首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We have determined the post-perovskite phase transition boundary in MgSiO3 in a wide temperature range from 1640 to 4380 K at 119–171 GPa on the basis of synchrotron X-ray diffraction measurements in-situ at high-pressure and -temperature in a laser-heated diamond-anvil cell (LHDAC). The results show a considerably high positive Clapeyron slope of + 13.3 ± 1.0 MPa/K and a transition temperature of about 3520 ± 70 K at the core–mantle boundary (CMB) pressure. The thermal structure in D″ layer can be tightly constrained from precisely determined post-perovskite phase transition boundary and the depths of paired seismic discontinuities. These suggest that temperature at the CMB may be around 3700 K, somewhat lower than previously thought. A minimum bound on the global heat flow from the core is estimated to be 6.6 ± 0.5 TW.  相似文献   

2.
Phase relations in Mg0.5Fe0.5SiO3 and Mg0.25Fe0.75SiO3 were investigated in a pressure range from 72 to 123 GPa on the basis of synchrotron X-ray diffraction measurements in situ at high-pressure and -temperature in a laser-heated diamond-anvil cell (LHDAC). Results demonstrate that Mg0.5Fe0.5SiO3 perovskite is formed as a single phase at 85–108 GPa and 1800–2330 K, indicating a high solubility of FeO in (Mg,Fe)SiO3 perovskite at high pressures. Post-perovskite appears coexisting with perovskite in Mg0.5Fe0.5SiO3 above 106 GPa at 1410 K, the condition very close to the post-perovskite phase transition boundary in pure MgSiO3. The coexistence of perovskite and post-perovskite was observed to 123 GPa. In addition, post-perovskite was formed coexisting with perovskite also in Mg0.25Fe0.75SiO3 bulk composition at 106–123 GPa. In contrast to earlier experimental and theoretical studies, these results show that incorporation of FeO stabilizes perovskite at higher pressures. This could be due to a larger ionic radius of Fe2+ ion, which is incompatible with a small Mg2+ site in the post-perovskite phase.  相似文献   

3.
The electrical conductivities of natural pyrolitic mantle and MORB materials were measured at high pressure and temperature covering the entire lower mantle conditions up to 133 GPa and 2650 K. In contrast to the previous laboratory-based models, our data demonstrate that the conductivity of pyrolite does not increase monotonically but varies dramatically with depth in the lower mantle; it drops due to high-spin to low-spin transition of iron in both perovskite and ferropericlase in the mid-lower mantle and increases sharply across the perovskite to post-perovskite phase transition at the D″ layer. We also found that the MORB exhibits much higher conductivity than pyrolite. The depth–conductivity profile measured for pyrolite does not match the geomagnetic field data below about 1500-km depth, possibly suggesting the existence of large quantities of subducted MORB crust in the deep lower mantle. The observations of geomagnetic jerks suggest that the electrical conductivity may be laterally heterogeneous in the lowermost mantle with high anomaly underneath Africa and the Pacific, the same regions as large low shear-wave velocity provinces. Such conductivity and shear-wave speed anomalies are also possibly caused by the deep subduction and accumulation of dense MORB crust above the core–mantle boundary.  相似文献   

