首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The spatial pattern of soil erosion can provide valuable insights into the soil erosion processes that require a rapid assessment in practical applications. Generally, quantitative technique is expensive and time-consuming. The objective of this paper is to reveal the spatial pattern of erosion with a rapid assessment method. The affecting factors such as land cover, vegetation fraction and slope gradient are integrated into this method using a qualitative means. Beijing-1 images in 2006 were used to produce land-cover and vegetation fraction, and 1:50,000 topographic maps were used to calculate slope gradient. The study area was classified into six grades. Results show that the upstream area of Guanting Reservoir, in general, is exposed to a moderate risk; there are 17,740.33 km2 of land that suffered from water soil erosion in 2006, occupied 40.69% of the total area, and most of the soil erosion area is on the light and moderate risk, which occupied 25.05 and 62.83% of the eroded area, respectively. Eight elevation zones and six slope gradient zones were overlaid with the assessed risk. The analyzed results show that: (1) the areas above 2,000 m have the lowest erosion risk, which is only 0.75% of the eroded area; 1,250–1,500 m elevation zone has the highest erosion risk, which is 34.72% of the eroded area. (2) The slope gradient zone less than 5 degrees and greater than 35 degrees have the lowest erosion risk, which is 0.02 and 0.75% of the eroded area, respectively; the slope gradient zone with 8–15 degrees has the highest erosion risk, which is 36.40% of the eroded area. These results will be useful for water and soil conservation management and the planning of mitigation measures.  相似文献   

2.
Satellite image data and thematic map data were used to provide comprehensive views of surface-bound conditions such as soil and vegetation degradation. The current work applies a computerized parametric methodology, developed by FAO, UNEP and UNESCO to assess and evaluate soil degradation at 1 : 250 000 mapping scale. The study area is located in the arid and semi-arid zone of the northern part of Shaanxi Province in China, a region with considerable agricultural potential; Landsat TM images were utilized to provide recent data on land cover and use of the area. ARC/INFO and Arc-View softwares were used to manage and manipulate thematic data, to process satellite images, and tabular data source. ER mapper software is utilized to derive the normalized difference vegetation index (ND VI) values while field data to estimate soil erodibility (SE) factor. A system is established for rating soil parameters, slope, climate factor and human factor activity. The rating values serve as inputs into a modified universal soil loss equation (USLE) to calculate the present state and risk for soil degradation processes, namely soil wind erosion. The produced maps and tabular data show the risk and the present status of different soil degradation processes. The study area, in general, is exposed to high risk of wind erosion and high hazards of water erosion. Several desertification maps were produced, which reflect the desertification types persisting in the study area. Wind erosion, water erosion, vegetation degradation,physical degradation and salinization are the basic desertification maps, and others are combinations of these basic maps. In terms of statistic analysis, 33.75 % of the total land area (120. 330 0 ha) is considered as sand or sand dune, and not included in our analysis of desertification. About 29. 41% of the total land area has slight or moderate desertification and 37. 465 % is facing severe desertification.  相似文献   

3.
Soil erosion by water is recognised as a worldwide land degradation issue, particularly in arid and semi-arid regions. The aim of this study is to apply the powerful capabilities of advanced remote sensing and geographic information system techniques to identify the areas at risk to water erosion. This study presents the assessment of water erosion in mountainous areas (eastern Aures, Algeria) based on three main factors: the friability of the bedrock, degree of slope and density of vegetation cover. Alsat1 image was used to produce land use and vegetation (NDVI) maps. Digital elevation model was used in constructing the slope gradient map. The erosion risk map was obtained by the combination of indices assigned to thematic layers following multicriteria decision rules. Water erosion was generally not concerning in the eastern Aures (slight risk = 33 %, moderate risk = 44 % of the area). This simple–qualitative approach gave good results for assessing soil erosion equally to quantitative methods since 89.55 % of field verifications were accurate. The non-alarming state and the low rate of severe and extremely severe risk to erosion are due to (1) the low steep slopes, (2) the good quality of vegetation (forests with thick undergrowth), and which are occurring on (3) resistant materials of the substratum, and (4) the low human pressure. Results of this study, which may be conducted with reasonable costs and accuracy over large areas, are of significant help in prioritising areas in decision making and sustainable planning.  相似文献   

