首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We present an analysis of spacecraft observations of non-thermal X-rays and escaping electrons for 5 selected small solar flares in 1967. OSO-3 multi-channel energetic X-ray measurements during the non-thermal component of the solar flare X-ray bursts are used to derive the parent electron spectrum and emission measure. IMP-4 and Explorer-35 observations of > 22 keV and > 45 keV electrons in the interplanetary medium after the flares provide a measure of the total number and spectrum of the escaping particles. The ratio of electron energy loss due to collisions with the ambient solar flare gas to the energy loss due to bremsstrahlung is derived. The total energy loss due to collisions is then computed from the integrated bremsstrahlung energy loss during the non-thermal X-ray burst. For > 22 keV flare electrons the total energy loss due to collisions is found to be 104 times greater than the bremsstrahlung energy loss and 102 times greater than the energy loss due to escaping electrons. Therefore the escape of electrons into the interplanetary medium is a negligible energetic electron loss mechanism and cannot be a substantial factor in the observed decay of the non-thermal X-ray burst for these solar flares.We present a picture of electron acceleration, energy loss and escape consistent with previous observations of an inverse relationship between rise and decay times of the non-thermal X-ray burst and X-ray energy. In this picture the acceleration of electrons occurs throughout the 10–100 sec duration of the non-thermal X-ray burst and determines the time profile of the burst. The average energy of the accelerated electrons first rises and then falls through the burst. Collisions with the ambient gas provide the dominant energetic electron loss mechanism with a loss time of 1 sec. This picture is consistent with the ratio of the total number of energetic electrons accelerated in the flare to the maximum instantaneous number of electrons in the flare region. Typical values for the parameters derived from the X-ray and electron observations are: total energy in > 22 keV electrons total energy lost by collisions = 1028–29 erg, total number of electrons accelerated above 22 keV = 1036, total energy lost by non-thermal bremsstrahlung = 1024erg, total energy lost in escaping > 22 keV electrons = 1026erg, total number of > 22 keV electrons escaping = 1033–34.The total energy in electrons accelerated above 22 keV is comparable to the energy in the optical or quasi-thermal flare, implying a flare mechanism with particle acceleration as one of the dominant modes of energy dissipation.The overall efficiency for electron escape into the interplanetary medium is 0.1–1% for these flares, and the spectrum of escaping electrons is found to be substantially harder than the X-ray producing electrons.Currently at Tokyo Astronomical Observatory, Mitaka, Tokyo, Japan.  相似文献   

2.
R. P. Lin 《Solar physics》1970,12(2):266-303
Observations of prompt 40 keV solar flare electron events by the IMP series of satellites in the period August, 1966 to December, 1967 are tabulated along with prompt energetic solar proton events in the period 1964–1967. The interrelationship of the various types of energetic particle emission by the sun, including relativistic energy electrons reported by Cline and McDonald (1968) are investigated. Relativistic energy electron emission is found to occur only during proton events. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. Evidence is presented for two separate particle acceleration and/or emission mechanisms, one of which produces 40 keV electrons and the other of which produces solar proton and possibly relativistic energy electrons. It is found that solar flares can be divided into three categories depending on their energetic particle emission: (1) small flares with no accompanying energetic phenomena either in particles, radio or X-ray emission; (2) small flares which produce low energy electrons and which are accompanied by type III and microwave radio bursts and energetic ( 20 keV) X-ray bursts; and (3) major solar flare eruptions characterized by energetic solar proton production and type II and IV radio bursts and accompanied by intense microwave and X-ray emission and relativistic energy electrons.  相似文献   

