首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Acacia nilotica was used for the adsorption of Reactive Black 5 (RB5) dye from an aqueous solution. Both the raw and activated (with H3PO4) carbon forms of Acacia nilotica (RAN and ANAC, respectively) were used for comparison. Various parameters (including dye concentration, contact time, temperature, and pH) were optimized to obtain the maximum adsorption capacity. RAN and ANAC were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The maximum experimental adsorption capacities for RAN and ANAC were 34.79 and 41.01 mg g?1, respectively, which agreed with the maximum adsorption capacities predicted by the Langmuir, Freundlich, and Dubinin–Radushkevich equilibrium isotherm models. The adsorption data of ANAC showed a good fit to the isotherm models based on the coefficient of determination (R 2): Langmuir type II (R 2 = 0.99) > Freundlich (R 2 = 0.9853) > Dubinin–Radushkevich (R 2 = 0.9659). This result suggested monolayer adsorption of RB5 dye. The adsorption of RB5 dye followed pseudo-second-order kinetics. The RAN adsorbent reflected an exothermic reaction (enthalpy change, ΔH = ?0.006 kJ mol?1) and increased randomness (standard entropy change, ΔS = 0.038 kJ mol?1) at the solid–solution interface. In contrast, ANAC reflected both exothermic [?0.011 kJ mol?1 (303–313 K)] and endothermic [0.003 kJ mol?1 (313–323 K)] reactions. However, the ΔS value of ANAC was lower when the RB5 adsorption increased from 313 to 323 K. The negative values for the Gibbs free energy change at all temperatures indicated that the adsorption of RB5 dye onto RAN and ANAC was spontaneous in the forward direction.  相似文献   

2.
Hexavalent chromium has been proved to be the reason of several health hazards. This study aimed at evaluating the application of pomegranate seeds powder for chromium adsorption (VI) from aqueous solution. Chromium adsorption percentage (VI) increased with increasing the adsorbent dosage. Chromium adsorption capacity (VI), at pH = 2 and 10 mg/L initial metal concentration, decreased from 3.313 to 1.6 mg/g through increasing dosage of adsorbent from 0.2 to 0.6 g/100 ml. The adsorption rate increased through increase in chromium initial concentration (VI). However, there was a removal percentage reduction of chromium (VI). Chromium adsorption kinetics by different models (pseudo-first-order, modified pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion, Boyd kinetic) was investigated as well. Studies on adsorption kinetic indicated that the experimental data were matched by pseudo-second-order model (R 2 = 0.999) better. Obtained results demonstrated the pomegranate seeds can be used as an effective biomaterial and biosorbent for hexavalent chromium adsorption from aqueous solutions.  相似文献   

3.
In this research, the stems of Onopordom Heteracanthom which is a kind of weed were converted to biochar particles, and their characteristics were investigated. The morphology and purity of these particles were examined by SEM and EDX techniques, respectively. Specific surface area was obtained as 5.73 m2 g?1 by BET method. The biochar particles obtained from Onopordom Heteracanthom were evaluated as an adsorbent to remove Cr(VI) from aqueous environments. The effect of some parameters such as initial concentration of Cr(VI), dosage of adsorbent, and pH were investigated on the adsorption capacity of Cr(VI) onto the adsorbent. The equilibrium data were analyzed by various isotherm models. The results revealed that in this process, the adsorption isotherm and kinetics have more conformity with Langmuir isotherm and pseudo-second-order kinetics, respectively. The multi-linearity of the Weber and Morris adsorption kinetic model indicates that the intra-particle diffusion is not merely the rate-controlling step for the whole adsorption process.  相似文献   