4.
In this study, we investigated iron–magnesium exchange and transition-metal trace-element partitioning between magnesium silicate perovskite (Mg,Fe)SiO3 and ferropericlase (Mg,Fe)O synthetised under lower-mantle conditions (up to 115 GPa and 2200 K) in a laser-heated diamond anvil cell. Recovered samples were thinned to electron transparency by focused ion beam and characterized by analytical transmission electron microscopy (ATEM) and nanometer-scale secondary ion mass spectroscopy (nanoSIMS). Iron concentrations in both phases were obtained from X-ray energy dispersive spectroscopy measurements and nanoSIMS. Our results are the first to show that recently reported spin-state and phase transitions in the lower mantle directly affect the evolution of Fe–Mg exchange between both phases. Mg-perovskite becomes increasingly iron-depleted above 70–80 GPa possibly due to the high spin–low spin transition of iron in ferropericlase. Conversely, the perovskite to post-perovskite transition is accompanied by a strong iron enrichment of the silicate phase, ferropericlase remaining in the Fe-rich phase though. Nanoparticles of metallic iron were observed in the perovskite-bearing runs, suggesting the disproportionation of ferrous iron oxide, but were not observed when the post-perovskite phase was present. Implications on the oxidation state of the Earth and core segregation will be discussed. Transition trace-element (Ni, Mn) concentrations (determined with the nanoSIMS) show similar trends and could thus be used to trace the origin of diamonds generated at depth. This study provides new results likely to improve the geochemical and geophysical models of the Earth's deep interiors.  相似文献   

5.
Recent studies have indicated that a significant amount of iron in MgSiO3 perovskite (Pv) is Fe3+ (Fe3+/ΣFe = 10–60%) due to crystal chemistry effects at high pressure (P) and that Fe3+ is more likely than Fe2+ to undergo a high-spin (HS) to low-spin (LS) transition in Pv in the mantle. We have measured synchrotron Mössbauer spectroscopy (SMS), X-ray emission spectroscopy (XES), and X-ray diffraction (XRD) of Pv with all iron in Fe3+ in the laser-heated diamond-anvil cell to over 100 GPa. Fe3+ increases the anisotropy of the Pv unit cell, whereas Fe2+ decreases it. In Pv synthesized above 50 GPa, Fe3+ enters into both the dodecahedral (A) and octahedral (B) sites approximately equally, suggesting charge coupled substitution. Combining SMS and XES, we found that the LS population in the B site gradually increases with pressure up to 50–60 GPa where all Fe3+ in the B site becomes LS, while Fe3+ in the A site remains HS to at least 136 GPa. Fe3+ makes Pv more compressible than Mg-endmember below 50 GPa because of the gradual spin transition in the B site together with lattice compression. The completion of the spin transition at 50–60 GPa increases bulk modulus with no associated change in density. This elasticity change can be a useful seismic probe for investigating compositional heterogeneities associated with Fe3+.  相似文献   

6.
The temperature gradient in the lower mantle is fundamental in prescribing many transport properties, such as the viscosity, thermal conductivity and electrical conductivity. The adiabatic temperature gradient is commonly employed for estimating these transport properties in the lower mantle. We have carried out a series of high-resolution 3-D anelastic compressible convections in a spherical shell with the PREM seismic model as the background density and bulk modulus and the thermal expansivity decreasing with depth. Our purpose was to assess how close under realistic conditions the horizontally averaged thermal gradient would lie to the adiabatic gradient derived from the convection model. These models all have an endothermic phase change at 660 km depth with a Clapeyron slope of around −3 MPa K−1, uniform internal heating and a viscosity increase of 30 across the phase transition. The global Rayleigh number for basal heating is around 2×106, while an internal heating Rayleigh number as high as 108 has been employed. The pattern of convection is generally partially layered with a jump of the geotherm across the phase change of at most 300 K. In all thermally equilibrated situations the geothermal gradients in the lower mantle are small, around 0.1 K km−1, and are subadiabatic. Such a low gradient would produce a high peak in the lower-mantle viscosity, if the temperature is substituted into a recently proposed rheological law in the lower mantle. Although the endothermic phase transition may only cause partial layering in the present-day mantle, its presence can exert a profound influence on the state of adiabaticity over the entire mantle.  相似文献   