3.
The probable connection between cosmic rays and the electromagnetic state of the interplanetary medium was recognized by Hannes Alfvén as early as 1949 (Alfvén, 1949, 1950); he pointed out that the properties of cosmic rays necessitate a mechanism, external to Earth but within the solar system, capable of accelerating particles to extremely high energies. In advocating the view of local origin for part of the cosmic-ray spectrum, Alfvén and his colleagues developed a very general type of acceleration mechanism called magnetic pumping. The unique data set of the two Voyagers extends over an entire decade (1977–1987) and is most suitable to explore the problem of acceleration of charged particles in the heliosphere. The energy coverage of the Low Energy Charged Particle (LECP) experiment covers the range 30 keV to several hundred MeV for ions and 22 keV to several MeV for electrons. Selected observations of interplanetary acceleration events from 1 to 25 AU are presented and reviewed. These show frequent acceleration of ions to several tens of MeV in association with shocks; highest energies (220 MeV oxygen) were measured in the near-perpendicular ( Bn 87.5°) shock of January 5, 1978 at 1.9 AU, where electron acceleration was also observed. Examples of ion acceleration in association with corotating interaction regions are presented and discussed. It is shown that shock structures have profound effects on high-energy (70 MeV) cosmic rays, especially during solar minimum, when a negative latitudinal gradient was observed after early 1985 at all energies from 70 MeV down to 30 keV. By early 1987, most shock acceleration activity in the outer heliosphere (25 to 30 AU) had ceased both in the ecliptic (Voyager-2) and at higher (30°) ecliptic latitudes (Voyager-1). The totality of observations demonstrate that local acceleration to a few hundred MeV, and as high as a few GeV is continually present throughout the heliosphere. It should be noted that in 1954 when Alfvén suggested local acceleration and containment of cosmic rays within the solar system, no one treated his suggestion seriously, at any energy. The observations reviewed in this paper illustrate once more Alfvén's remarkable prescience and demonstrate how unwise it is to dismiss his ideas.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

4.
A highly anisotropic packet of solar electron intensities was observed on 6 April 1971 with a sensitive electrostatic analyzer array on the Earth-orbiting satellite IMP-6. The anisotropies of intensities at electron energies of several keV were factors 10 favoring the expected direction of the interplanetary magnetic lines of force from the Sun. The directional, differential intensities of solar electrons were determined over the energy range 1–40 keV and peak intensities were 102 cm–2 s–1 sr–1 eV–1 at 2–6 keV. This anisotropic packet of solar electrons was detected at the sattelite for a period of 4200 s and was soon followed by isotropic intensities for a relatively prolonged period. This impulsive emission was associated with the onsets of an optical flare, soft X-ray emission and a radio noise storm at centimeter wavelengths on the western limb of the Sun. Simultaneous measurements of a type III radio noise burst at kilometric wavelengths with a plasma wave instrument on the same satellite showed that the onsets for detectable noise levels ranged from 500 s at 178 kHz to 2700 s at 31.1 kHz. The corresponding drift rate requires a speed of 0.15c for the exciting particles if the emission is at the electron plasma frequency. The corresponding electron energy of 6 keV is in excellent agreement with the above direct observations of the anisotropic electron packet. Further supporting evidence that several-keV solar electrons in the anisotropic packet are associated with the emission of type III radio noise beyond 50R is provided by their time-of-arrival at Earth and the relative durations of the radio noise and the solar electron packet. Electron intensities at E 45 keV and the isotropic intensities of lower-energy solar electrons are relatively uncorrelated with the measurements of type III radio noise at these low frequencies. The implications of these observations relative to those at higher frequencies, and heliocentric radial distances 50R , include apparent deceleration of the exciting electron beam with increasing heliocentric radial distance.Research supported in part by the National Aeronautics and Space Administration under contracts NAS5-11039 and NAS5-11074 and grant NGL16-001-002 and by the Office of Naval Research under contract N000-14-68-A-0196-0003.  相似文献   

