首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
周定文  范广洲  华维 《大气科学》2009,33(3):649-656
利用1982年1月~2001年12月归一化植被指数(NDVI)资料、台站实测降水资料和NCEP/NCAR再分析资料, 通过相关分析和合成分析等方法, 初步分析了我国春季降水与青藏高原冬季植被变化的关系。结果发现, 我国春季降水与青藏高原冬季NDVI有较明显的相关关系。一般而言, 高原冬季NDVI大值年时, 贵州至两广地区降水减少, 两湖平原和鄱阳湖平原降水增加, 长江流域以北至东北的广大地区降水将减少, 特别是黄河与长江之间地区降水量偏少可达40 mm以上。高原冬季NDVI与我国东部季风区春季降水的相关系数呈 “-+-” 的分布状态。100°E~130°E各月降水及其差值时空剖面分析也可看到其差异。文章也初步分析了高原冬季NDVI大值年和小值年春季海平面气压场、 850 hPa风场、 500 hPa高度场以及700 hPa垂直运动场的差异, 从分析结果可以看到, 亚洲和西太平洋地区大气环流的差异也同样明显。可见, 青藏高原冬季NDVI的大小将通过改变亚洲和西太平洋地区春季大气环流的分布状态, 导致冬季风和夏季风爆发和进退差异, 从而引起我国春季降水的变化。  相似文献   

2.
春夏东亚大气环流年代际转折的影响及其可能机理   总被引:2,自引:0,他引:2  
本文通过多变量联合经验正交分解(MV-EOF)方法揭示了近30年(1979~2010年) 春季和夏季东亚大气环流所发生的年代际转折及其与中国南方降水年代际季节反相变化的内在联系,探讨了局地性大气热源年代际变化影响东亚大气环流年代际转折的可能机理.结果表明:(1)东亚大气环流春季第一模态和夏季第二模态在90年代中期都发生了明显的年代际转折;(2)与春季大气环流第一模态和夏季大气环流第二模态年代际转折相对应的是中国南方降水明显的年代际季节反相变化,即春季降水年代际减少,夏季降水年代际增多;(3)春季青藏高原和夏季贝加尔湖地区大气热源年代际变化对东亚大气环流年代际转折有一定贡献,是造成中国南方降水年代际季节反相变化的直接原因;(4)春季青藏高原大气热源的年代际减弱,使得高原东南侧的西南风减弱,导致中国南方上空水汽输送不足,春季降水减少.夏季贝加尔湖大气热源偶极型分布由“南负北正”转变为“南正北负”,由此在贝湖上空激发高压异常,使得夏季雨带北进受阻而停滞南方,造成中国南方夏季降水增多.  相似文献   

3.
东亚夏季风系统与青藏高原冬季植被的关系   总被引:4,自引:3,他引:1  
用1982年1月—2001年12月NDVI资料、台站日降水资料和NCEPⅠ/NCAR再分析资料,首先利用SVD方法分析了青藏高原冬季NDVI与我国降水的关系,指出青藏高原冬季NDVI与我国夏季降水相关系数从南到北呈"+-+-"相间分布,高原冬季NDVI增大(减小),随后夏季降水在华南和华北地区增加(减少),而长江流域和东北地区降水减少(增加)。然后通过合成法,分析了高原冬季NDVI大、小值年东亚夏季风系统的变化,得到在青藏高原冬季NDVI大值年时,夏季马斯克林高压偏弱,而澳大利亚高压偏强。赤道辐合带强度偏强,有利于越赤道气流的加强,使南海夏季风爆发偏早。同时南亚高压偏弱位置偏西,副热带高压位置偏东偏北。副热带西风急流的位置也偏西偏北。  相似文献   

4.
青藏高原气候独特,影响高原夏季降水的原因是十分复杂的和多方面的。文中利用1982—2001年的卫星遥感植被归一化指数(NDVI)资料和青藏高原55个实测台站降水资料,应用经验正交分解(EOF)、奇异值分解(SVD)等方法分析了青藏高原冬、春植被变化特征及其与高原夏季降水的联系,得到以下几点初步认识:青藏高原冬、春季植被分布基本呈现东南地区植被覆盖较好,逐渐向西北地区减少的特征。其中高原东南部地区和高原南侧边界地区NDVI值最大,而西北地区和北侧边界地区NDVI较小。EOF分析表明,20年来冬、春季高原植被的变化趋势是总体呈阶段性增加,其中尤以高原北部、西北部(昆仑山、阿尔金山和祁连山沿线)和南部的雅鲁藏布江流域植被增加明显。由SVD方法得到的高原前期NDVI与后期降水的相关性是较稳定的。青藏高原多数区域冬、春植被与夏季降水存在较好的正相关,且这种滞后相关存在明显的区域差异。高原南部和北部区域的NDVI在冬春两季都与夏季降水有明显的正相关,即冬春季植被对夏季降水的影响较显著。而冬季高原中东部玉树地区附近区域的NDVI与夏季降水也存在较明显的负相关,即冬季中东部区域的植被变化对夏季降水的影响也较显著。由此可见,高原前期NDVI的变化特征,可以作为高原降水长期预报综合考虑的一个重要参考因子。  相似文献   