4.
Soil erosion by water is a serious environmental problem which affects particularly the agriculture of developing countries. Due to specific factors, such as high rainfall intensity, steep slopes and vegetation scarcity, Tunisia is prone to soil erosion. Taking this into account, the main objective of this study was to estimate the soil erosion risk in the Batta watershed in Tunisia using qualitative and quantitative erosion model with remote sensing data and geographic information system (GIS). Moreover, a developed method that deals with evaluating the impact of vegetation on soil erosion by water is also applied. This method used multi-temporal satellite images with seasonal variability and the transformed soil adjusted vegetation index (TSAVI) which is appropriate in arid and semi-arid areas. For both erosion models, the results show that a large area of the Batta watershed is seriously affected by erosion. This potentially high risk is due especially to severe slopes, poor vegetation coverage and high soil erodibility in this watershed. Furthermore, the use of multi-temporal satellite images and vegetation index show that the effect of vegetation is a significant factor to protect the soil against erosion. The risk is especially serious in the summer season, but it decreases with the growth of vegetation cover in spring. Erosion model, combined with a GIS and remote sensing, is an adequate method to evaluate the soil erosion risk by water. The findings can be used by decision makers as a guideline to plan appropriate strategies for soil and water conservation practices.  相似文献   

5.
Toroud Watershed in Semnan Province, Iran is a prone area to gully erosion that causes to soil loss and land degradation. To consider the gully erosion, a comprehensive map of gully erosion susceptibility is required as useful tool for decreasing losses of soil. The purpose of this research is to generate a reliable gully erosion susceptibility map (GESM) using GIS-based models including frequency ratio (FR), weights-of-evidence (WofE), index of entropy (IOE), and their comparison to an expert knowledge-based technique, namely, Analytic Hierarchy Process (AHP). At first, 80 gully locations were identified by extensive field surveys and Google Earth images. Then, 56 (70%) gully locations were randomly selected for modeling process, and the remaining 26 (30%) gully locations were used for validation of four models. For considering geo-environmental factors, VIF and tolerance indices are used and among 18 factors, 13 factors including elevation, slope degree, slope aspect, plan curvature, distance from river, drainage density, distance from road, lithology, land use/land cover, topography wetness index (TWI), stream power index (SPI), normalized difference vegetation index (NDVI), and slope–length (LS) were selected for modeling aims. After preparing GESMs through the mentioned models, final maps divided into five classes including very low, low, moderate, high, and very high susceptibility. The receiver operating characteristic (ROC) curve and the seed cell area index (SCAI) as two validation techniques applied for assessment of the built models. The results showed that the AUC (area under the curve) in training data are 0.973 (97.3%), 0.912 (91.2%), 0.939 (93.9%), and 0.926 (92.6%) for AHP, FR, IOE, and WofE models, respectively. In contrast, the prediction rates (validating data) were 0.954 (95.4%), 0.917 (91.7), 0.925 (92.5%), and 0.921 (92.1%) for above models, respectively. Results of AUC indicated that four model have excellent accuracy in prediction of prone areas to gully erosion. In addition, the SCAI values showed that the produced maps are generally reasonable, because the high and very high susceptibility classes had very low SCAI values. The results of this research can be used in soil conservation plans in the study area.  相似文献   

6.
以昌都市左贡县扎玉镇为例,选用中巴地球资源二号遥感数据、数字高程模型数据和土地利用类型数据,用遥感软件提取植被指数并进行密度分割,确定植被覆盖度,并对其进行分级; 用地理信息系统软件提取坡度信息,并对坡度进行分级; 在1∶ 5 万比例尺下修正已有的土地利用类型。结果统计扎玉镇 76. 26%的土壤处于轻度及以下侵蚀状态,强烈及以上的土壤侵蚀比例达 5. 48%,土壤侵蚀剧烈的地区主要分布在耕地部分,中度侵蚀的地区主要集中在林草地部分,因此土地利用合理化以及提高植被覆盖率可以有效减小土壤侵蚀强度。  相似文献   

