首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Numerous volcanoes in the Afar Triangle and adjacent Ethiopian Rift Valley have erupted during the Quaternary, depositing volcanic ash (tephra) horizons that have provided crucial chronology for archaeological sites in eastern Africa. However, late Pleistocene and Holocene tephras have hitherto been largely unstudied and the more recent volcanic history of Ethiopia remains poorly constrained. Here, we use sediments from lakes Ashenge and Hayk (Ethiopian Highlands) to construct the first <17 cal ka BP tephrostratigraphy for the Afar Triangle. The tephra record reveals 21 visible and crypto-tephra layers, and our new database of major and trace element glass compositions will aid the future identification of these tephra layers from proximal to distal locations. Tephra compositions include comendites, pantellerites and minor peraluminous and metaluminous rhyolites. Variable and distinct glass compositions of the tephra layers indicate they may have been erupted from as many as seven volcanoes, most likely located in the Afar Triangle. Between 15.3−1.6 cal. ka BP, explosive eruptions occurred at a return period of <1000 years. The majority of tephras are dated at 7.5−1.6 cal. ka BP, possibly reflecting a peak in regional volcanic activity. These findings demonstrate the potential and necessity for further study to construct a comprehensive tephra framework. Such tephrostratigraphic work will support the understanding of volcanic hazards in this rapidly developing region.  相似文献   

2.
Tephra layers from archaeological sites in southern Italy and eastern Europe stratigraphically associated with cultural levels containing Early Upper Palaeolithic industry were analysed. The results confirm the occurrence of the Campanian Ignimbrite tephra (CI; ca. 40 cal ka BP) at Castelcivita Cave (southern Italy), Temnata Cave (Bulgaria) and in the Kostenki–Borshchevo area of the Russian Plain. This tephra, originated from the largest eruption of the Phlegrean Field caldera, represents the widest volcanic deposit and one of the most important temporal/stratigraphic markers of western Eurasia. At Paglicci Cave and lesser sites in the Apulia region we recognise a chemically and texturally different tephra, which lithologically, chronologically and chemically matches the physical and chemical characteristics of the Plinian eruption of Codola; a poorly known Late Pleistocene explosive event from the Neapolitan volcanoes, likely Somma–Vesuvius. For this latter, we propose a preliminary age estimate of ca. 33 cal ka BP and a correlation to the widespread C-10 marine tephra of the central Mediterranean. The stratigraphic position of both CI and Codola tephra layers at Castelcivita and Paglicci help date the first and the last documented appearance of Early Upper Palaeolithic industries of southern Italy to ca. 41–40 and 33 cal ka BP, respectively, or between two interstadial oscillations of the Monticchio pollen record – to which the CI and Codola tephras are physically correlated – corresponding to the Greenland interstadials 10–9 and 5. In eastern Europe, the stratigraphic and chronometric data seem to indicate an earlier appearance of the Early Upper Palaeolithic industries, which would predate of two millennia at least the overlying CI tephra. The tephrostratigraphic correlation indicates that in both regions the innovations connected with the so-called Early Upper Palaeolithic – encompassing subsistence strategy and stone tool technology – appeared and evolved during one of the most unstable climatic phases of the Last Glacial period. On this basis, the marked environmental unpredictability characterising this time-span is seen as a potential ecological factor involved in the cultural changes observed.  相似文献   