5.
S. R. Kane 《Solar physics》1972,27(1):174-181
Observations of impulsive solar flare X-rays 10 keV made with the OGO-5 satellite are compared with ground based measurements of type III solar radio bursts in 10–580 MHz range. It is shown that the times of maxima of these two emissions, when detectable, agree within 18 s. This maximum time difference is comparable to that between the maxima of the impulsive X-ray and impulsive microwave bursts. In view of the various observational uncertainties, it is argued that the observations are consistent with the impulsive X-ray, impulsive microwave, and type III radio bursts being essentially simultaneous. The observations are also consistent with 10–100 keV electron streams being responsible for the type III emission. It is estimated that the total number of electrons 22 keV required to produce a type III burst is 1034. The observations indicate that the non-thermal electron groups responsible for the impulsive X-ray, impulsive microwave, and type III radio bursts are accelerated simultaneously in essentially the same region of the solar atmosphere.  相似文献   

6.
R. P. Lin 《Solar physics》1982,113(1-2):217-220
We present observations of an intense solar flare hard X-ray burst on 1980 June 27, made with a balloon-borne array of liquid nitrogen-cooled germanium detectors which provided unprecedented spectral resolution (1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 108–109K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting 3–15 s, whch have a hard spectrum and a break energy of 30–65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 keV to 100 keV through the event. The double power-law shape indicates that acceleration by DC electric fields parallel to the magnetic field, similar to that occurring in the Earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. The total potential drop required for flares is typically 102 kV compared to 10 kV for auroral substorms.  相似文献   

7.
We compare solar X-ray observations from the UCSD experiment aboard OSO-7 with high resolution energetic electron observations from the UCAL experiment on IMP-6 for a small solar flare on 26 February 1972. A proportional counter and NaI scintillator covered the X-ray energy range 5–300 keV, while a semiconductor detector telescope covered electrons from 18 to 400 keV. A series of four non-thermal X-ray spikes were observed from 1805 to 1814 UT with average spectrum dJ/d (hv) (hv)–4.0 over the 14–64 keV range. The energetic electrons were observed at 1 AU beginning 1840 UT with a spectrum dJ/dE E –3.1. If the electrons which produce the X-ray emission and those observed at 1 AU are assumed to originate in a common source, then these observations are consistent with thin target X-ray production at the Sun and inconsistent with thick target production. Under a model consistent with the observed soft X-ray emission, we obtain quantitative estimates of the total energy, total number, escape efficiency, and energy lost in collisions for the energetic electrons.  相似文献   

8.
Multiband observations of the AM Herculis-type binary CW1103+254 show significant circular polarization (13%) in the J band. Recently, a model with high temperature (kT20 keV) and small dimensionless plasma parameter (104) was suggested for the emitting region. However, it gives negligible polarization in the J band. In this paper, a method, in which the J band polarization and the peak frequency of the spectrum are taken into account, is used to determine T and . For the viewing angle =80° and the magnetic field B=30MG, we find that kT=5.0 keV and =106. The temperature of the emitting region is close to the value (kT=8.7 keV) derived for the region emitting cyclotron lines in VV Puppis. If these radiations arise from the post-shock regions, then these temperatures are significantly lower than those predicted by standard accretion models or the shock structure is inhomogenous and more complex than previously assumed.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   

9.
Using archival ASCA observations of TT Arietis, X-ray energy spectra and power spectra of the intensity time series are presented for the first time. The energy spectra are well-fitted by a two continuum plasma emission model with temperatures 1 keV and 10 keV. A coherent feature at 0.643 mHz appeared in the power spectra during the observation.  相似文献   

10.
The long-time series of daily means of cosmic-ray intensity observed by four neutron monitors at different cutoff rigidities (Calgary, Climax, Lomnický tít and Huancayo/Haleakala) were analyzed by means of the wavelet transform method in the period range 60 to 1000 days. The contributions of the time evolution of three quasi-periodic cosmic-ray signals (150 d, 1.3 yr and 1.7 yr) to the global one are obtained. While the 1.7-yr quasi-periodicity, the most remarkable one in the studied interval, strongly contributes to the cosmic ray intensity profile of solar cycle 21 (particularly in 1982), the 1.3-yr one, which is better correlated with the same periodicity of the interplanetary magnetic field strength, is present as a characteristic feature for the decreasing phases of the cycles 20 and 22. Transitions between these quasi-periodicities are seen in the wavelet power spectra plots. Obtained results support the claimed difference in the solar activity evolution during odd and even solar activity cycles.  相似文献   