7.
Chah Nimeh reservoirs have served as a water storage facility, especially during droughts over the last three decades. It is also an important wintering site for migratory birds. In this study, thematic mapper time-series data were derived from Landsat images for prolonged droughts that occurred in two satellite images (2002 and 2011). The data derived from these images were used for the detection of changes in land cover and water storage in the reservoirs. First, a vegetation cover map was produced using soil-adjusted vegetation index and field sampling. Subsequently, land use/cover maps were generated using supervised and hybrid image classification method. Using the spatial change detector (SCD v1.0) software extension, the layers were combined and the change map was generated. The overall accuracy of the produced thematic images was assessed in regards to quantity and allocation disagreements. A total of five classes were defined in this investigation: deep water, shallow water, vegetation, salt land and bare land. The results showed that during the period of study, water volume reduced and vegetation cover increased, especially around the reservoirs that are important as shelter for wintering migratory birds. Comparison of land use/cover maps showed the increase in total available surface of shallow water, which indicated an increase in the habitats for surface feeding and diving birds.  相似文献   

8.
Environment in arid conditions is dynamic and needs more investigation to understand the complexity of change. This spatiotemporal study will help to assess and monitor the land use and land cover change in the arid region of El-Arish area, where the climate and human activities are the major threats to rural development. In the past 11 years, dramatic changes of environment have been recorded in case studies. The post-classification comparison method was used to observe the changes using multi-temporal satellite images which were captured in the years 1999, 2001, 2005, and 2010. The overall accuracy of the produced thematic images was assessed regarding to the quantity and allocation disagreements. Five classes were defined in this investigation: bare soil, vegetation, urban, sand dunes, and fertile soil. From the year 1999 to 2010, fertile soil was increased by 13 %. Bare soil class occupied more than 50 % of land in the case study during for over a decade. From year 1999 to 2010, vegetation cover witnessed a dramatic increase. Soil and water management are the keys of land development and positive land use and land cover dynamics. Changing agricultural policies of using the available water resources are needed in the case study to prevent severe food shortage in the future.  相似文献   

9.
Land degradation reduces the ability of the land to perform many biophysical and chemical functions. The main aim of this study was to determine the status of land degradation in the Budgam area of Kashmir Himalaya using remote sensing and geographic information system. The satellite data together with other geospatial datasets were used to quantify different categories of land degradation. The results were validated in the field and an accuracy of 85% was observed. Land use/land cover of the study area was determined in order to know the effect of land use on the rate of land degradation. Normalized differential vegetation index (NDVI) and slope of the area were determined using LANDSAT-enhanced thematic mapper plus (ETM+) data, advanced space borne thermal emission and reflection radiometer, and digital elevation model along with other secondary data were analysed to create various thematic maps, viz., land use/land cover, geology, NDVI and slopes used in modelling land degradation in the Kashmir Himalayan region. The vegetation condition, elevation and land use/land cover information of the area were integrated to assess the land degradation scenario in the area using the ArcGIS ‘Spatial Analyst Module’. The results reveal that about 13.19% of the study area has undergone moderate to high degradation, whereas about 44.12% of the area has undergone slight degradation.  相似文献   

10.
Due to the existence of fragile karst geo-ecological environments, such as environments with extremely poor soil cover, low soil-forming velocity, and fragmentized terrain and physiognomy, as well as inappropriate and intensive land use, soil erosion is a serious problem in Guizhou Province, which is located in the centre of the karst areas of southwestern China; evaluation of soil loss and spatial distribution for conservation planning is urgently needed. This study integrated the revised universal soil loss equation (RUSLE) with a GIS to assess soil loss and identify risk erosion areas in the Maotiao River watershed of Guizhou. Current land use/cover and management practices were evaluated to determine their effects on average annual soil loss and future soil conservation practices were discussed. Data used to generate the RUSLE factors included a Landsat Thematic Mapper image (land cover), digitized topographic and soil maps, and precipitation data. The results of the study compare well with the other studies and local data, and provide useful information for decision makers and planners to take appropriate land management measures in the area. It thus indicates the RUSLE–GIS model is a useful tool for evaluating and mapping soil erosion quantitatively and spatially at a larger watershed scale in Guizhou.  相似文献   