3.
The Azores archipelago is one of the most active volcanic areas in the North Atlantic region, with approximately 30 eruptions during the last 600 years. The geochemical composition of associated tephra-derived glass is, however, not well characterized. This study presents major element compositions of glass shards from five major eruptives on the Azores: a trachybasaltic eruptive on the island of Faial (Capelinhos AD, 1957) and four explosive trachytic eruptives on the island of São Miguel (Fogo A c. 5600 cal yrs. BP, Sete Cidades c. AD 1440, Fogo AD 1563 and Furnas AD 1630). The major element compositions suggest that tephras from three active stratovolcanoes on São Miguel, Sete Cidades, Fogo and Furnas, can be distinguished from one another using bi-plots of FeOtot vs. TiO2 and FeOtot vs. CaO. Late Holocene tephras found on Ireland have previously been attributed to eruptions occurring on Jan Mayen but possess a strong geochemical similarity to proximal tephras from the Azores, especially those from the Furnas volcano. The similarity of the proximal tephras on São Miguel, especially Furnas AD 1563 and Furnas AD 1630 and distal tephras in Ireland is demonstrated by strong similarity coefficients (>0.95) and the closeness of major element composition. The dominant wind direction over the Azores is favourable for tephra dispersal to western Europe and we suggest that at least three tephras found in Ireland were erupted from the Furnas volcano, and that trachytic tephras erupted from explosive eruptions on São Miguel have a potential to contribute to the construction of a European-wide tephrostratigraphic framework.  相似文献   

4.
At least 15 explosive eruptions from the Katmai cluster of volcanoes and another nine from other volcanoes on the Alaska Peninsula are preserved as tephra layers in syn- and post-glacial (Last Glacial Maximum) loess and soil sections in Katmai National Park, AK. About 400 tephra samples from 150 measured sections have been collected between Kaguyak volcano and Mount Martin and from Shelikof Strait to Bristol Bay (∼8,500 km2). Five tephra layers are distinctive and widespread enough to be used as marker horizons in the Valley of Ten Thousand Smokes area, and 140 radiocarbon dates on enclosing soils have established a time framework for entire soil–tephra sections to 10 ka; the white rhyolitic ash from the 1912 plinian eruption of Novarupta caps almost all sections. Stratigraphy, distribution and tephra characteristics have been combined with microprobe analyses of glass and Fe–Ti oxide minerals to correlate ash layers with their source vents. Microprobe analyses (typically 20–50 analyses per glass or oxide sample) commonly show oxide compositions to be more definitive than glass in distinguishing one tephra from another; oxides from the Kaguyak caldera-forming event are so compositionally coherent that they have been used as internal standards throughout this study. Other than the Novarupta and Trident eruptions of the last century, the youngest locally derived tephra is associated with emplacement of the Snowy Mountain summit dome (<250 14C years B.P.). East Mageik has erupted most frequently during Holocene time with seven explosive events (9,400 to 2,400 14C years B.P.) preserved as tephra layers. Mount Martin erupted entirely during the Holocene, with lava coulees (>6 ka), two tephras (∼3,700 and ∼2,700 14C years B.P.), and a summit scoria cone with a crater still steaming today. Mount Katmai has three times produced very large explosive plinian to sub-plinian events (in 1912; 12–16 ka; and 23 ka) and many smaller pyroclastic deposits show that explosive activity has long been common there. Mount Griggs, fumarolically active and moderately productive during postglacial time (mostly andesitic lavas), has three nested summit craters, two of which are on top of a Holocene central cone. Only one ash has been found that is (tentatively) correlated with the most recent eruptive activity on Griggs (<3,460 14C years B.P.). Eruptions from other volcanoes NE and SW beyond the Katmai cluster represented in this area include: (1) coignimbrite ash from Kaguyak’s caldera-forming event (5,800 14C years B.P.); (2) the climactic event from Fisher caldera (∼9,100 14C years B.P.—tentatively correlated); (3) at least three eruptions most likely from Mount Peulik (∼700, ∼7,700 and ∼8,500 14C years B.P.); and (4) a phreatic fallout most likely from the Gas Rocks (∼2,300 14C years B.P.). Most of the radiocarbon dating has been done on loess, soil and peat enclosing this tephra. Ash correlations supported by stratigraphy and microprobe data are combined with radiocarbon dating to show that variably organics-bearing substrates can provide reliable limiting ages for ash layers, especially when data for several sites is available.  相似文献   

