首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many ocean island basalts (OIB) that have isotopic ratios indicative of recycled crustal components in their source are silica-undersaturated and unlike silicic liquids produced from partial melting of recycled mid-ocean ridge basalt (MORB). However, experiments on a silica-deficient garnet pyroxenite, MIX1G, at 2.0-2.5 GPa show that some pyroxenite partial melts are strongly silica-undersaturated [M.M. Hirschmann et al., Geology 31 (2003) 481-484]. These low-pressure liquids are plausible parents of alkalic OIB, except that they are too aluminous. We present new partial melting experiments on MIX1G between 3.0 and 7.5 GPa. Partial melts at 5.0 GPa have low SiO2 (<48 wt%), low Al2O3 (<12 wt%) and high CaO (>12 wt%) at moderate MgO (12-16 wt%), and are more similar to primitive OIB compositions than lower-pressure liquids of MIX1G or experimental partial melts of anhydrous or carbonated peridotite. Solidus temperatures at 5.0 and 7.5 GPa are 1625 and 1825°C, respectively, which are less than 50°C cooler than the anhydrous peridotite solidus. The liquidus temperature at 5.0 GPa is 1725°C, indicating a narrow melting interval (∼100°C). These melting relations suggest that OIB magmas can be produced by partial melting of a silica-deficient pyroxenite similar to MIX1G if its melting residue contains significant garnet and lacks olivine. Such silica-deficient pyroxenites could be produced by interaction between recycled subducted oceanic crust and mantle peridotite or could be remnants of ancient oceanic lower crust or delaminated lower continental crust. If such compositions are present in plumes ascending with potential temperatures of 1550°C, they will begin to melt at about 5.0 GPa and produce appropriate partial melts. However, such hot plumes may also generate partial melts of peridotite, which could dilute the pyroxenite-derived partial melts.  相似文献   

2.
U–Pb dating is increasingly used to date speleothems that are too old for precise U–Th disequilibrium dating; however there is little data that can independently validate its application to such material. This study presents U–Pb ages for speleothems from the Spannagel Cave in the Austrian Alps including a detailed comparison with U–Th ages from an unusually U–rich sample that yields precise ages by both methods. Sample SPA4 is a flowstone with three growth phases separated by distinct hiatuses. For the youngest growth phase the U–Pb and U–Th ages are 267 ± 1 ka and 267 ± 5 ka respectively; the middle growth phase is 291 ± 1 versus 295 ± 11 ka while for the oldest growth phase a single sub-sample, assuming the same initial Pb composition as for the younger phases, yields an age of 340 ± 2 ka compared to 353 ± 9 ka by U–Th. Correlation of these ages with the marine isotope stages confirms that these speleothems grew during glacial stages as suggested by previous work on the same sample. Sample SPA 15 has U–Th isotopic compositions indistinguishable from secular equilibrium; the U–Pb data on the main growth phase of this sample give an age of 551 ± 10 ka, whereas a single analysis from the oldest phase suggests it may be on the order of 40 ka older. This detailed comparison of U–Pb and U–Th ages provides important support for the potential validity of the U–Pb method in older samples beyond the range of U–Th.  相似文献   

3.
The Earth's mantle is chemically and isotopically heterogeneous, and a component of recycled oceanic crust is generally suspected in the convecting mantle [Hofmann and White, 1982. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436]. Indeed, the HIMU component (high µ = 238U/204Pb), one of four isotopically distinct end-members in the Earth's mantle, is generally attributed to relatively old (≥ 1–2 Ga) recycled oceanic crust in the form of eclogite/pyroxenite, e.g. [Zindler and Hart, 1986. Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 14, 493–571]. Although the presence of the recycled component is generally supported by element and isotopic data, little is known about its physical state at mantle depths. Here we show that the concentrations of Ni, Mn and Ca in olivine from the Canarian shield stage lavas, which can be used to assess the physical nature of the source material (peridotite versus olivine-free pyroxenite) [Sobolev et al., 2007. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417], correlate strongly with bulk rock Sr, Nd and Pb isotopic ratios. The most important result following from our data is that the enriched, HIMU-type (having higher 206Pb/204Pb than generally found in the other mantle end-members) signature of the Canarian hotspot magmas was not caused by a pyroxenite/eclogite constituent of the plume but appears to have been primarily hosted by peridotite. This implies that the old (older than ~ 1 Ga) ocean crust, which has more evolved radiogenic isotope compositions, was stirred into/reacted with the mantle so that there is not significant eclogite left, whereas younger recycled oceanic crust with depleted MORB isotopic signature (< 1 Ga) can be preserved as eclogite, which when melted can generate reaction pyroxenite.  相似文献   