11.
Geographical information systems (GIS)-based soil erosion risk assessment models continue to play an important role in soil conservation planning. In the present study, soil erosion risk of Istanbul–Elmalı dam watershed was determined within GIS-based COoRdination of INformation on the Environment (CORINE) soil erosion risk assessment method. Initially soil texture, soil depth, and surface stoniness maps were created and were intersected in GIS environment in order to generating erodibility map. Then, Fournier precipitation and Bagnouls–Gaussen drought indices determined based on meteorological data and erosivity were calculated. The composed erodibility map was co-evaluated within erosivity value and slope map of the site for composing potential erosion risk map. At the final step, the previous yearly land use maps which belong to years 1984, 1992, and 2003 intersected with potential erosion risk maps and temporal actual erosion risk alteration were assessed. In conclusion, according to our results in Elmalı watershed dam in 1984 there have been low, medium, and high erosion risks at rates 29.67, 52.49, and 17.84%, respectively, whereas in 2003 the erosion risk values have changed from low to high as 26.43, 46.57, and 27.00%, respectively. Inter-year comparison alteration to the advantage of the high erosion risk could have resulted from over degradation and high exposure to anthropogenic activities.  相似文献   

12.
遥感与GIS支持下的南桐矿区水土流失评价与区划   总被引:2,自引:0,他引:2  
苏迎春  周廷刚 《中国岩溶》2012,31(2):191-197
以重庆市南桐矿区为研究对象,运用遥感和GIS技术获取对水土流失影响较大的植被覆盖度、地形坡度、土地利用类型等信息并进行空间叠加分析,计算了水土流失类型及面积。研究结果表明,南桐矿区水土流失面积262.91km2,侵蚀模数2281t/(km2?a),水土流失强度以轻度和中度为主,其中轻度流失132.37km2,中度流失108.95km2。根据区域地貌类型以及水土流失特征,将研究区水土流失划分为盆边低山丘陵中强度流失区、北部坪状低山中轻度流失区和盆边中山轻度流失区三个类型区,盆边低山丘陵中强度流失区以中度流失为主;北部坪状低山中轻度流失区以轻度流失为主;盆边中山轻度流失区虽然以轻度流失为主,但微度流失也占有相当部分的比重。   相似文献   

13.
Land degradation is still a very common problem in the mountains of Asia because of inappropriate land use practice in steep topography. Many studies have been carried out to map shifting cultivation and areas susceptible to soil erosion. Mostly, estimated soil loss is taken as the basis to classify the level of soil loss susceptibility of area. Factors that influence soil erosion are: rainfall erosivity, soil erodibility, slope length and steepness, crop management and conservation practices. Thus the reliability of estimated soil loss is based on how accurately the different factors were estimated or prepared. As each and every small pixel of our earth surface is different from one area to another, the manner in which the study area was discretized into smaller homogenous sizes and how the most accurate and efficient technique were adopted to estimate the soil loss are very important. The purpose of this study is to produce erosion susceptibility maps for an area that has suffered because of shifting cultivation located in the mountainous regions of Northern Thailand. For this purpose, an integrated approach using RS and GIS-based methods is proposed. Data from the Upper Nam Wa Watershed, a mountainous area of the Northern Thailand were used. An Earth Resources Data Analysis System (ERDAS) imagine image processor has been used for the digital analysis of satellite data and topographical analysis of the contour data for deriving the land use/land cover and the topographical data of the watershed, respectively. ARCInfo and ARCView have been used for carrying out geographical data analysis. The watershed was discretized into hydrologically, topographically, and geographically homogeneous grid cells to capture the watershed heterogeneity. The soil erosion in each cell was calculated using the universal soil loss equation (USLE) by carefully determining its various parameters and classifying the watershed into different levels of soil erosion severity. Results show that during the time of this study most of the areas under shifting cultivation fell in the highest severity class of susceptibility.  相似文献   