5.
6.
Visible and non-visible (cryptotephra) volcanic ash layers are increasingly being used to underpin the chronology and high-precision correlation of sequences dating to the last glacial–interglacial transition (LGIT). As the number of sediment records analysed for tephra content rises, and methodological developments permit the detection, extraction and chemical analysis of increasingly scantily represented glass shard concentrations, greater complexity in shard count profiles is revealed. Here we present new evidence from sites in Scotland, and review published evidence from sites elsewhere in NW Europe, that indicate complexity in the eruptive history of Katla volcano during the mid-Younger Dryas and Early Holocene. We propose evidence for a previously-overlooked tephra isochron, here named the Abernethy Tephra, which is consistently found to lie close to the Younger Dryas/Holocene transition. It has a major-element chemical composition indistinguishable from that of the Vedde Ash, which was erupted from the Katla volcano at 12,121 ± 114 cal a BP. The new data suggest that Katla may have erupted again between 11,720–11,230 cal a BP and the subsequent ash fall increases the potential to assess environmental response to Holocene warming across north and west Europe.  相似文献   

7.
Physical and chemical analyses of distal tephra from the 1912 eruption of Novarupta, Alaska, show considerable variations in glass and mineral compositions. A combination of a 150°C range in temperature deduced from iron-titanium oxide geothermometry, and curved patterns in bivariant element plots of glass compositions indicate that a chamber of compositionally zoned magma existed prior to the eruption. Magma-mixing cannot explain these features. The magma chamber may have resembled the model recently proposed by McBirney (1980). A highly silicic, quartz-phyric magma with mean phenocryst compositions of An25 plagioclase, Fs42 orthopyroxene, at a temperature of 880°C and a water pressure of 1.4 kbar, was located above a more mafic, hotter magma, bearing phenocrysts of An45 plagioclase and Fs35, orthopyroxene.Our results on distal tephras compare favorably with those from a recently completed study at source by Hildreth (1983), suggesting that useful petrologic information about distant volcanoes can be obtained from both types of deposits. Compositionally heterogeneous abyssal tephra layers are common in the Gulf of Alaska. Eruptions from chambers of zoned magma may account for many of these layers.  相似文献   

8.
Field, geochronologic, and geochemical evidence from proximal fine-grained tephras, and from limited exposures of Holocene lava flows and a small pyroclastic flow document ten–12 eruptions of Mount Rainier over the last 2,600 years, contrasting with previously published evidence for only 11–12 eruptions of the volcano for all of the Holocene. Except for the pumiceous subplinian C event of 2,200 cal year BP, the late-Holocene eruptions were weakly explosive, involving lava effusions and at least two block-and-ash pyroclastic flows. Eruptions were clustered from ∼2,600 to ∼2,200 cal year BP, an interval referred to as the Summerland eruptive period that includes the youngest lava effusion from the volcano. Thin, fine-grained tephras are the only known primary volcanic products from eruptions near 1,500 and 1,000 cal year BP, but these and earlier eruptions were penecontemporaneous with far-traveled lahars, probably created from newly erupted materials melting snow and glacial ice. The most recent magmatic eruption of Mount Rainier, documented geochemically, was the 1,000 cal year BP event. Products from a proposed eruption of Mount Rainier between AD 1820 and 1854 (X tephra of Mullineaux (US Geol Surv Bull 1326:1–83, 1974)) are redeposited C tephra, probably transported onto young moraines by snow avalanches, and do not record a nineteenth century eruption. We found no conclusive evidence for an eruption associated with the clay-rich Electron Mudflow of ∼500 cal year BP, and though rare, non-eruptive collapse of unstable edifice flanks remains as a potential hazard from Mount Rainier. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. T. W. Sisson and J. W. Vallance contributed equally to this study.  相似文献   