4.
We estimate average compositions of near-primary, ‘reference’ ocean island basalts (OIBs) for 120 volcanic centers from 31 major island groups and constrain the depth of lithosphere–asthenosphere boundary (LAB) at the time of volcanism and the possible depth of melt–mantle equilibration based on recently calibrated melt silica activity barometer. The LAB depth versus fractionation corrected OIB compositions (lava compositions, X, corrected to Mg# 73, XOIB#73, i.e., magmas in equilibrium with Fo90, if olivine is present in the mantle source) show an increased major element compositional variability with increasing LAB depths. OIBs erupted on lithospheres < 40 km thick approach the compositions (e.g. SiO2#73, TiO2#73, [CaO/Al2O3]#73) of primitive ridge basalts and are influenced strongly by depth and extent of shallow melting. However, XOIB#73 on thicker lithospheres cannot be explained by melt–mantle equilibration as shallow as LAB. Melt generation from a somewhat deeper (up to 50 km deeper than the LAB) peridotite source can explain the OIB major element chemistry on lithospheres ≤ 70 km. However, deeper melting of volatile-free, fertile peridotite is not sufficient to explain the end member primary OIBs on ≥ 70 km thick lithospheres. Comparison between XOIB#73 and experimental partial melts of fertile peridotite indicates that at least two additional melt components need to be derived from OIB source regions. The first component, similar to that identified in HIMU lavas, is characterized by low SiO2#73, Al2O3#73, [Na2O/TiO2]#73, and high FeO?#73, CaO#73, [CaO/Al2O3]#73. The second component, similar to that found in Hawaiian Koolau lavas, is characterized by high SiO2#73, moderately high FeO?#73, and low CaO#73 and Al2O3#73. These two components are not evenly sampled by all the islands, suggesting a heterogeneous distribution of mantle components that generate them. We suggest that carbonated eclogite and volatile-free, silica-excess eclogite are the two most likely candidates, which in conjunction with fertile mantle peridotite, give rise to the two primitive OIB end members.  相似文献   

5.
The brittle/ductile transition is a major rheologic boundary in the crust yet little is known about how or if rates of tectonic processes are influenced by this boundary. In this study we examine the slip history of the large-scale Naxos/Paros extensional fault system (NPEFS), Cyclades, Greece, by comparing published slip rates for the ductile crust with new thermochronological constraints on slip rates in the brittle regime. Based on apatite and zircon fission-track (AFT and ZFT) and (U–Th)/He dating we observe variable slip rates across the brittle/ductile transition on Naxos. ZFT and AFT ages range from 11.8 ± 0.8 to 9.7 ± 0.8 Ma and 11.2 ± 1.6 to 8.2 ± 1.2 Ma and (U–Th)/He zircon and apatite ages are between 10.4 ± 0.4 to 9.2 ± 0.3 Ma and 10.7 ± 1.0 to 8.9 ± 0.6 Ma, respectively. On Paros, ZFT and AFT ages range from 13.1 ± 1.4 Ma to 11.1 ± 1.0 Ma and 12.7 ± 2.8 Ma to 10.5 ± 2.0 Ma while the (U–Th)/He zircon ages are slightly younger between 8.3 ± 0.4 Ma and 9.8 ± 0.3 Ma. All ages consistently decrease northwards in the direction of hanging wall transport. Most of our new thermochronological results and associated thermal modeling more strongly support the scenario of an identical fault dip and a constant or slightly accelerating slip rate of ∼ 6–8 km Myr 1 on the NPEFS across the brittle/ductile transition. Even the intrusion of a large granodiorite body into the narrowing fault zone at ∼ 12 Ma on Naxos does not seem to have affected the thermal structure of the area in a way that would significantly disturb the slip rate. The data also show that the NPEFS accomplished a minimum total offset of ∼ 50 km between ∼ 16 and 8 Ma.  相似文献   