11.
It is suggested that boundary conditions for solar wind/lunar limb interactions are active. The whole-Moon limb does not evoke a shock cone because warm (13 eV/electron) solar wind electrons are replaced by cool (2 eV/electron) photoelectrons that are ejected from the generally smooth areas of the lunar terminator illuminated at glazing angles by the Sun. A localized volume of low thermal pressure is created in the solar wind by these cool photoelectrons. The solar wind expands into this turbulence-suppressive volume without shock production. Conversely, directly illuminated highland areas exchange hot photoelectrons (> 20 eV/electron) for warm solar wind electrons. The hot electrons generate a localized pressure increase (p) in the adjacent solar wind flow which evokes a shock streamer in the solar wind. Shock streamers are identifiable by a coincident increase in the magnitude (B p) of the solar wind magnetic field immediately external to the lunar wake. Shock occurrence is controlled by lunar topography, solar activity in the hard ultraviolet (> 20 eV), solar wind electron density and thermal velocity, and the intensity of the solar wind magnetic field.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.The Lunar Science Institute is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration.  相似文献   

12.
Exploratory observations at 20 and 350 have determined detection thresholds for solar flares in these wavelengths. In the 20 range solar atmospheric fluctuations (the temperature field) set the basic limits on flare detectability at 5K; at 350 the extinction in the Earth's atmosphere provides the basic limitation of 30K. These thresholds are low enough for the successful detection of several infrared-emitting components of large flares. Limited observing time and lack of solar activity have prevented observations of large flares up to the present, but the techniques promise to be extremely useful in the future.The upper limits obtained thus far, for subflares, indicate that the thickness of the H flare region does not exceed 10 km. This result confirms the conclusion of Suemoto and Hiei (1959) regarding the small effective thickness of the H-emitting regions in solar flares.  相似文献   

13.
On the persistence of the 22 y solar cycle   总被引:2,自引:0,他引:2  
We briefly discuss the existence of precise periodicities of the Hale cycle (-22 y), the Gleissberg cycle (-88 y), and -132 y cycle, in various direct and indirect indicators (as aurorae, 14C from tree rings and 10Be from polar ice) of solar activity. We consider also the behaviour of the 11y cycle and its first harmonic in modern sunspot series. It appears that the frequencies of -1 c/88 y and -1 c/132 y might be two subharmonics of the Hale cycle. The results support the hypothesis that the Sun behaves as a nonlinear system forced by an oscillator having the Hale frequency. The forcing element inside the Sun can be identified with a magnetofluid torsional oscillator.  相似文献   

14.
We present a model of prompt high-energy particle acceleration during two-current-loop collisions. By investigating test proton and test electron motions in the electromagnetic field derived from the MHD equations, we found that high-energy particle acceleration occurs only in the case ofY-type, loop-loop collisions. The results depend strongly on the plasma and initial position of the test particle. When the plasma increases, the particle acceleration rate decreases. The particles near the edge of the collision region can be accelerated to higher energy than the ones inside it. It has been shown that both protons and electrons can be accelerated to 10 GeV within 0.001 s and 5 MeV within 10–6 s, respectively. In the case ofY-type loop-loop collisions, one may expect that high-energy gamma-ray and neutrons will be generated from interaction between high-energy particles and the low atmospheric plasma.  相似文献   