9.
The Ko-g and Ma-f~j tephras are two key isochronous marker layers in northern Japan, which are from the largest Plinian eruptions of Komagatake volcano (VEI = 5) and Mashu caldera (VEI = 6), respectively. Despite extensive radiocarbon studies associated with the two tephras, individual calibrated results show considerable variations and thus accurate ages of these important eruptions remain controversial. Bayesian statistical approaches to calibrating radiocarbon determinations have proven successful in increasing accuracy and sometimes precision for dating tephras, which is achieved through the incorporation of additional stratigraphic information and the combination of evidence from multiple records. Here we use Bayesian approaches to analyse the proximal and distal information associated with the two tephra markers. Through establishing phase and deposition models, we have taken into account all of the currently available stratigraphic and chronological information. The cross-referencing of phase models with the deposition model allows the refinement of eruption ages and the deposition model itself. Using this we are able to provide the most robust current age estimates for the two tephra layers. The Ko-g and Ma-f~j tephras are hereby dated to 6657-6505 (95.4%; 6586±40, μ±σ) cal yr BP, and 7670-7395 (95.4%; 7532±72, μ±σ) cal yr BP, respectively. These updated age determinations underpin the reported East Asian Holocene tephrostratigraphic framework, and allow sites where the tephra layers are present to be dated more precisely and accurately. Our results encourage further applications of Bayesian modelling techniques in the volcanically active East Asian region.  相似文献   

10.
Eruptive activity has occurred in the summit region of Mount Erebus over the last 95 ky, and has included numerous lava flows and small explosive eruptions, at least one plinian eruption, and at least one and probably two caldera-forming events. Furnace and laser step-heating 40Ar/39Ar ages have been determined for 16 summit lava flows and three englacial tephra layers erupted from Mount Erebus. The summit region is composed of at least one or possibly two superimposed calderas that have been filled by post-caldera lava flows ranging in age from 17 ± 8 to 1 ± 5 ka. Dated pre-caldera summit flows display two age populations at 95 ± 9 to 76 ± 4 ka and 27 ± 3 to 21 ± 4 ka of samples with tephriphonolite and phonolite compositions, respectively. A caldera-collapse event occurred between 25 and 11 ka. An older caldera-collapse event is likely to have occurred between 80 and 24 ka. Two englacial tephra layers from the flanks of Mount Erebus have been dated at 71 ± 5 and 15 ± 4 ka. These layers stratigraphically bracket 14 undated tephra layers, and predate 19 undated tephra layers, indicating that small-scale explosive activity has occurred throughout the late Pleistocene and Holocene eruptive history of Mount Erebus. A distal, englacial plinian-fall tephra sample has an age of 39 ± 6 ka and may have been associated with the older of the two caldera-collapse events. A shift in magma composition from tephriphonolite to phonolite occurred at around 36 ka.Editorial responsibility: Julie Donnelly-Nolan  相似文献   

11.
A 1075 cm long core (Lz1120) was recovered in the south-eastern part of the Lake Ohrid (Republics of Macedonia and Albania) and sampled for identification of tephra layers. Magnetic susceptibility investigations show rather high magnetic values throughout the core, with peaks unrelated to the occurrence of tephra layers but instead to the relative abundance of detrital magnetic minerals in the sediment. Naked-eye inspection of the core allowed us to identify of two tephra layers, at 896–897 cm and 1070–1075 cm. Laboratory inspection of the grain-size fraction > 125 μm allowed for the identification of a third cryptotephra at 310–315 cm. Major element analyses on glass shards of the tephra layers at 896–897 cm and 1070–1075 cm show a trachytic composition, and indicate a correlation with the regionally dispersed Y-3 and Y-5 tephra layers, dated at ca 30 and 39 cal ka BP. The cryptotephra at 310–315 cm has a mugearitic–benmoreitic composition, and was correlated with the FL eruption of Mt. Etna, dated at 3370 ± 70 cal yr BP. These ages are in agreement with five 14C AMS measurements carried out on plant remains and macrofossils from the lake sediments at different depths along the core.  相似文献   