4.
The sound velocity (V P) of liquid Fe–10 wt% Ni and Fe–10 wt% Ni–4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained V P of liquid Fe–Ni is insensitive to temperature, whereas that of liquid Fe–Ni–C tends to decrease with increasing temperature. The V P values of both liquid Fe–Ni and Fe–Ni–C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the V P of liquid Fe, whereas alloying with C is likely to increase the V P. However, a difference in V P between liquid Fe–Ni and Fe–Ni–C becomes to be smaller at higher temperature. By fitting the measured V P data with the Murnaghan equation of state, the adiabatic bulk modulus (K S0) and its pressure derivative (K S ) were obtained to be K S0 = 103 GPa and K S  = 5.7 for liquid Fe–Ni and K S0 = 110 GPa and K S  = 7.6 for liquid Fe–Ni–C. The calculated density of liquid Fe–Ni–C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density (ρ) and sound velocity (V P) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and V P decreased, whereas the effect of C dissolution was to decrease ρ but increase V P. In contrast, alloying with S significantly reduces both ρ and V P. Therefore, the effects of light elements (C and S) and Ni on the ρ and V P of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.  相似文献   

5.
Here, a novel one-dimensional composite of poly(m-phenylenediamine)s coating on filamentous Streptomyces was successfully constructed via a controllable polymerization reaction. The synthesized composites were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Their adsorption isotherm and kinetics for aqueous hexavalent chromium were also systematically examined. The results of scanning electron microscopy analysis indicated that the obtained composites based on Streptomyces were showed a uniform and stable one-dimensional morphology with distinct core–shell configuration. Moreover, the Langmuir isotherm model (R 2 > 0.96) and pseudo-second-order equation (R 2 = 0.9996) described well the equilibrium adsorption behavior and kinetics of hexavalent chromium adsorption by the composites. In addition, bath adsorption experiments demonstrated the highest adsorption capacity of hexavalent chromium by the composites reached 320.03 mg g?1 in an acid solution, which was 5.6 times as that of the pure Streptomyces filaments. The results of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses suggested that the adsorption of hexavalent chromium by the composites possibly involved the protonation, redox, and chelation reactions. Therefore, a promising application of these composites in treating acid hexavalent chromium-contaminated wastewater is expectable.  相似文献   

6.
The ability of ion-exchange resin for ammonia removal from aqueous solution was studied. The results showed that Amberlite ion-exchange resin was effective in removing ammonia from aqueous solution. Factorial design and response surface methodology were applied to evaluate and optimize the effects of pH, resin dose, contact time, temperature and initial ammonia concentration. Low pH condition was preferred with the optimum pH found to be 6. High resin dose generated high removal rate and low exchange capacity. Results of factorial design and response surface methodology showed that temperature was not a significant parameter. The model prediction was in good agreement with observed data (R 2 = 0.957). The optimum Q e was 28.78 mg/g achieved at pH = 6 and initial TAN concentration of 3000 mg/L. The kinetics followed the pseudo-second-order kinetic model (R 2 = 0.999). Equilibrium data were fitted to Langmuir and Freundlich isotherm models with Langmuir model providing a slightly better predication (R 2 = 0.996). The resin was completely regenerated by 2 N H2SO4.  相似文献   

7.
In this study, sepiolite-nano zero valent iron composite was synthesized and applied for its potential adsorption to remove phosphates from aqueous solution. This composite was characterized by different techniques. For optimization of independent parameters (pH = 3–9; initial phosphate concentration = 5–100 mg/L; adsorbent dosage = 0.2–1 g/L; and contact time = 5–100 min), response surface methodology based on central composite design was used. Adsorption isotherms and kinetic models were done under optimum conditions. The results indicated that maximum adsorption efficiency of 99.43 and 92% for synthetic solution and real surface water sample, respectively, were achieved at optimum conditions of pH 4.5, initial phosphate concentration of 25 mg/L, adsorbent dosage of 0.8 g/L, and 46.26 min contact time. The interaction between adsorbent and adsorbate is better described with the Freundlich isotherm (R 2 = 0.9537), and the kinetic of adsorption process followed pseudo-second-order model. Electrostatic interaction was the major mechanisms of the removal of phosphates from aqueous solution. The findings of this study showed that there is an effective adsorbent for removal of phosphates from aqueous solutions.  相似文献   