6.
Two peridotite suites collected by submersible in the equatorial Atlantic Ocean (Hekinian et al., 2000) were studied for textures, modes, and in situ major and trace element compositions in pyroxenes. Dive SP12 runs along the immersed flank of the St. Peter and Paul Rocks islets where amphibole-bearing, ultramafic mylonites enriched in alkalies and incompatible elements are exposed (Roden et al., 1984), whereas dive SP03 sampled a small intra-transform spreading centre situated about 370 km east of the St. Peter and Paul Rocks. Both suites are characterized by undeformed, coarse-grained granular textures typical of abyssal peridotites, derived from residual mantle after ~ 15% melting of a DMM source, starting in the garnet stability field. Trace element modelling, textures and lack of mineral zoning indicate that the residual peridotites were percolated, reacted and refertilized by ~ 2.6% partially aggregated melts in the uppermost level of the melting region. This relatively large amount of refertilization is in agreement with the cold and thick lithosphere inferred by previous studies. Freezing of trapped melts occurred as the peridotite entered the conductive layer, resulting in late-stage crystallization of olivine, clinopyroxene, spinel, ± plagioclase. Chondrite-normalized REE patterns in clinopyroxenes from SP03 indicate that they last equilibrated with (ultra-) depleted partial melts. In contrast, REE concentrations in clinopyroxenes from SP12 display U and S shaped LREE-enriched patterns and the calculated compositions of the impregnating melts span the compositional range of the regional basalts, which vary from normal MORB to alkali basalt sometimes modified by chromatographic fractionation with no, or very limited, mineral reaction. Thus the mylonitic band forming the St. Peter and St. Paul Rocks ridge is not a fragment of subcontinental lithospheric mantle left behind during the opening of the Central Atlantic, nor the source of the alkaline basalts as previously suggested. Rather, dive SP12 sampled residual peridotites of normal MORB mantle that were located close to channels transporting alkali basalts. Reacted melts escaping from these channels, infiltrated, and locally equilibrated with, the peridotite matrix by ion exchange reactions. Relicts of the source of the alkaline basalts were not sampled but our study suggests that it was a component of the MORB mantle underlying the St. Paul region.  相似文献   

7.
Speleothems are found in association with hominin fossil-bearing cave deposits in South Africa and can be used to provide valuable chronological constraints. Such material is generally too old for U–Th dating and, although U–Pb geochronology presents a suitable alternative, bulk U concentrations are typically too low (<0.05 μg/g) to provide useful ages. For this reason, we used a simple non-invasive beta-scanner imaging screening step to identify U-rich (≥1 μg/g) domains that could be analyzed with MC-ICP-MS techniques to provide U–Pb ages. We demonstrate the technique using samples from Sterkfontein cave that exhibit infrequent <1 cm-thick layers with U concentrations ≥1 μg/g. Relict aragonite needles are found exclusively in these U-rich layers. We analyzed material from the same flowstone suite as Walker et al. (2006) and obtained a U–Pb age of ~2.3 Ma that agrees well with their estimate of 2.24 ± 0.09 Ma. We also obtained similar U–Pb (0.164 ± 0.026 to 0.200 ± 0.052 Ma) and U–Th (0.148 ± 0.003 Ma) ages for another sample exhibiting U-rich layers. We recognize that open-system behaviour during the partial transformation of aragonite to calcite is a potential problem and argue, on the basis of geochemistry and age consistencies, that recrystallization took place rapidly after speleothem formation and did not significantly affect the U–Pb ages.  相似文献   

8.
Garnet clinopyroxenites occur within foliated dunite in the Higashi-akaishi peridotite mass, located within the subduction-type high-pressure/low-temperature Sanbagawa metamorphic belt. The garnet clinopyroxenites contain 3–80% garnet, and garnet and clinopyroxene are homogeneously distributed. Garnet crystals contain extensive, regular dislocation arrays and dislocation networks, suggesting that dislocation creep was the dominant deformation mechanism. Analyses of crystallographic orientation maps indicate similar grain sizes and aspect ratios for garnet and clinopyroxene, regardless of modal composition, indicating that these minerals deformed with similar degree of plasticity. Moreover, indexes of crystallographic fabric intensity (i.e., J-index and M-index) for both garnet and clinopyroxene tend to increase with increasing modal composition of garnet. Fourier-transform infrared spectroscopy analysis revealed that water content in garnet is ~60 ppm, whereas that in clinopyroxene is ~70 ppm. Olivine crystal-preferred orientations in the Higashi-akaishi peridotite mass, characterized by [0 0 1] (0 1 0), are thought to have developed during deformation under wet conditions. Consequently, we argue that the presence of water could act to enhance garnet plasticity during deformation. The results reveal contrasting influences of water on the deformation of garnet and diopside: under wet conditions compared with dry, the strain rate increases by two orders of magnitude for garnet but by an order of magnitude for diopside. Given the influence of water on the creep strength of garnet, garnet within the Higashi-akaishi mass may have become significantly as weak as clinopyroxene during deformation.  相似文献   