12.
In this study are discussed new SEM-EDS analyses performed on glass shards from five cores collected in the Central Adriatic Sea and two cores recovered from the South Adriatic Sea. A total of 26 tephra layers have been characterized and compared with the geochemical features of terrestrial deposits and other tephra archives in the area (South Adriatic Sea and Lago Grande di Monticchio, Vulture volcano). The compositions are compatible with either a Campanian or a Roman provenance. The cores, located on the Central Adriatic inner and outer shelf, recorded tephra referred to explosive events described in the literature: AP3 (sub-Plinian activity of the Somma-Vesuvius, 2710 ± 60 14C years BP); Avellino eruption (Somma–Vesuvius, 3548 ± 129 14C years BP); Agnano Monte Spina (Phlegrean Fields, 4100 ± 400 years BP); Mercato eruption (Somma–Vesuvius, 8010 ± 35 14C years BP; Agnano Pomici Principali eruption (Phlegrean Fields, 10,320 ± 50 14C years BP); Neapolitan Yellow Tuff (Phlegrean Fields, 12,100 ± 170 14C years BP). Some of these layers were also observed in the South Adriatic core IN68-9 in addition to younger (AP2, sub-Plinian eruption, Somma–Vesuvius, 3225 ± 140 14C years BP), and older layers (Pomici di Base eruption, Somma–Vesuvius, 18,300 ± 150 14C years BP). Significant is the tephra record of core RF95-7 that, for the first time in the Adriatic Sea, reports the occurrence of tephra layers older than 60 ka: the well known Mediterranean tephra layers X2 (ca. 70 ka), W1 (ca. 140 ka) and V2 (Roman origin, ca. 170 ka) as well as other tephra layers attributed, on the basis of geochemistry and biostratigraphy, to explosive eruptions occurred at Vico (138 ± 2 and 151 ± 3 ka BP) and Ischia (147–140 ka BP).  相似文献   

13.
The morphology, grain size characteristics and composition of ash particles in 30 ka to 150 ka tephra layers from the Byrd ice core were examined to characterize the eruptions which produced them and to test the suggestion that they were erupted from Mt. Takahe, a shield volcano in Marie Byrd Land, West Antarctica. Volcanic deposits at Mt. Takahe were examined for evidence of recent activity which could correlate with the tephra layers in the ice core.Coarse- and fine-ash layers have been recognized in the Byrd ice core. The coarse-ash layers have a higher mass concentration than the fine-ash layers and are characterized by fresh glass shards > 50 μm diameter, many containing elongate pipe vesicles. The fine-ash layers have a lower mass concentration and contain a greater variety of particles, typically < 20 μm diameter. Many of these particles are aggregate grains composed of glass and crystal fragments showing S and Cl surface alteration. The grain-size distributions of the coarse and fine-ash layers overlap, in part because of the aggregate nature of grains in the fine-ash layers. The coarse-ash layers are interpreted as having formed by magmatic eruption whereas the fine-ash layers are believed to be hydrovolcanic in origin.Mt. Takahe is the favored source for the tephra because: (a) chemical analyses of samples from the volcano are distinctive, being peralkaline trachyte, and similar in composition to the analyzed tephra; (b) Mt. Takahe is a young volcano (< 0.3 Ma); (c) pyroclastic deposits on Mt. Takahe indicate styles of eruption similar to that inferred for the ice core tephra; and (d) Mt. Takahe is only about 350 km from the calculated site of tephra deposition.A speculative eruptive history for Mt. Takahe is established by combining observations from Mt. Takahe and the Byrd ice core tephra. Initial eruptions at Mt. Takahe were subglacial and then graded into alternating subaerial and subglacial activity. The tephra suggest alternating subaerial magmatic and hydrovolcanic eruptions from 30 to 20 ka B.P., followed by a sustained period of hydrovolcanic eruptions from 20 to 14 ka B.P., which peaked at 18 ka B.P.  相似文献   