7.
A phase transition in pure CaSiO3 perovskite was investigated at 27 to 72 GPa and 300 to 819 K by in-situ X-ray diffraction experiments in an externally-heated diamond-anvil cell. The results show that CaSiO3 perovskite takes a tetragonal form at 300 K and undergoes phase transition to a cubic structure above 490–580 K in a pressure range studied here. The transition boundary is strongly temperature-dependent with a slightly positive dT / dP slope of 1.1 (± 1.3) K/GPa. It is known that the transition temperature depends on Al2O3 content dissolved in CaSiO3 perovskite [Kurashina et al., Phys. Earth Planet. Inter. 145 (2004) 67–74]. The phase transition in CaSiO3(+ 3 wt.% Al2O3) perovskite therefore could occur in a cold subducted mid-oceanic ridge basalt (MORB) crust at about 1200 K in the upper- to mid-lower mantle. This phase transition is possibly ferroelastic-type and may cause large seismic anomalies in a wide depth range.  相似文献   

8.
The change in electronic structure of iron at high pressures to spin-paired states in ferropericlase, silicate perovskite, and post-perovskite may have a profound influence on the thermal conductivity of the lower mantle. Here, we present optical absorption data for lower mantle minerals to assess the effect of composition (including iron oxidation state), structure, and iron spin state on radiative heat transfer. We confirm that the presence of ferric iron in ferropericlase strongly affects the optical properties, while the effect of the spin-pairing transition may be more secondary. We also show that post-perovskite exhibits larger optical absorption in the near infrared and visible spectral ranges than perovskite which may have a profound effect on the dynamics the lowermost mantle. We present preliminary results from measurements of the phonon thermal conductivity of perovskite at 125 GPa using a pulsed laser heating technique. The available data suggest a larger value than what previously estimated, although the uncertainty is large.  相似文献   

9.
The new post-perovskite phase near the core-mantle boundary has important ramifications on lower mantle dynamics. We have investigated the dynamical impact arising from the interaction of temperature- and depth-dependent viscosity with radiative thermal conductivity, up to a lateral viscosity contrast of 104, on both the ascending and descending flows in the presence of both the endothermic phase change at 670 km depth and an exothermic post-perovskite transition at 2650 km depth. The phase boundaries are approximated as localized zones. We have employed a two-dimensional Cartesian model, using a box with an aspect-ratio of 10, within the framework of the extended Boussinesq approximation. Our results for temperature- and depth-dependent viscosity corroborate the previous results for depth-dependent viscosity in that a sufficiently strong radiative thermal conductivity plays an important role for sustaining superplumes in the lower mantle, once the post-perovskite phase change is brought into play. This aspect is especially emphasized, when the radiative thermal conductivity is restricted only to the post-perovskite phase. These results revealed a greater degree of asymmetry is produced in the vertical flow structures of the mantle by the phase transitions. Mass and heat transfer between the upper and lower mantle will deviate substantially from the traditional whole-mantle convection model. Streamlines revealed that an overall complete communication between the top and lower mantle is difficult to be achieved.  相似文献   

10.
The melting curve of iron monosilicide, FeSi, has been determined in a laser-heated diamond anvil cell from 6 up to 70 GPa by direct visual observation of the continuous laser-speckle motion in the liquid state. At 12 GPa and 1700 K, a discontinuous change in the slope of the melting curve indicates the first-order phase transition between the ?-FeSi (B20) and the CsCl-type FeSi structures (B2). During the phase transition the coordination number of both, Fe and Si atoms, increases from 7 to 8. Above this pressure, the melting curve rises steeply but shows significant flattening at higher pressures. A comparison with the melting curve of Fe shows that both curves cross at 32 ± 3 GPa, FeSi having higher melting temperatures (about 100 K) at high pressures.  相似文献   