8.
Removal of dyes by low-cost adsorbents is an effective method in wastewater treatment. Iranian natural clays were determined to be effective adsorbents for removal of a basic dye (methylene blue) from aqueous solutions in batch processes. Characterizations of the clays were carried out by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis and field-emission scanning electron microscopy. Effects of the operational parameters such as adsorbent dosage, initial dye concentration, solution pH and temperature were investigated on the adsorption performance. Adsorption isotherms like Langmuir, Freundlich and Temkin were used to analyze the adsorption equilibrium data and Langmuir isotherm was the best fit. Adsorption kinetics was investigated by pseudo-first-order, pseudo-second-order and intraparticle diffusion models and the results showed that the adsorption system conforms well to the pseudo-second-order model. The thermodynamic parameters of adsorption (ΔS°, ΔH° and ΔG°) were obtained and showed that the adsorption processes were exothermic.  相似文献   

9.
A simple one-step synthetic approach using rice husk has been developed to prepare magnetic Fe3O4-loaded porous carbons composite (MRH) for removal of arsenate (As(V)). The characteristics of adsorbent were evaluated by transmission electron microscope, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller analysis, and thermogravimetric analysis. On account of the combined advantages of rice husk carbons and Fe3O4 nanoparticles, the synthesized MRH composites showed excellent adsorption efficiency for aqueous As(V). The removal of As(V) by the MRH was studied as a function of contact time, initial concentration of As(V), and media pH. The adsorption kinetics of As(V) exhibited a rapid sorption dynamics by a pseudo-second-order kinetic model, implying the mechanism of chemisorption. The adsorption data of As(V) were fitted well to the Langmuir isotherm model, and the maximum uptake amount (q m ) was calculated as 4.33 mg g?1. The successive regeneration and reuse studies showed that the MRH kept the sorption efficiencies over five cycles. The obtained results demonstrate that the MRH can be utilized as an efficient and low-cost adsorbent for removal of As(V) from aqueous solutions.  相似文献   

10.
In this study, nickel ions adsorption from zinc ingot factory wastewater by brown algae (Sargassum glaucescens) and chitosan/polyvinyl alcohol nano-fiber membrane at continuous system was studied. The continuous process included a biosorption reactor and fixed-bed reactor that were optimized by predicting two batch steps with response surface modeling, based on the Box–Behnken in the novel approach. Nano-biosorbent characterized by scanning electron microscopy, Brunauer–Emmett–Teller and Fourier transform infrared spectrometer analysis. Maximum biosorption in this continuous system was at pH 6, biosorbent doses 8 g L?1 S. glaucescens and 0.48 g L?1 nano-fiber. The study of the reaction rate showed kinetic data best fitted by pseudo-first-order model with R 2 > 0.95 than pseudo-second-order and intraparticle diffusion models. Biosorption equilibrium data were performed using Langmuir isotherm and Freundlich isotherm, Langmuir isotherm fit better with equilibrium data.  相似文献   

11.
The alumina impregnated by the di-2-ethyl hexyl phosphoric acid was introduced to make more adsorption of strontium as well as to determine the optimal conditions. The influence of various parameters such as pH, equilibrium time, adsorbent mass, interfering ions, and various eluant agents for the desorption of the strontium ions, initial concentration, and temperature was investigated to find out the adsorption behavior of the adsorbent under different conditions. The adsorbent was characterized by the Fourier transform infrared spectroscopy. The experimental data were fitted on the two-parameter and three-parameter adsorption isotherm models. The Freundlich and Redlich–Peterson models have suitable fitting on the experimental data (R 2 = 0.9307). The kinetic models of adsorption were analyzed by the pseudo-first- and pseudo-second-order models. The results have been indicated that the pseudo-second-order kinetic model is more appropriate than the others. Advantages of our method were simple operation, less time for preparation of adsorbent, rapid phase separation, and capability to combine with various detection techniques. The method has been utilized to extract and the recovery of strontium ions in environmental aqueous samples.  相似文献   