14.
选择漓江流域及其典型岩溶小流域为研究对象,通过遥感数据综合分析和地面路线验证调查与定点监测相结合的方法,对漓江流域岩溶区和非岩溶区的水土流失特征进行了研究,并重点分析岩溶区内典型小流域——寨底小流域侵蚀影响因子对水土流失的影响。研究结果表明:漓江流域水土流失以中度和轻度等级为主,约占流域面积的29.9%;流域内岩溶区与非岩溶区的水土流失表现出一定的差异性,岩溶区以中度、极强烈和轻度等级水土流失为主,水土流失面积约占岩溶面积的53%;非岩溶区中度和轻度等级水土流失分别占非岩溶区面积的12.4%和10.4%。高程、坡度、植被覆盖、土地利用等因子对岩溶小流域土壤侵蚀面积和侵蚀量比例的影响表现出明显的差异性和独特性,这四种影响因子中的高程(300,500] m,坡度[15°,25°]、植被覆盖度≤20%、土地利用为工矿用地等对岩溶小流域土壤侵蚀的影响最大,是寨底岩溶小流域水土流失治理中应重点考虑的因素。   相似文献   

15.
Natural runoff observation fields with different vegetation coverage were established in the Zuomaoxikongqu River basin in the headwater area of the Yangtze River, and in the Natong River basin and the Kuarewaerma River basin in the headwater area of the Yellow River, China. The experiments were conducted using natural precipitation and artificially simulated precipitation between July and August to study the runoff and sediment-producing effects of precipitation under the conditions of the same slope and different alpine meadow land with coverage in the headwater areas. The results show that, in the three small river basins in the headwater areas of the Yangtze and the Yellow Rivers, the surface runoff yield on the 30° slope surface of the alpine meadow land with a vegetation cover of 30% is markedly larger than that of the fields with a vegetation cover of 95, 92, and 68%. Furthermore, the sediment yield is also obviously larger than the latter three; on an average, the sediment yield caused by a single precipitation event is 2–4 times as large as the latter three. Several typical precipitation forms affecting the runoff yield on the slope surface also influence the process. No matter how the surface conditions are; the rainfall is still the main precipitation form causing soil erosion. In some forms of precipitation, such as the greatest snow melting as water runoff, the sediment yield is minimal. Under the condition of the same precipitation amount, snowfall can obviously increase the runoff yield, roughly 2.1–3.5 times as compared to the combined runoff yield of the Sleet or that of rainfall alone; but meanwhile, the sediment yield and soil erosion rate decrease, roughly decreasing by 45.4–80.3%. High vegetation cover can effectively decrease the runoff-induced erosion. This experimental result is consistent in the three river basins in the headwater areas of the Yangtze and Yellow Rivers.  相似文献   

16.
水土流失现状图的遥感编制方法探讨   总被引:1,自引:0,他引:1  
探讨在缺少实测和调查土壤侵蚀模数资料的地区,应用TM卫星图像和地形图,结合前人资料和野外典型调查,建立水土流失类型、强度与土地利用类型、植被覆盖度和地形坡度的相关关系,经遥感综合解译,编制水土流失现状图的技术方法。  相似文献   

17.
基于遥感影像的决策树分类,结合土地利用图,将北京市农业地表覆盖划分为春玉米、冬小麦、果园、林木苗圃、牧草地、设施农业和畜禽饲养地。考虑海拔、坡度和土壤质地三个因子将北京市分成10个景观区,在景观分区和不同农业用地基础上划分出39类农业景观单元。利用基于遥感影像计算的归一化差异植被指数,结合实地调查验证,分类出北京市冬春季裸露农田。结合景观分类,分析了不同景观单元冬春季地表裸露情况。结果表明:2007—2008年冬春季裸露农田共8.05×104 hm2,主要分布在延庆盆地、密云水库北岸和城区边缘的近郊农业区;海拔和土地利用方式对裸露情况影响较大,其中山区春玉米和平原果园裸露情况绝对面积较大,分别占到总裸露农田面积的40%和17%,牧草地、林木苗圃与设施农业地裸露程度较高。基于不同景观单元裸露程度,结合绿肥种植、保护性耕作、生草覆盖等裸露农田治理方法,探讨了北京市农业产业和景观一体化建设策略。  相似文献   