14.
The role of tephrochronology, as a dating and stratigraphic tool, in precise palaeoclimate and environmental reconstruction, has expanded significantly in recent years. The power of tephrochronology rests on the fact that a tephra layer can stratigraphically link records at the resolution of as little as a few years, and that the most precise age for a particular tephra can be imported into any site where it is found. In order to maximise the potential of tephras for this purpose it is necessary to have the most precise and robustly tested age estimate possible available for key tephras. Given the varying number and quality of dates associated with different tephras it is important to be able to build age models to test competing tephra dates. Recent advances in Bayesian age modelling of dates in sequence have radically extended our ability to build such stratigraphic age models. As an example of the potential here we use Bayesian methods, now widely applied, to examine the dating of some key Late Quaternary tephras from Italy. These are: the Agnano Monte Spina Tephra (AMST), the Neapolitan Yellow Tuff (NYT) and the Agnano Pomici Principali (APP), and all of them have multiple estimates of their true age. Further, we use the Bayesian approaches to generate a revised mixed radiocarbon/varve chronology for the important Lateglacial section of the Lago Grande Monticchio record, as a further illustration of what can be achieved by a Bayesian approach. With all three tephras we were able to produce viable model ages for the tephra, validate the proposed 40Ar/39Ar age ranges for these tephras, and provide relatively high precision age models. The results of the Bayesian integration of dating and stratigraphic information, suggest that the current best 95% confidence calendar age estimates for the AMST are 4690–4300 cal BP, the NYT 14320–13900 cal BP, and the APP 12380–12140 cal BP.  相似文献   

15.
The 1 Myr tephra records of IODP (International Ocean Discovery Program) Holes U1436A and U1437B in the Izu‐Bonin fore‐ and reararc were investigated in order to assess provenance and eruptive volumes, respectively. In total, 304 tephra samples were examined and 260 primary tephra layers were identified. Tephra provenance was determined by means of major and trace element compositions of glass shards and distinguished between Japan and Izu‐Bonin arc origin of the tephra layers. A total of 33 marine tephra compositions were correlated to the Japan arc and 227 to the Izu arc. Twenty marine tephra layers were correlated between the two drilling sites. Additionally, we defined eleven correlations of marine tephra deposits to major widespread Japanese eruptions; from the 1.05 Ma Shishimuta‐Pink Tephra to the 30 ka Aira‐Tn Tephra, both from Kyushu Island. These eruptions provide independent time markers within the sediment record and six correlations were used to date tephra layers from Japan in Hole U1436A to establish an alternative age model for this hole. Furthermore, the minimum distal tephra volumes of all detected events were calculated, which enabled the comparison of the tephra volumes that derived from the Japan and the Izu‐Bonin arcs. For some of the major Japanese eruptions these are the first volume estimations that also include distal deposits. All of the Japanese tephras derived from events with eruption magnitude Mv ≥ 5.6 and three of the investigated eruptions reach magnitudes Mv ≥ 7. Volcanic events of the Izu‐Bonin arc have mostly eruption magnitudes Mv ≤ 5.  相似文献   