9.
Deeply subducted carbonate rocks from the Kokchetav massif (Northern Kazakhstan) recrystallised within the diamond stability field (P = 4.5–6.0 GPa; T  1000 °C) and preserve evidence for ultra high-pressure carbonate and silicate melts. The carbonate rocks consist of garnet and K-bearing clinopyroxene embedded in a dolomite or magnesian calcite matrix. Polycrystalline magnesian calcite and polyphase carbonate–silicate inclusions occurring in garnet and clinopyroxene show textural features of former melt inclusions. The trace element composition of such carbonate inclusions is enriched in Ba and light rare earth elements and depleted in heavy rare earth elements with respect to the matrix carbonates providing further evidence that the inclusions represent trapped carbonate melt. Polyphase inclusions in garnet and clinopyroxene within a magnesian calcite marble, consisting mainly of a tight intergrowth of biotite + K-feldspar and biotite + zoisite + titanite, are interpreted to represent two different types of K-rich silicate melts. Both melt types show high contents of large ion lithophile elements but contrasting contents of rare earth elements. The Ca-rich inclusions display high REE contents similar to the carbonate inclusions and show a general trace element characteristic compatible with a hydrous granitic origin. Low SiO2 content in the silicate melts indicates that they represent residual melts after extensive interaction with carbonates. These observations suggest that hydrous granitic melts derived from the adjacent metapelites reacted with dolomite at ultra high-pressure conditions to form garnet, clinopyroxene – a hydrous carbonate melt – and residual silicate melts. Silicate and carbonate melt inclusions contain diamond, providing evidence that such an interaction promotes diamond growth. The finding of carbonate melts in deeply subducted crust might have important consequences for recycling of trace elements and especially C from the slab to the mantle wedge.  相似文献   

10.
Common and radiogenic Pb isotopic compositions of plagioclase and anti-perthitic feldspars from granulite-facies lower crustal xenoliths from the Labait Volcano on the eastern margin of the Tanzanian Craton have been measured via laser ablation MC-ICP-MS. Common Pb in plagioclase and a single stage Pb evolution model indicate that the lower crust of the Tanzanian Craton was extracted from mantle having a 238U/204Pb of 8.1 ± 0.3 and a 232Th/238U of 4.3 ± 0.1 at 2.71 ± 0.09 Ga (all uncertainties are 2σ). Since 2.4 Ga, some orthoclase domains within anti-perthites have evolved with a maximum 238U/204Pb of 6 and 232Th/238U of 4.3. The spread in Pb isotopic composition in the anti-perthitic feldspars yields single crystal Pb–Pb isochrons of ~ 2.4 Ga, within uncertainty of U–Pb zircon ages from the same sample suite. The Pb isotopic heterogeneities imply that these granulites resided at temperatures < 600 °C in the lower crust of the Tanzanian Craton from ca. 2.4 Ga to the present. In concert with the chemistry of surface samples, mantle xenoliths, and lower crustal xenoliths, our data imply that the cratonic lithosphere in Tanzania formed ca. ~ 2.7 Ga, in a convergent margin setting, and has remained undisturbed since 2.7 Ga.  相似文献   

11.
This study presents major-, trace-element, and rhenium–osmium (Re–Os) isotope and elemental data for basalts and gabbros from the Zermatt-Saas ophiolite, metamorphosed to eclogite-facies conditions during the Alpine orogeny. Igneous crystallisation of the gabbros occurred at 163.5 ± 1.8 Ma and both gabbro and basalt were subject to ‘peak’ pressure–temperature (PT) conditions of > 2.0 GPa and ~ 600 °C at about 40.6 ± 2.6 Ma.Despite such extreme PT conditions, Re–Os isotope and abundance data for gabbroic rocks suggest that there has been no significant loss of either of these elements during eclogite-facies metamorphism. Indeed, 187Re–187Os isotope data for both unaltered gabbros and gabbroic eclogites lie on the same best-fit line corresponding to an errorchron age of 160 ± 6 Ma, indistinguishable from the age of igneous crystallisation. In contrast, metamorphosed basalts do not yield age information; rather most possess 187Re/188Os ratios that cannot account for the measured 187Os/188Os ratios, given the time since igneous crystallisation. Taken with their low Re contents these data indicate that the basalts have experienced significant Re loss (∼ 50–60%), probably during high-pressure metamorphism. Barium, Rb and K are depleted in both gabbroic and basaltic eclogites. In contrast, there is no evident depletion of U in either lithology.Many ocean-island basalts (OIB) possess radiogenic Os and Pb isotope compositions that have been attributed to the presence of recycled oceanic crust in the mantle source. Published Re–Os data for high-P metabasaltic rocks alone (consistent with this study) have been taken to suggest that excessive amounts of oceanic crust are required to generate such signatures. However, this study shows that gabbro may exert a strong influence on the composition of recycled oceanic crust. Using both gabbro and basalt (i.e. a complete section of oceanic crust) calculations suggest that the presence of ≥ 40% of 2 Ga oceanic crust can generate the radiogenic Os compositions seen in some OIB. Furthermore, lower U/Pb ratios in gabbro (compared to basalt) serve to limit the 206Pb/204Pb ratios generated, while having a minimal effect on Os ratios. These results suggest that the incorporation of gabbro into recycling models provides a means of producing a range of OIB compositions having lower (and variable) 206Pb/204Pb ratios, but still preserving 187Os/188Os compositions comparable to HIMU-type OIB.  相似文献   