12.
Novel composite adsorbents PPTA-AOx were synthesized by grafting polyacrylonitrile onto poly(p-phenylene terephthalamide) (PPTA) followed by converting the acrylonitrile into the amidoxime (AO) groups. Their structures were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, transmission electron microscopy, etc. Scanning electron microscopy analysis and pore structure analysis manifested that PPTA-AOx adsorbents are all composed of nanoparticles aggregation. The as-synthesized PPTA-AOx adsorbents showed good adsorption capacity for Hg2+ with a maximum adsorption capacity of 2.50 mmol g?1. The pseudo-second-order model can reasonably describe the adsorption kinetics of the three adsorbents for Hg2+. Langmuir model provided better fit for the isothermal adsorption of Hg2+ on PPTA-AO1 and PPTA-AO2, while the Freundlich model was better for PPTA-AO3. The adsorption process might involve both chemisorption and physisorption. According to the calculated thermodynamic parameters, it can be concluded that the adsorption is an endothermic, spontaneous and entropy-driven process.  相似文献   

13.
A novel polyurethane foam/organobentonite/iron oxide nanocomposite adsorbent was successfully prepared via in situ polymerization of toluene diisocyanate and polyol in presence of 5 wt% organobentonite/iron oxide. The obtained nanocomposite was characterized in detail, and the results revealed that the clay layers are exfoliated and/or intercalated in the polymer matrix forming a nanocomposite structure. The application of the prepared nanocomposite for adsorption of cadmium ions from aqueous solution was tested as a function of various experimental parameters using batch procedures. Adsorptive removal of Cd(II) onto the nanocomposite attained maximum at adsorbent content 1.5 g/L, pH 6, and the equilibrium was established within 60 min. Kinetic studies showed that the experimental data fit very well to pseudo-second-order model, and the adsorption process proceeds through three steps. It was found that external liquid film and intraparticle diffusion steps deeply affect the rate of Cd2+ ions adsorption onto the synthesized nanocomposite. Langmuir isotherm model fitted the adsorption data better than Freundlich with a maximum adsorption capacity (q m) for Cd(II) equal to 78 mg/g under the specified experimental conditions. The synthesized nanocomposite afforded effective extraction for Cd2+ ions from natural water samples and excellent reusability feature. This study declares the potential efficiency of a new clay/polymer nanocomposite as alternative for wastewater remediation.  相似文献   

14.
Adsorption of Cr(VI) using native and chemically modified marine green macroalgae Codium tomentosum biomass and its adsorption kinetics were studied under specific conditions. Maximum Cr(VI) removal occurred at pH 2 for both untreated and acid-treated biomass. However, base-treated biomass exhibited maximum adsorption at pH 6 due to the hydrolysis of methyl esters present in the cellulose, hemicellulose and lignin molecules resulting in carboxyl groups (COO?) on the surface. The effect of adsorbent dose revealed that untreated and acid-treated biomass follows Henry’s linear isotherm, while base-treated biomass exhibited sigmoidal curve indicating energetic heterogeneity on the adsorbing surface. The monolayer adsorption capacity of untreated, acid-treated and base-treated biomasses was 5.032 ± 0.644, 5.445 ± 0.947, 3.814 ± 0.559 mg g?1, respectively. Adsorption was found to follow Ho and McKay’s pseudo-second-order kinetic model with decreasing pseudo-second-order rate constant (K 2, g mg?1 min?1) of 0.088 ± 0.037 (acid-treated), 0.019 ± 0.003 (untreated) and 0.012 ± 0.003 (base-treated).  相似文献   