11.
In situ synchrotron X-ray diffraction experiments were conducted using the SPEED-1500 multi-anvil press at SPring-8 on majoritic garnet synthesized from natural mid-ocean ridge basalt (MORB), whose chemical composition is close to the average of oceanic crust, at 19 GPa and 2200 K. Pressure-volume-temperature data were collected using a newly developed high-pressure cell assembly to 21 GPa and 1273 K. Data were fit to the high-temperature Birch-Murnaghan equation of state, with fixed values for the ambient cell volume (V0 = 1574.14(4) Å3) and the pressure derivative of the isothermal bulk modulus (KT = 4). This yielded an isothermal bulk modulus of KT0 = 173(1) GPa, a temperature derivative of the bulk modulus (∂KT/∂T)P = −0.022(5) GPa K−1, and a volumetric coefficient of thermal expansivity α = a + bT with values of a = 2.0(3) × 10−5 K−1 and b = 1.0(5) × 10−8 K−2. The derived thermoelastic parameters are very similar to those of pyrope. The density of subducted oceanic crust compared to pyrolitic mantle at the conditions in Earth's transition zone (410-660 km depth) was calculated using these results and previously reported thermoelastic parameters for MORB and pyrolite mineral assembledges. These calculations show that oceanic crust is denser than pyrolitic mantle throughout the mantle transition zone along a normal geotherm, and the density difference is insensitive to temperature at the pressures in lower part of the transition zone.  相似文献   

12.
Recent experience with Rietveld refinement of structural analogues and literature surveys, suggests anion–anion repulsion limits the stability of the perovskite phase, including in the MgSiO3 perovskite to post-perovskite transition. Assuming rigid octahedral coordination, still to be tested experimentally, the critical point where intra- and inter-octahedral anion–anion distances are equal provides a useful metric for predicting the pressure of the perovskite/post-perovskite transition and the Clapeyron slope of the phase boundary, once pressure and temperature derivatives of relevant structure parameters are known. The inter-octahedral anion–anion distances and the polyhedral volume ratio are rigorously formulated as a function of octahedral rotation in this work, assuming the orthorhombic (Pbnm) perovskite structure, where regular octahedra share each corner and conform to the in- and anti-phase rotation schemes designated by space group symmetry. These mathematical expressions are consistent with structure data from 70 perovskite-structured materials surveyed in the literature at ambient as well as extreme conditions and define structure constraints, such as the minimum polyhedral volume ratio, which must be reached before the phase transition to the post-perovskite structure-type can proceed. The formalism we present is general for perovskite (Pbnm) and dependent on the accuracy with which structures can be determined from, sometimes compromised, high pressure diffraction data.  相似文献   

13.
Partial melting of mantle peridotite generates a physically and chemically layered oceanic lithosphere that is cycled back into the mantle in subduction zones. Stirring times of the mantle are too long to allow for complete re-homogenization of subducted basalt and harzburgite, given the low chemical diffusivity of the solid mantle. This suggests that the Earth's mantle is a mechanical mixture of basaltic and harzburgitic components. Using a recently developed thermodynamic formulism we determine the phase equilibria and the seismic properties of a mantle comprised of a mechanical mixture of basalt and harzburgite (MM) and a homogeneous mantle (EA) with identical pyrolitic bulk chemistry. We use the theoretical shear velocity profiles as a new thermometer of the mantle below the magma-genetic zone by modeling the difference ΔT410-660 between traveltimes of shear wave reflections off the 410-km and 660-km with the potential temperature TP. ΔT410-660 are measured from waveform stacks. They indicate that, over 1000+ km wave lengths, the temperature varies by about 200 K. Lowest and highest temperatures are resolved for the western Pacific subduction zones and the central Pacific, respectively. This variation is similar for the EA and MM and is in excellent agreement with estimates of transition zone thickness and shear velocity variations. The median value of TP for the EA is 1720 K. It is about 1625 K for the MM, a value that is in better agreement with the Normal-MORB values of 1610 ± 40 K inferred from olivine-liquid equilibria given that our sampling region encompasses the Western Pacific subduction zones and the oldest parts of the Pacific Plate. We argue therefore that a mechanical mixed mantle, with generally higher velocities and steeper velocities gradients, represents a better physical reference model than a model based on a fully equilibrated assemblage.  相似文献   