12.
40Ar / 39Ar incremental heating ages for twenty one grains of cryptomelane, collected at 0, 42, 45, and 60 m depths in the Cachoeira Mine weathering profile, Minas Gerais, permit calculating long-term (10 Ma time scale) weathering rate (saprolitization rate) in SE Brazil. Pure well-crystallized cryptomelane grains with high K contents (3–5 wt.%) yield reliable geochronological results. The 40Ar / 39Ar plateau ages obtained decrease from the top to the bottom of the profile (12.7 ± 0.1 to 7.6 ± 0.1 Ma at surface; 7.6  ± 0.2 to 6.1 ± 0.2 Ma at 42 m; and 7.1 ± 0.2 to 5.9 ± 0.1 Ma at 45 m; 6.6 ± 0.1 to 5.2 ± 0.1 Ma at 60 m), yielding a weathering front propagation rate of 8.9 ± 1.1 m/m.y. From the geochronological results and the mineral transformations implicit by the current mineralogy in the weathering profiles, it is possible to calculate the saprolitization rate for the Cachoeira Mine lithologies and for adjacent weathering profiles developed on granodiorites and schists. The measured weathering front propagation rate yields a saprolitization rate of 24.9 ± 3.1 t/km2/yr. This average long-term (> 10 Ma) saprolitization rate is consistent with mass balance calculations results for present saprolitization rates in weathering watersheds. These results are also consistent with long-term saprolitization rates estimated by combining cosmogenic isotope denudation rates with mass balance calculations.  相似文献   

13.
Lengshuiqing is part of the late Proterozoic igneous province from the western margin of the Yangtze craton. The Lengshuiqing area comprises five ultramafic–mafic intrusions, emplaced in the late Proterozoic Yanbian Group. The intrusions from Lengshuiqing contain cumulate ultramafic zones (peridotite + olivine pyroxenite), with cumulus olivine and Cr-spinel, and intercumulus pyroxenes, hornblende, phlogopite and plagioclase. Ni–Cu ore (pyrrhotite + pentlandite + chalcopyrite) is hosted in the ultramafic zones. Olivine-free diorite–quartz diorite ± gabbro and granite zones commonly occur above the ultramafic rocks. The genesis of the intrusions (conduit-related accumulation or differentiation from stagnant magma) was investigated. The amount of sulphides in the intrusions from Lengshuiqing is one order of magnitude bigger than the sulphides that can be dissolved by a volume of mafic magma similar with the volume of the intrusions. Most intrusions from Lengshuiqing have bulk composition (peridotite ± diorite ± granite) more magnesian (MgO = 21–22%; Mg# > 78) than the deduced composition of their parental magma (MgO = 9–11%; Mg# = 64–67). This indicates the accumulation of sulphide and mafic silicates from a volume of magma much bigger than the volume of the intrusions, which can be explained by the fractionation from magma ascending through the intrusions to shallower depths. A continuous supply and vent of magma is consistent with the lack of chilled margins, the melting of the wall rocks and the generation of high-temperature mineral assemblages (K-feldspar, diopside, and sillimanite) in the Yanbian Group. The intrusions from Lengshuiqing are seen as microchambers on conduits draining olivine-, Cr-spinel-, and sulphide-bearing mafic magma from a larger staging chamber.  相似文献   