15.
Pb-contaminated water is a dangerous threat occurring near metallurgic and mining industries. This circumstance produces serious environment concern, due to Pb(II) high toxic effects. Several reactive materials have been reported for Pb(II) adsorption, but not all reached final Pb(II) suitable concentrations, or they are expensive and rejected in massive remediation technologies; hence, natural materials are good options. The adsorption behavior of a volcanic scoria (two sieved fractions 1425 and <425 µm) was studied toward synthetic Pb(II) water solutions in batch experiments (170.4–912.3 mg L?1) with high removal efficiencies (97%). The Langmuir model fits both fractions with high linear correlation coefficients (0.9988 and 0.9949) with high maximum capacity values (588.23 and 555.55 mg g?1). Separation factor R L parameter varies with initial concentration, and the empirical equation predicts the limits of the material usefulness, a criterion proposed in this paper for conditions’ selection. The Lagergren pseudo-second-order analysis demonstrates chemisorption; calculated rate constant (416.66 mg g?1 min?1). Weber–Morris intraparticle model proves that the adsorption phenomena occur fast on the material surface (k inst = 72 g mg?1 min?0.5). The characterization of the volcanic material afforded the elemental composition (X-ray fluorescence), and the empirical formula was proposed. X-ray diffraction patterns verify the material structure as basalt, with a plagioclase structure that matches anorthite and albite, mostly composed of quartz. The presence of oxides on the material surface explain the high Pb(II) adsorption capacity, observed on the surface by scanning electronic microscopy. The studied volcanic scoria has potential use as a Pb(II) adsorbent in water remediation technologies.  相似文献   

16.
This study assesses the ability of two low-cost adsorbents made from waste of Rapanea ferruginea treated with ethanol (WRf) and its H2SO4-treated analog (WRf/H2SO4) for the removal of two cationic dyes methylene blue (MB) and crystal violet (CV) from aqueous solutions. The adsorbent was characterized by scanning electron microscopy, Fourier transform infrared spectrometry, thermogravimetric analysis, point of zero charge (pHpzc), specific surface, and functional groups. The adsorption of dye onto the adsorbents was studied as a function of pH solution (2–12), contact time (up to 120 min) and initial concentration (20–120 mg/L), and temperature (25, 35, and 55 °C). The influence of these parameters on adsorption capacity was studied using the batch process. The response surface methodology (RSM) was used in the experimental design, modeling of the process, and optimizing of the variables and was optimized by the response involving Box–Behnken factorial design (15 runs). The results show that the data correlated well with the Sips isotherm. The maximum adsorption capacities of MB and CV onto WRf were found to be 69 and 106 mg/g, and onto WRf/H2SO4, the adsorption capacities were 33 and 125 mg/g, respectively. The kinetic data revealed that adsorption of cationic dyes onto the adsorbents closely follows the pseudo-second-order kinetic model. Regression analysis showed good fit of the experimental data to the second-order polynomial model, with coefficient of determination (R2) values for MB (R2?=?0.9685) and MB (R2?=?0.9832) for WRf and CV (R2?=?0.9685) and CV (R2?=?0.9832) for WRf/H2SO4 indicated that regression analysis is able to give a good prediction of response for the adsorption process in the range studied. The results revealed that waste from R. ferruginea is potentially an efficient and low-cost adsorbent for adsorption of MB and CV.  相似文献   

17.
Rapid increases in the amounts of fullerene C60 nanoparticles (nC60) being produced and used will inevitably lead to increases in the amounts released into the aquatic environment. This will have implications for human and ecosystem health. Wastewater treatment plants are key barriers to nC60 being released into aquatic systems, but little information is available on how adsorption processes in wastewater treatment plants affect the fates of nC60. We investigated the effects of the surface properties of activated sludge on the adsorption of nC60 and related mechanisms by modeling the adsorption kinetics and equilibrium process and performing correlation analyses. The adsorption of nC60 closely followed the pseudo-second-order kinetic model (R > 0.983), the Freundlich isotherm model (R > 0.990), and the linear partitioning isotherm model (R > 0.966). Different adsorption coefficients, 1.070–4.623 for the Freundlich partitioning model and 1.788–6.148 for the linear partitioning model, were found for different types of activated sludge. The adsorption coefficients significantly positively correlated with the zeta (ζ) potential (R = 0.877) and hydrophobicity (R = 0.661) and negatively correlated with particle size (R = ?0.750). The results show that nC60 adsorption is strongly affected by the surface properties of activated sludge because changes in surface properties cause changes in the electrostatic and hydrophobic interactions that occur.  相似文献   