16.
We investigated a late Quaternary terrestrial sedimentary sequence (Uwa Formation) in core IC2, from a site adjacent to that of the reported core IC on NW Shikoku Island, SW Japan, and developed its tephra and pollen stratigraphy to refine the age model of the formation. First, we identified 19 horizons with high glass shard concentrations in the IC2 core sediments as possible tephras or cryptotephras, and correlated them with reported tephras on the basis of the major- and trace-element compositions of their glass shards. All correlated widespread tephras and cryptotephras were products of volcanoes in the Kyushu volcanic zone (Aso, Kakuto, Aira, Ata, and Kikai calderas). Second, we confirmed the presence in core IC2 of two pollen zones dominated by Quercus subgen. Cyclobalanopsis, which is an indicator of very warm interglacial vegetation. In the Japanese Islands, these two vegetation zones have usually been considered to characterize marine isotopic stages (MISs) 1 and 11. A previous study of the Uwa Formation correlated the upper pollen zone to MIS 1, but the lower zone was not correlated to MIS 11; rather, it was inferred to be older than MIS 12 because it was stratigraphically below the “Oda” tephra (equivalent to a distal Kasamori 5 [Ks5] tephra [MIS 12]). In this study, however, noting that the Naruohama-IV tephra (Nh-IV; MIS 10d) and Ks5 cannot be distinguished by their shard chemistries, we inferred that the suggested “Oda” tephra actually correlates to Nh-IV, rather than to the Ks5 tephra. By re-assigning the “Oda” tephra to Nh-IV, we could correlate the underlying Quercus subgen. Cyclobalanopsis-abundant zone to MIS 11 and, consequently, a pair of pollen zones indicating cool and warm conditions below the MIS 11 pollen zone to MISs 12 and 13, respectively. The resulting age model whereby tephra and pollen constraints are integrated showed a roughly constant sedimentation rate from MIS 13, without any long-term gaps; further, our MIS 13 horizon in core IC2 corresponds to the reported 1 Ma tephra horizon in core IC. Therefore, these findings represent a dramatic change in the Uwa Formation age model and validate the Uwa Formation as one of the most useful terrestrial archives of Quaternary tephrostratigraphy and paleoclimatic fluctuation in SW Japan.  相似文献   

17.
Acquiring detailed eruption frequency datasets for a volcano system is essential for realistic eruption forecasts. However, accurate datasets are inherently difficult to compile, even if one or more well-dated eruption records are available. A single record typically under-represents the eruption frequency, while combining two or more records may result in an overrepresentation. Although glass compositions have proven to be successful in tephrochronological studies of dominantly rhyolitic tephras; microlitic growth and thin glass shards inhibit their application to andesitic tephras. A method consisting of a combination of two techniques for correlating syn-eruptive deposits is demonstrated on data from the typical andesitic stratovolcano of Mt. Taranaki, New Zealand. Firstly, tentative matches are identified using the radiocarbon age and associated error of each event. Secondly, the compositions of titanomagnetite micro-phenocrysts are used as an independent check, and shown to be a useful correlation tool where age data is available. Using two lake-core records containing tephra layers in an overlapping time-frame, the radiocarbon age-correlation procedure suggested 31 tephra matches. Geochemistry data were available for 15 of these pairs. In three of these cases, the titanomagnetite compositions did not match. Hence, these “paired” tephras were from compositionally distinct magmas and therefore likely represent separate events. An additional three matches were reassigned within the temporal uncertainty limits of the dating procedure, based on better geochemical pairing. The final combined dataset suggests that there have been at least 138 separate ash fall-producing eruptions between 96 and 10 150 years B.P. from Taranaki. Using the combined dataset the mixture of Weibulls renewal model forecasts a probability of 0.52 for an eruption occurring in the next 50 years at this volcano. The present annual eruption probability is estimated at 1.6%. This likelihood is almost double that obtained when relying on a single stratigraphic record.  相似文献   

18.
The paper reviews the existing data on the Y-3 tephra layer, first recognised in the Ionian Sea (Mediterranean basin). The collection and collation of old and new data on distal tephra occurrences in terrestrial, marine and lacustrine successions indicate that the Y-3 layer is dispersed over a wide area of the central Mediterranean basin. The peculiar homogeneous chemical composition of this layer makes its recognition rather straightforward and permits it being distinguished from other stratigraphically adjacent tephras. The best age estimate for the Y-3 layer of ca 30–31 cal ka BP, its peculiar stratigraphic position close to the Marine Isotope Stage 3/2 transition or Heinrich Event 3 onset, as well as its wide dispersion makes this layer an important marker to link and date late Pleistocene terrestrial and marine archives of the central Mediterranean basin.  相似文献   