14.
Melting in the Fe–FeO system was investigated at pressures up to 93 GPa using synchrotron X-ray diffraction (XRD) and a laser heated diamond anvil cell (DAC). The criteria for melting were the disappearance of reflections associated with one of the end-member phases upon raising the temperature above the eutectic and the reappearance of those reflections on dropping the temperature below the eutectic. The Fe–FeO system is a simple eutectic at 50 GPa and remains eutectic to at least 93 GPa. The eutectic temperature was bound at several pressure points between 19 and 93 GPa, and in some cases the liquidus temperature was also determined. The eutectic temperature rises rapidly with pressure closely following the melting curve of pure Fe. A detailed phase diagram at 50 GPa is presented; the eutectic temperature is 2500 ± 150 K and the eutectic composition is bound between 7.6 ± 1.0 and 9.5 ± 1.0 wt.% O. The coefficient of thermal expansion of FeO is a strong function of volume and decreases with pressure according to a simple power law.  相似文献   

15.
We investigate by first-principles calculations the effect of ferrous iron, Fe2+, on the structure and the equation of state of MgSiO3 post-perovskite. We find that ferrous iron is high-spin over the pressure range of the mantle assuming a ferromagnetic structure. The bulk modulus and the specific volume increase with the addition of ferrous iron to MgSiO3. We find that Fe partitions preferentially to post-perovskite and broadens the two-phase pressure range.  相似文献   

16.
The equations of state (EOSs) of MgO produced by two independent scale-free methods, (1) the simultaneous elastic wave velocity and in situ synchrotron X-ray measurements (Kono et al., 2010; Li et al., 2006) and (2) the first-principles calculations (Wu et al., 2008), agree well with each other to at least 150 GPa and 2000 K. Furthermore, the EOS from first-principles calculations also agrees well with shock wave data, another pressure-scale-free data. These agreements strongly support that these EOSs provide reliable absolute pressure scales. Here we evaluate Au and Pt EOSs based on the EOS of Wu et al. (2008) using the simultaneously measured volume data of MgO, Au, and Pt from the literature. The primary pressure scales developed by Tange et al. (2009) and Yokoo et al. (2009) using only pressure-scale-free experimental data of MgO, Au, and Pt produce internal consistent pressure and agree with EOS of Wu et al. (2008). The Au EOS by Tsuchiya (2003) works well at room temperature but underestimates pressure at high temperature. The Au EOS by Fei et al. (2007) can well describe thermal pressure. The EOSs of Pt by Holmes et al. (1989) and Ono et al. (2011) work well at both room temperature and high temperature. The results also suggest that the discrepancy between bulk modulus of iron from experiments (Mao et al., 1990) and those from Earth’s core (Dziewonski and Anderson, 1981) is not originated from the overestimation of pressure by the EOS of Holmes et al. (1989). At high pressure and temperature, pressure uncertainty resulted from volume error becomes similarly important as the accuracy of the pressure scale.  相似文献   

17.
在金刚石对顶砧压机上,对一些氧化物进行了0—30 GPa 压力范围下的电导率测量,发现所测氧化物可按其电导性质为两类:过渡族元素氧化物和非过渡族元素氧化物前者平均电导率较高且有正压效应,后者平均电导率较低且压力效应不明显.过渡族元素氧化物的高导性质对讨论下地幔的电导事和化学模式具有重要意义.结合前人的研究成果,半定量地估计了700 km 处下地幔的电导率.  相似文献   