18.
Vitis vinifera (grape) leaf litter, an abundant agricultural waste in South Africa was chemically modified with H3PO4 and carbonized for use as biosorbent. Characterization and the potential application of the adsorbent in simultaneous removal of 4-nitrophenol and 2-nitrophenol from aqueous solutions were investigated. The adsorbent was characterized using FTIR, SEM and EDX elemental microanalysis. The EDX and FTIR analysis revealed the presence of surface oxygen moieties capable of binding to adsorbate molecules while the SEM micrographs showed the development of pores and cavities in the adsorbent. Batch adsorption experiments were conducted at a varying contact time, adsorbent dosage, pH and initial adsorbate concentration to investigate optimal conditions. The maximum adsorption capacity of the adsorbent was 103.09 and 103.10 mg/g for 4-nitrophenol and 2-nitrophenol, respectively. The adsorption process was best fitted into Freundlich isotherm while the adsorption kinetics followed a pseudo-second-order model. Liquid film and intra-particle diffusion contributed to the adsorption process. Thermodynamic parameters of ΔG°, ΔH° and ΔS° were evaluated. The adsorption was exothermic, feasible and spontaneous. The results suggest a possible application of grape leaf litter as a precursor for activated carbon and for cheaper wastewater treatment technologies.  相似文献   

19.
In this study, teff (Eragrostis tef) straw has been chemically treated and tested as an adsorbent for Cr(VI) removal. Chemically treatment of teff straw was done by NaOH, H3PO4 and ZnCl2 solutions. Scanning electron micrograph and X-ray diffraction were used for anatomical characterization, whereas Fourier transform infrared spectroscopy was used for surface change characterization of adsorbents. Effects of different experimental parameters like pH (2–12), initial Cr(VI) concentration (100–900 mg/L), adsorbent dose (2.5–20 g/L), contact time (15–360 min) and temperature (288–318 K) were studied. Temperature increment was found to stimulate the adsorption process. Langmuir isotherm was found to give better representation over wide range of temperature for untreated, H3PO4- as well as ZnCl2-treated teff straw, and Freundlich isotherm best represented the isotherm data for NaOH-treated teff straw. Maximum Cr(VI) adsorption capacity of untreated, NaOH-, H3PO4- and ZnCl2-treated teff straw was found to be 86.1, 73.8, 89.3 and 88.9 mg/g, respectively. Respective values of average effective diffusion coefficient (D e) were found to be 2.8 × 10?13, 2.59 × 10?14, 1.32 × 10?13 and 1.14 × 10?13 m2/s, respectively. The negative value of ΔG o for all the adsorbents indicates Cr(VI) spontaneous adsorption. Isosteric heat of adsorption (ΔH st,a) was found to vary with surface coverage (θ). ΔH st,a increased for untreated, H3PO4- and ZnCl2-treated teff straw, and decreased steadily with θ for NaOH-treated teff straw.  相似文献   

20.
In this study, the adsorption behavior of Ni(II) in an aqueous solution system using natural adsorbent Peganum harmala-L was measured via batch mode. The prepared sorbent was characterized by scanning electron microscope, Fourier transform infrared spectroscopy, N2 adsorption–desorption and pHzpc. Adsorption experiments were carried out by varying several conditions such as contact time, metal ion concentration and pH to assess kinetic and equilibrium parameters. The equilibrium data were analyzed based on the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. Kinetic data were analyzed using the pseudo-first-order, pseudo-second-order and intra-particular diffusion models. Experimental data showed that at contact time 60 min, metal ion concentration 50 mg/L and pH 6, a maximum amount of Ni(II) ions can be removed. The experimental data were best described by the Langmuir isotherm model as is evident from the high R 2 value of 0.988. The adsorption capacity (q m) obtained was 68.02 mg/g at an initial pH of 6 and a temperature of 25 °C. Kinetic studies of the adsorption showed that equilibrium was reached within 60 min of contact and the adsorption process followed the pseudo-first-order model. The obtained results show that P. harmala-L can be used as an effective and a natural low-cost adsorbent for the removal of Ni(II) from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号