15.
From theH filtergram observations obtained at Ganyu station, identification and statistic works made for Ellerman bombs, it is found that they often occur in the superpenumbra area of a mature sunspot. We suggest a plasmoid model to account for the basic properties of a typical bomb: lifetime 11 min, diameter 5 × 107 cm, accompanying jet velocity 40 km/s, total energy 1027 erg,Te 104 K. First, a numerical simulation is made to prove that plasmoids can be lifted from the solar convective zone by magnetic buoyancy. Between the plasmoid and its surroundings a strong current sheet builds up in which a peculiar MHD (with plasma ponderamotive force) - resistive instability takes place. After the magnetic reconnection has begun, a local explosive instability ensues whose growth rate is so high that it allows the exhaustion of the high temperature particles from the sheet in a short period. In this way, the temperature of a bomb may be kept unchanged or only rise slightly.  相似文献   

16.
A spectral analysis of the time series of daily values of 12 parameters, namely, ten solar radio emissions in the range 275–1755 MHz, 2800 MHz solar radio flux, and sunspot numbers for six continuous intervals of 132 values each during June 1997–July 1999 showed considerable differences from one interval to the next, indicating a nonstationary nature. A 27-day periodicity was noticed in Interval 2 (26.8 days), 3 (27.0 days), 5 (25.5 days), 6 (27.0 days). Other periodicities were near 11.4, 12.3, 13.3, 14.5, 15.5, 16.5, 35, 40, 50–70 days. Periodicities were very similar in a large vertical span of the coronal region corresponding to 670–1755 MHz. Above this region, the homogeneity disappeared. Below this region, there were complications and distortions due to localized solar surface phenomena.  相似文献   

17.
The baryon-symmetric domain cosmology (BSDC) of Steckeret al. (1971) have explained the diffuse -ray background. However, evidence has shown that active galactic nuclei (AGNs) are likely contributors to the diffuse -ray background, so there are some problems with the original formulations. We have reviewed the original formulations and have modified the expressions for the matter temperature and the redshifts at which the cosmic radiation from the BSDC becomes significantly absorbed. In this way, we show that the cosmic radiation from the BSDC agrees remarkably with the cosmic X-ray background from 1 keV to 100 keV. We have also shown that AGNs contribute significantly to the cosmic background beyond 100 keV. Therefore, we have arrived at a consistent model in which the BSDC model and AGN model together can explain the cosmic background from 1 keV to 1 MeV.  相似文献   

18.
We discuss some fundamental aspects of Earth history as predicted by what has come to be called coherent rather than stochastic catastrophism. The latter essentially seeks to provide an understanding of terrestrial evolution in terms of occasional kilometre-plus impactors from the asteroid belt whereas the former recognises a far more complex extraterrestrial regime arising from the streams of sub-kilometre and kilometre-plus debris due to the disintegration of successive giant comets in sub-Jovian orbits. Periodicities of 15 Myr during the later Phanerozoic (i.e. 250 to 0 Myr BP) and 200 yr during the Holocene (i.e. 10,000 to 0 yr 1313) are likely fundamental signatures in the terrestrial record relating to the action of past and present giant cornets respectively.  相似文献   

19.
The reduction of observations of the O i 7773 triplet obtained at high spatial resolution (0.5) at two disk positions is described. Two sets of triplet profile data are presented at each disk position. One set represents data taken from 0.5 regions centered on the brightest granules, while the other set represents data taken from 0.5 regions centered on the cooler infalling intergranular material.  相似文献   

20.
Analytic and numerical results are presented for the growth rate of Langmuir waves due to a loss-cone distribution of energetic electrons. The effect of the magnetic field on the wave-particle interaction is ignored, and the resonance condition is described in terms of a resonance hyperboloid in momentum space. The collisional evolution of a distribution of magnetically trapped electrons is followed numerically to show how a gap distribution develops. The growth is most favorable for an intermediate sized loss cone ( 45 °) and a gap distribution in which the mean energy of the suprathermal electrons is much larger than the thermal energy of the background electrons. It is plausible that loss-cone gap distributions do develop in the solar corona, and that they should lead to second harmonic plasma emission weakly polarized in the x-mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号