18.
In this study, we have modeled the density(ρ) and bulk sound velocity(VΦ) profiles of the bottom lower mantle using the experimental thermal equation of state(EoS) parameters of lower-mantle minerals, including bridgmanite, ferropericlase,CaSiO3-perovskite, and post-perovskite. We re-evaluated the literature pressure-volume-temperature relationships of these minerals using a self-consistent pressure scale in order to avoid the long-standing pressure scale problem and to provide more reliable constraints on the thermal EoS parameters. With the obtained thermal EoS parameters, we have constructed the ρ and VΦ profiles of the bottom lower mantle in different composition, mineralogy, and temperature models. Our modelling results show that the variations of chemistry, mineralogy, and temperature have different seismic signatures from each other. The Fe and Al enrichment at the bottom lower mantle can cause an increase in ρ but greatly lower VΦ. A change in mineralogy needs to be considered with the lateral variation in temperature. The cold slabs will be shown as denser regions compared to the normal mantle because of the combined effect of a lower temperature and the presence of a denser post-perovskite at a shallower depth,whereas the hot regions will have a 1–2% lower ρ than the normal mantle. VΦ of both cold slabs and hot regions will be lower than the normal mantle when bridgmanite is the dominant phase in the normal mantle, yet they will be greater once bridgmanite transforms into post-perovskite in the normal mantle. Our modeling also shows that the presence of a(Fe, Al)-enriched bridgmanite thermal pile above the core-mantle boundary will exhibit a seismic signature of enhanced ρ and VΦ, but a reduced VS,which is consistent with the observed seismic anomalies in the large-low-shear-velocity-provinces(LLSVPs). The existence of such a(Fe, Al)-enriched bridgmanite thermal pile thus can help to understand the origin of the LLSVPs. These results provide new insights for the chemical and structure of the deepest lower mantle.  相似文献   

19.
Laboratory Electrical Conductivity Measurement of Mantle Minerals   总被引:4,自引:1,他引:3  
Electrical conductivity structures of the Earth’s mantle estimated from the magnetotelluric and geomagnetic deep sounding methods generally show increase of conductivity from 10−4–10−2 to 100 S/m with increasing depth to the top of the lower mantle. Although conductivity does not vary significantly in the lower mantle, the possible existence of a highly conductive layer has been proposed at the base of the lower mantle from geophysical modeling. The electrical properties of mantle rocks are controlled by thermodynamic parameters such as pressure, temperature and chemistry of the main constituent minerals. Laboratory electrical conductivity measurements of mantle minerals have been conducted under high pressure and high temperature conditions using solid medium high-pressure apparatus. To distinguish several charge transport mechanisms in mantle minerals, it is necessary to measure the electrical conductivity in a wider temperature range. Although the correspondence of data has not been yet established between each laboratory, an outline tendency of electrical conductivity of the mantle minerals is almost the same. Most of mineral phases forming the Earth’s mantle exhibit semiconductive behavior. Dominant conduction mechanism is small polaron conduction (electron hole hopping between ferrous and ferric iron), if these minerals contain iron. The phase transition olivine to high-pressure phases enhances the conductivity due to structural changes. As a result, electrical conductivity increases in order of olivine, wadsleyite and ringwoodite along the adiabat geotherm. The phase transition to post-spinel at the 660 km discontinuity further can enhance the conductivity. In the lower mantle, the conductivity once might decrease in the middle of the lower mantle due to the iron spin transition and then abruptly increase at the condition of the D″ layer. The impurities in the mantle minerals strongly control the formation, number and mobility of charge carriers. Hydrogen in nominally anhydrous minerals such as olivine and high-pressure polymorphs can enhance the conductivity by the proton conduction. However, proton conduction has lower activation enthalpy compared with small polaron conduction, a contribution of proton conduction becomes smaller at high temperatures, corresponding to the mantle condition. Rather high iron content in mantle minerals largely enhances the conductivity of the mantle. This review focuses on a compilation of fairly new advances in experimental laboratory work together with their explanation.  相似文献   

20.
The anisotropic thermal conductivity and diffusivity of talc were simultaneously measured up to 5.3 GPa and 900 K using the pulse transient method. Although significant anisotropy was observed in the thermal conductivity of talc, the average thermal conductivity is comparable to that of olivine and roughly three times greater than that of antigorite. From the ratio of the thermal conductivity to the thermal diffusivity, the heat capacity of talc was evaluated. The pressure derivative of heat capacity was found to be positive, which is related to the anomaly of thermal expansivity of talc above 50 °C at atmospheric pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号