14.
In situ LA-ICPMS U-Pb, trace element, and Hf isotope data in zircon demonstrate a Carboniferous age for eclogite-facies metamorphism in Siluro-Devonian protoliths in the Huwan shear zone, Dabie Mountains, Central China. This age contrasts with the more prevailing Triassic age for high- to ultrahigh pressure (HP to UHP) metamorphism in the Qinling-Dabie-Sulu orogen. Metamorphic zircon in two eclogite samples from Sujiahe is characterized by low Th/U ratios, small negative Eu anomalies, flat HREE patterns, and low 176Lu/177Hf ratios. These geochemical signatures suggest that the zircon crystallized in the presence of garnet and in the absence of plagioclase feldspar. Furthermore, temperatures of ~ 655 and ~ 638 °C, calculated using the Ti content of zircon, are consistent with their formation during eclogite-facies metamorphism. The weighted mean 206Pb/238U age of 309 ± 4 Ma (2δ) for this zircon improves previous age estimates for eclogite-facies metamorphism in the Huwan shear zone, ranging from 420 to 220 Ma. Metamorphic zircon from one eclogite sample from Hujiawan, most likely formed during prograde metamorphism, yields an equivalent age estimate of 312 ± 11 Ma. Magmatic zircon cores in the three samples yield ages for the magmatic protoliths of the eclogites ranging from 420 ± 7 to 406 ± 5 Ma, and post-dating the middle Paleozoic collision of the North China and the Qinling terrain. The zircon crystals in the three eclogite samples display a large variation of εHf (t) values of ? 4.9 to 21.3. The metamorphic zircon overgrowths show the same range of εHf (t) values as those of the inherited magmatic crystal interiors. This suggests that the metamorphic zircon overgrowths may have formed by dissolution-reprecipitation of pre-existing magmatic zircon thereby preserving their original Hf isotopic composition. The high εHf (t) values suggest that the protoliths were derived from depleted mantle sources, most likely Paleotethyan oceanic crust; while the low εHf (t) values are attributed to crustal contamination. Some eclogites in the Huwan shear zone have a distinctive signature of continental crust most probably derived from the Yangtze Craton. The coexistence of Paleozoic oceanic crust and Neoproterozoic continental crust with similar metamorphic ages in the Huwan shear zone implies that Paleozoic Paleotethyan oceanic crust was produced within a marginal basin of the northern Yangtze Craton. The opening of the Paleo-Tethyan ocean was slightly younger than the collision of the North China Craton and the Qinling terrain during the Late Paleozoic in the Qinling-Dabie-Sulu orogen. Subduction of the Paleo-Tethyan oceanic crust and associated continental basement resulted in the 309 ± 2 Ma (2σ) eclogite-facies metamorphism in the Huwan shear zone. The subsequent Triassic continent-continent collision led to the final coalescence of the Yangtze and Sino-Korean cratons. Amalgamation of the Yangtze and North China cratons was, therefore, a multistage process extending over at least 200 Ma.  相似文献   

15.
The peridotites from north of the town of Nain in central Iran consist of clinopyroxene-bearing harzburgite and lherzolite with small lenses of dunite and chromitite pods. The lherzolite contains aluminous spinel with a Cr number (Cr# = Cr/[Cr + Al]) of 0.17. The Cr number of spinels in harzburgite and chromitite is 0.38–0.42 and 0.62, respectively. This shows that the lherzolite and harzburgite resulted from <18% of partial melting of the source materials. The estimated temperature is 1100 ± 200 °C for peridotites, the estimated pressure is <15 ± 2.3 kbar for harzburgites and >16 ± 2.3 kbar for lherzolites and estimated fo2 is 10?1±0.5 for peridotites. Discriminant geochemical diagrams based on mineral chemistry of harzburgites indicate a supra-subduction zone (SSZ) to mid-oceanic ridge (MOR) setting for these rocks. On the basis of their Cr#, the harzburgite and lherzolite spinels are analogous to those from abyssal peridotites and oceanic ophiolites, whereas the chromites in the chromitite (on the basis of Cr# and boninitic nature of parental melts) resemble those from SSZ ophiolitic sequences. Therefore, the Nain ophiolite complex most likely originated in an oceanic crust related to supra-subduction zone, i.e. back arc basin. Field observations and mineral chemistry of the Nain peridotites, indicating the suture between the central Iran micro-continent (CIM) block and the Sanandaj–Sirjan zone, show that these peridotites mark the site of the Nain–Baft seaway, which opened with a slow rate of ocean-floor spreading behind the Mesozoic arc of the Sanandaj–Sirjan zone as a result of change of Neo Tethyan subduction régime during middle Cretaceous.  相似文献   