19.
Fifty-three major explosive eruptions on Iceland and Jan Mayen island were identified in 0–6-Ma-old sediments of the North Atlantic and Arctic oceans by the age and the chemical composition of silicic tephra. The depositional age of the tephra was estimated using the continuous record in sediment of paleomagnetic reversals for the last 6 Ma and paleoclimatic proxies (δ18O, ice-rafted debris) for the last 1 Ma. Major element and normative compositions of glasses were used to assign the sources of the tephra to the rift and off-rift volcanic zones in Iceland, and to the Jan Mayen volcanic system. The tholeiitic central volcanoes along the Iceland rift zones were steadily active with the longest interruption in activity recorded between 4 and 4.9 Ma. They were the source of at least 26 eruptions of dominant rhyolitic magma composition, including the late Pleistocene explosive eruption of Krafla volcano of the Eastern Rift Zone at about 201 ka. The central volcanoes along the off-rift volcanic zones in Iceland were the source of at least 19 eruptions of dominant alkali rhyolitic composition, with three distinct episodes recorded at 4.6–5.3, 3.5–3.6, and 0–1.8 Ma. The longest and last episode recorded 11 Pleistocene major events including the two explosive eruptions of Tindfjallajökull volcano (Thórsmörk, ca. 54.5 ka) and Katla volcano (Sólheimar, ca. 11.9 ka) of the Southeastern Transgressive Zone. Eight major explosive eruptions from the Jan Mayen volcanic system are recorded in terms of the distinctive grain-size, mineralogy and chemistry of the tephra. The tephra contain K-rich glasses (K2O/SiO2>0.06) ranging from trachytic to alkali rhyolitic composition. Their normative trends (Ab–Q–Or) and their depleted concentrations of Ba, Eu and heavy-REE reflect fractional crystallisation of K-feldspar, biotite and hornblende. In contrast, their enrichment in highly incompatible and water-mobile trace elements such as Rb, Th, Nb and Ta most likely reflect crustal contamination. One late Pleistocene tephra from Jan Mayen was recorded in the marine sequence. Its age, estimated between 617 and 620 ka, and its composition support a common source with the Borga pumice formation at Sør Jan in the south of the island.  相似文献   

20.
Assessment of potential future eruptive behaviour of volcanoes relies strongly on detailed knowledge of their activity in the past, such as eruption frequency, magnitude and repose time. The eruption history of three partly subglacial volcanic systems, Grímsvötn, Bárdarbunga and Kverkfjöll, was studied by analysing tephra from soil profiles around the Vatnajökull ice-cap, which extend back to ~7.6 ka. Well known regional Holocene marker tephra (e.g. H3, H4, H5) were utilized to correlate profiles. Stratigraphic positions and geochemical compositions were used for fine-scale correlation of basaltic tephra. Around Vatnajökull ice-cap 345 tephra layers were identified, of which 70% originated from Grímsvötn, Bárdarbunga or Kverkfjöll. The eruption frequency of each volcanic system was estimated; Grímsvötn has been the most active with an average of ~7 eruptions/100 years (range 4–14) during prehistoric time (before ~870 AD); Bárdarbunga has been the second most active with ~5 eruptions/100 years (range 1–8); and Kverkfjöll has remained essentially calm with 0–3 eruptions/100 years but showing periodic activity with repose times of >1000 years. All three volcanic systems experienced lulls in activity from 5 ka to 2 ka, referred to as the “Mid-Holocene low”. This reduced eruption frequency appears to have resulted from a decrease in magma generation and delivery from the mantle plume rather than from changes in ice-load/glacier thickness. In prehistoric time, there was a time lag of 1000–3000 years between a peak of activity at volcanoes directly above the mantle plume versus at volcanoes located in the non-rifting part of the Eastern Volcanic Zone, closer to the periphery of the island. This time-space relationship suggests that a significant future increase in volcanism can be expected there, following increased levels of volcanism above the plume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号