18.
The present study deals with the preparation of a landslide susceptibility map of the Balason River basin, Darjeeling Himalaya, using a logistic regression model based on Geographic Information System and Remote Sensing. The landslide inventory map was prepared with a total of 295 landslide locations extracted from various satellite images and intensive field survey. Topographical maps, satellite images, geological, geomorphological, soil, rainfall and seismic data were collected, processed and constructed into a spatial database in a GIS environment. The chosen landslide-conditioning factors were altitude, slope aspect, slope angle, slope curvature, geology, geomorphology, soil, land use/land cover, normalised differential vegetation index, drainage density, lineament number density, distance from lineament, distance to drainage, stream power index, topographic wetted index, rainfall and peak ground acceleration. The produced landslide susceptibility map satisfied the decision rules and ?2 Log likelihood, Cox &; Snell R-Square and Nagelkerke R-Square values proved that all the independent variables were statistically significant. The receiver operating characteristic curve showed that the prediction accuracy of the landslide probability map was 96.10%. The proposed LR method can be used in other hazard/disaster studies and decision-making.  相似文献   

19.
Watershed degradation due to soil erosion and sedimentation is considered to be one of the major environmental problems in Iran. In order to address the critical conditions of watershed degradation in arid and semiarid regions, a study based on the Modified Pacific Southwest Inter-Agency Committee (MPSIAC) model was carried out at Golestan watershed, northeast of Iran. The model information layers comprising nine effective factors in erosion and sedimentation at the watershed site were obtained by digitalization and spatial interpolation of the basic information data in a GIS program. These factors are geology, soil, climate, runoff, topography, land cover, land use, channel, and upland erosion. The source data for the model were obtained from available records on rainfall and river discharge and sediment, topography, land use, geology, and soil maps as well as field surveys and laboratory analysis. The results of the MPSIAC model indicated that 60.75 % (194.4 km2) and 54.97 % (175.9 km2) of the total watershed area were classified in the heavy sedimentation and erosion classes, and the total basin sediment yield and erosion were calculated as 4,171.1 and 17,813.4 m3 km?2 year?1, respectively. In the sensitivity analysis, it was found that the most sensitive parameters of the model in order of importance were topography (slope), land cover and use, runoff, and channel erosion (R 2?=?0.92–0.94), while geology, climate (rainfall), soil, and upland erosion factors were found to have moderate effect to the model output (R 2?=?0.74–0.59).  相似文献   

20.
The water resource and its change of mountainous area are very important to the oasis economic system and ecosystem in the arid areas of northwest China. Accurately understanding the water transfer and circulation process among vegetation, soil, and atmosphere over different hydrological units in mountainous areas such as snow and ice, cold desert, forest and grassland is the basic scientific issue of water research in cold and arid regions, which is also the basis of water resource delicacy management and regulation. There are many research results on the hydrological function of different land covers in mountain areas, basin hydrological processes, however, there are only very limited studies on the water internal recycle at basin scale. The quantitative study on the mechanism of water internal recycle is still at the starting stage, which faces many challenges. The key project “Study on water internal recycle processes and mechanism in typical mountain areas of inland basins, Northwest China” funded by National Natural Science Foundation of China will select the Aksu River and Shule River Basin, which have better observation basis, as study area. The internal mechanism of moisture transfer and exchange process of different land cover and atmosphere, the internal mechanism of water cycle in the basin, and water transfer paths in atmosphere will be studied through enhancing runoff plot experiments on different land cover, analyzing the mechanism of water vapor transfer and exchange between different land covers in the watershed by isotope tracing on the water vapor flux of vegetation water, soil moisture and atmospheric moisture, improving the algorithms of remote sensing inversion and ground verification on land surface evapotranspiration on different land cover, and analyzing the water vapor flux from reanalysis data, and the coupling modeling of regional climate model and land surface process model. At last, the effect of different land cover in hydrological process of mountain area, and the impact of land cover on downstream oasis will be systematically analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号