16.
The Chinese Continental Scientific Drilling (CCSD) project is located at the Sulu ultrahigh-pressure metamorphic (UHPM) belt. It offers a unique opportunity for studying the radiogenic heat production of both shallower and deeper rocks. Based on the concentrations of radiogenic elements U, Th and K on 349 samples from main hole of CCSD (CCSD MH), pilot holes and exposures, we determined radiogenic heat productions of all major rock types in the Sulu UHPM belt. Results show the mean values of orthogneiss and paragneiss are respectively 1.65 ± 0.81 and 1.24 ± 0.61 µW m? 3. Due to different composition and grade of retrogressive metamorphism, the eclogites display significant scatter in radiogenic heat production, ranging from 0.01 to 2.85 µW m? 3, with a mean of 0.44 ± 0.55 µW m? 3. The radiogenic heat production in ultramafic rocks also varies within a large range of 0.02 to 1.76 µW m? 3, and the average turns out to be 0.18 ± 0.31 µW m? 3. Based on the measurements and crustal petrologic model, the vertical distribution model of heat production in Sulu crust is established. The resulting mean heat production (0.76 µW m? 3) contributes 24 mW m? 2 to the surface heat flow. 1-D thermal model indicates that the temperature at the Moho reaches above 750 °C, and the thermal thickness of the lithosphere is ~ 75 km, in good agreement with the geophysical results. The high teat flow (~ 75 mW m? 2) together with thin lithosphere presents strong support for the extension events during the late Cretaceous and Cenozoic.  相似文献   

17.
Melting in the Fe–FeO system was investigated at pressures up to 93 GPa using synchrotron X-ray diffraction (XRD) and a laser heated diamond anvil cell (DAC). The criteria for melting were the disappearance of reflections associated with one of the end-member phases upon raising the temperature above the eutectic and the reappearance of those reflections on dropping the temperature below the eutectic. The Fe–FeO system is a simple eutectic at 50 GPa and remains eutectic to at least 93 GPa. The eutectic temperature was bound at several pressure points between 19 and 93 GPa, and in some cases the liquidus temperature was also determined. The eutectic temperature rises rapidly with pressure closely following the melting curve of pure Fe. A detailed phase diagram at 50 GPa is presented; the eutectic temperature is 2500 ± 150 K and the eutectic composition is bound between 7.6 ± 1.0 and 9.5 ± 1.0 wt.% O. The coefficient of thermal expansion of FeO is a strong function of volume and decreases with pressure according to a simple power law.  相似文献   

18.
Abundant dunite and harzbugite xenoliths are preserved in Early Cretaceous high-Mg# [63–67, where Mg# = molar 100 × Mg/(Mg + Fetot)] diorite intrusions from western Shandong in the North China Craton (NCC). Dunite and some harzburgite xenoliths typically preserve areas of orthopyroxenite (sometimes accompanied by phlogopite) either as veins or as zones surrounding chromite grains. Harzburgite is chiefly composed of olivine, orthopyroxene, minor clinopyroxene and chromian-spinel. High Mg#'s (averaging 91.4) and depletions in Al2O3 and CaO (averaging 0.52 wt.% and 0.29 wt.%, respectively) in harzburgite and dunite xenoliths suggest that they are residues formed by large degrees of polybaric melting. However, olivines and orthopyroxenes from dunite xenoliths spatially associated with orthopyroxenite display lower Mg#'s (i.e., 82–87 and 83–89, respectively), suggesting that an adakitic melt–peridotite reaction has taken place. This is consistent with the production of veined orthopyroxene or orthopyroxene + phlogopite in dunite and some harzburgite xenoliths in response to the introduction of adakitic melt into the previously depleted lithospheric mantle (i.e., harzburgite and dunite xenoliths). The presence of orthopyroxene in veins or as a zones surrounding chromite in peridotite xenoliths is thought to be representative of adakitic melt metasomatism. The dunite and harzbugite xenoliths are relatively rich in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), poor in heavy rare earth elements (HREEs) and high field strength elements (HFSEs), and lack Eu anomalies on chondrite normalized trace element diagrams. The initial 87Sr/86Sr ratios and εNd(t) values for the xenoliths range from 0.7058 to 0.7212 and + 0.18 to ? 19.59, respectively. Taken together, these features, combined with the strong depletion in HFSE and the existence of Archean inherited zircons in the host rocks, suggest that the adakitic melt was derived from the partial melting of early Mesozoic delaminated lower continental crust. The interaction of the adakitic melt with peridotite is responsible for the high-Mg# character of the early Cretaceous diorites in western Shandong.  相似文献   

