗漏量的影响。为面板堆石坝接缝的设计提供参考。  相似文献   

8.
卡拉水电站坝区渗流控制效应精细模拟与评价   总被引:1,自引:0,他引:1  
郑华康  张枫  李毅  陈益峰  周创兵 《岩土力学》2012,33(9):2743-2748
卡拉水电站坝址区河谷狭窄,岸坡陡峻,地质条件复杂,渗漏问题突出。为减小卡拉坝区渗漏并改善大坝的渗透稳定性,工程设计采取防渗帷幕、排水孔幕和排水洞等防渗排水措施。采用子结构、变分不等式和自适应罚函数相结合的方法(简称SVA方法),结合典型溢流坝段与坝区整体渗流场分析成果,评价卡拉大坝及坝基渗流控制方案的合理性,并论证其优化的可能性。研究表明:①防渗帷幕有效雍高了帷幕上游侧岩体内的地下水位、增加了绕坝渗流的渗径长度并降低了坝基的扬压力,排水系统则显著降低了坝体内的孔隙水压力以及坝基扬压力;②排水孔幕间距对坝体内的自由面分布有着显著影响,排水孔幕间距取3.0~4.5 m是合适的。  相似文献   

9.
利用不动点和预解方程这一技巧,给出一个求解混合似变分不等式的四步迭代算法。在算子T伪单调连续的条件下,即可证明新提出的算法的收敛性,并且所得到的结果可以看作是对先前求解变分不等式算法的推广和改进。  相似文献   

10.
《岩土力学》2017,(11):3332-3340
针对裂隙岩体的非饱和渗流问题,基于离散裂隙网络模型并结合非饱和Darcy定律、Richards方程、非饱和本构模型以及Signorini型饱和-非饱和互补溢出边界,提出了离散裂隙网络非饱和渗流问题的数学模型。采用有限单元法建立了裂隙网络非饱和渗流模型的数值求解格式和对应的迭代算法。通过与矩形坝稳定渗流、一维竖直裂隙非饱和入渗以及室内二维瞬态排水渗流的试验、数值及理论结果对比分析,验证了文中算法的有效性;根据流量等效原则,指出了裂隙网络模型应用于求解连续介质非饱和渗流问题的有效性。验证了该算法对于求解裂隙边坡降雨入渗问题的可靠性,揭示了降雨入渗过程裂隙网络流量分布的非均匀性及裂隙产状对降雨入渗流动具有重要的控制作用。  相似文献   

11.
A numerical solution to seepage problems with complex drainage systems   总被引:2,自引:0,他引:2  
Seepage problems with complex drainage systems are commonly encountered in civil engineering, with strong non-linearity. A numerical solution based on the Finite Element Method combining the substructure technique with a variational inequality formulation of Signorini’s type is proposed to solve these problems. The aims of this work are to accurately characterize the boundary conditions of the drainage systems, to reduce the difficulty in mesh generation resulting from the drainage holes with small radius and dense spacing, and to eliminate the singularity at the seepage points and the resultant mesh dependency. Numerical stability and robustness of the proposed method are guaranteed by an adaptive procedure for progressively relaxing the penalized Heaviside function associated with the formulation of the discrete variational inequality. Two challenging numerical examples are presented to validate the effectiveness and robustness of the proposed method.  相似文献   

12.
By extending Darcy's law to the dry domain above the free surface and specifying the boundary condition on the potential seepage surfaces as Signorini's type, a partial differential equation (PDE) defined in the entire domain of interest is formulated for non‐steady seepage flow problems with free surfaces. A new parabolic variational inequality (PVI) formulation equivalent to the PDE formulation is then proposed, in which the flux part of the complementary condition of Signorini's type in the PDE formulation is transformed into natural boundary condition. Consequently, the singularity at the seepage points is eliminated and the difficulty in selecting the trial functions is significantly reduced. By introducing an adaptive penalized Heaviside function in the finite element analysis, the numerical stability of the discrete PVI formulation is well guaranteed. The proposed approach is validated by the existing laboratory tests with sudden rise and dropdown of water heads, and then applied to capture the non‐steady seepage flow behaviors in a homogeneous rectangular dam with five drainage tunnels during a linear dropdown of upstream water head. The non‐steady seepage flow in the surrounding rocks of the underground powerhouse in the Shuibuya Hydropower Project is further modeled, in which a complex seepage control system is involved. Comparisons with the in situ monitoring data show that the calculation results well illustrate the non‐steady seepage flow process during impounding and the operation of the reservoir as well as the seepage control effects of the drainage hole arrays and drainage tunnels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A variational principle and the corresponding finite element equations for determination of the stream function for soil seepage problems is given using the standard finite element potential solution as data. The procedure is very simple and independent of the element type employed. Generalization of the method to multiply connected domains is included.  相似文献   

14.
This paper proposed a numerical formulation for unsaturated flow problems with nonlinear boundaries of seepage face and soil–atmosphere interface via the concept of parabolic variational inequality (PVI) method. A unified unilateral boundary condition was first proposed to represent the conditions on the seepage face and soil–atmosphere interface boundaries within the partial differential equation (PDE) formulation. A PVI formulation mathematically equivalent to the PDE formulation was then proposed, which automatically transforms the flux part of the unified unilateral boundary condition into the natural boundary condition and eliminates the singularity at seepage points. By discretizing the PVI formulation, a finite element procedure together with an iterative algorithm was suggested. An existing experiment of unsaturated flow in a layered hillside and a laboratory test of unsaturated flow through sand flume performed in this study were used to validate the proposed method, with a good agreement between the measured and computed results and a satisfactory balance of mass being maintained during the simulations. The numerical results also indicated that the problem of mesh dependence associated with unsaturated flow simulations is well addressed with the proposed numerical method. Finally, the process of unsaturated flow in a soil slope with layers of horizontal drains subjected to rainfall/evaporation was further examined. The numerical results reveal that the deployment of drains in a soil slope can significantly lower the pore water pressure around the drains, with the bottom layer drains being most effective in controlling the seepage flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号