19.
A suite of 23 basaltic to dacitic lavas erupted over the last 350 kyr from the Mount Adams volcanic field has been analyzed for U–Th isotope compositions to evaluate the roles of mantle versus crustal components during magma genesis. All of the lavas have (230Th/238U) > 1 and span a large range in (230Th/232Th) ratios, and most basalts have higher (230Th/232Th) ratios than andesites and dacites. Several of the lavas contain antecrysts (crystals of pre-existing material), yet internal U–Th mineral isochrons from six of seven lavas are indistinguishable from their eruption ages. This indicates a relatively brief period of time between crystal growth and eruption for most of the phenocrysts (olivine, clinopyroxene, plagioclase, magnetite) prior to eruption. One isochron gave a crystallization age that is ~ 20–25 ka older than its corresponding eruptive age, and is interpreted to reflect mixing of older and juvenile crystals or a protracted period of magma storage in the crust. Much of the eruptive volume since 350 ka consists of lavas that have small to moderate 230Th excesses (2–16%), which are likely inherited from melting of a garnet-bearing intraplate (“OIB-like”) mantle source. Following melt generation and subsequent migration through the upper mantle, most Mt. Adams magmas interacted with young, mafic lower crust, as indicated by 187Os/188Os ratios that are substantially more radiogenic than the mantle or those expected via mixing of subducted material and the mantle wedge. Moreover, Os–Th isotope variations suggest that unusually large 230Th excesses (25–48%) and high 187Os/188Os ratios in some peripheral lavas reflect assimilation of small degree partial melts of pre-Quaternary basement that had residual garnet or Al-rich clinopyroxene. Despite the isotopic evidence for lower crustal assimilation, these processes are not generally recorded in the erupted phenocrysts, indicating that the crystal record of the deep-level ‘cryptic’ processes has been decoupled from shallow-level crystallization.  相似文献   

20.
New geochemical and isotopic data are presented from the oldest part of the Cumbre Vieja volcano, La Palma (Canary Islands), located near the assumed emergence of the Canary mantle plume. The volcanics comprise a suite dominated by basanite flows with subordinate amounts of phono-tephrite, tephri-phonolite and phonolite flows and intrusives. Two compositionally different basanite groups have been identified, both with HIMU (high-μ)-type incompatible trace element characteristics: Primitive high-MgO basanites (10.7–12.1% MgO), found only at the base of a stratigraphic profile near Fuencaliente on the south coast, and intermediate-MgO basanites (6.0–7.3% MgO), exposed in the upper part of the profile and widespread on the east coast of La Palma. The high-MgO basanites are interpreted as near-primary mantle melts (primary composition 14–15% MgO) derived by progressive melting (2.9% to 4.5%) of a common lithospheric mantle source. Model calculations indicate that it is not possible to generate the intermediate-MgO basanites from the high-MgO group by crystal fractionation of observed phenocrysts. Relative to intermediate-MgO basanites, the high-MgO flows have lower concentrations of LIL and HFS elements, except for Ti, which is markedly enriched in the primitive rocks (3.7–4.7% TiO2 vs 3.4–3.9% TiO2). Fuencaliente volcanics display limited temporal isotopic variations suggested to be a result of mixing of melts originating from the rising plume and the metazomatized lithospheric mantle. 87Sr / 86Sr and 143Nd / 144Nd ratios range 0.70305–0.70311 and 0.51285–0.51291, respectively, while the corresponding ranges in Pb-isotope ratios are 206Pb / 204Pb = 19.46–19.64, 207Pb / 204Pb = 15.55–15.61, and 208Pb / 204Pb = 39.16–39.53. The overall variation of the Cumbre Vieja isotopic data can be accounted for by mixtures of three mantle components in the proportions 72–79% plume source (LVC = low velocity component), 9–16% depleted mantle (DM) and up to 12% enriched mantle (EMI). Negative Δ7 / 4 Pb (− 0.6 to − 5.4) in the Cumbre Vieja volcanics suggest derivation from a young HIMU mantle source. The relative abundance of plume source material increase in younger rocks in the Fuencaliente section, suggesting waning plume–lithosphere interaction during the emplacement of this part of the Cumbre Vieja volcano. The high-MgO volcanics define regular and systematic geochemical trends, interpreted as partial melting trends, when plotted against abundances of highly incompatible elements (P, Ce). Evaluation of minor and trace element variation in consecutive melts suggests control by residual amphibole, phlogopite, garnet and a Ti-bearing phase, possibly ilmenite. The melting mode changed gradually, allowing increasing input from residual phlogopite during partial melting. The residual mineralogy constrains the source region of the high-MgO basanites to the lowermost oceanic lithospheric mantle, presumably around 100 km depths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号