5.
张薇  宋燕  王式功  李智才 《气象科技》2019,47(6):941-951
本文利用国家气象中心提供的逐日地面积雪深度和积雪日数数据,以及NOAA的大气环流再分析资料,通过合成分析等方法,对1961—2013年青藏高原冬春季积雪高原整体、高原东部、高原西部进行了年际和年代际趋势分析,结果表明,青藏高原整体冬、春季积雪的变化趋势一致,雪深呈现"少雪—多雪—少雪—多雪"的变化趋势,积雪日数呈现"少雪—多雪—少雪"的变化趋势。高原东(西)部积雪在20世纪60—70年代均明显增加,20世纪80—90年代均减少,20世纪90年代末东部春季和冬季积雪减少更为显著,而西部地区除了春季积雪日数变化不大,春、冬季积雪雪深和冬季积雪日数均明显增加。其次,对青藏高原东、西部地区多(少)雪年的划分,发现高原东部和西部地区积雪异常年对应的大气环流形势也存在差异。最后,进一步分析了青藏高原不同区域积雪异常年环流形势变化特征及其对我国夏季降水的影响,发现高原东(西)部积雪异常年时我国夏季降水分布存在显著差异,因此,在将高原积雪作为气候预测因子的时候,应当考虑东部和西部积雪异常不同所产生影响的差异。  相似文献   

6.
该文利用1983--2012年ERA—INTERIM风场的月平均资料以及中国160站月降水资料(1983-2012年),研究Hadley环流的季节和年际变化特征,我国东部地区夏季降水分布及北半球春季Hadley环流强度与我国东部地区夏季降水的关系。结果表明:Hadley环流存在明显的季节变化特征,北半球环流强度在冬季最强,夏季时最弱,并且环流强度越强时,范围就越大;Hadley环流强度各季节年际变化较明显,而年代际变化秋季较明显。春季HMley环流强度与我国华南地区、长江流域地区和华北地区夏季降水呈“负正负”的相关关系。利用合成分析的得到的结果与其相一致。  相似文献   

7.
利用1948-2002年NCEP/NCAR逐日再分析及月平均资料,分析了春季青藏高原地区大气热源的气候分布和高原东部大气热源的年代际变化特征及其异常与东亚夏季大气环流关系的年代际变化.结果表明:春季青藏高原东部大气热源在1965年存在加强突变,且1970年以后热源加强趋势十分显著.此外,春季青藏高原东部大气热源异常与东亚夏季风强弱具有年代际关系,表现为1977/1978年前春季高原东部大气热源与东亚夏季风存在负相关关系,1977/1978年后两者的关系不明显.  相似文献   

8.
青藏高原加热对东亚地区夏季降水的影响   总被引:11,自引:4,他引:11  
刘新  李伟平  许晃雄  吴国雄 《高原气象》2007,26(6):1287-1292
东亚地区降水主要集中在夏季,是亚洲夏季风系统的重要特征.本文利用NCEP再分析资料和CRU的降水资料,分析了青藏高原非绝热加热对东亚夏季降水的影响.结果表明,东亚地区夏季降水的分布形势与青藏高原非绝热加热变化有很好的相关关系.由于高原非绝热加热可在亚洲东部沿海地区强迫出类似Rossby波列的大气环流低频振荡结构,而此低频波可以影响到西太平洋副热带高压的形态和位置变化,从而使得东亚夏季降水的形势发生变化.而青藏高原非绝热加热的形态从春季到夏季有很好的持续性,春季高原加热与夏季东亚的降水形势分布也有很好的相关.本研究中采用的青藏高原非绝热加热指数可作为东亚夏季降水预测的一个指标,亚洲季风降水不仅受赤道太平洋海温的影响,青藏高原地区的非绝热加热对其也有显著的影响作用.  相似文献   

9.
本文利用西南地区96个气象台站1982-2001年夏季(6-8月)月平均降水资料和归一化植被指数(GIMMS NDVI)资料,分析了青藏高原冬、春季植被特征及其对西南地区夏季降水的影响,得到以下几点认识:青藏高原冬、春季植被呈现东南部覆盖较好,逐渐向西北部减少的特征.近20 a来,高原冬、春季植被总体呈增加趋势,其高原中西部、南部、北部增加明显,而南部侧边界和中东部呈减少趋势.相关分析和奇异值分解表明:高原冬、春季植被对西南地区夏季降水有较明显影响,且这种影响也存在一定的区域差异.高原前期植被变化可以作为西南地区夏季降水长期预报综合考虑的一个参考因子.  相似文献   

10.
围绕夏季青藏高原热力异常与其上、下游大气环流在年际尺度变化上的联系,对最新的研究成果做了简要介绍。通过观测资料分析与数值试验,指出在年际尺度上夏季青藏高原热力异常与同期亚洲-太平洋涛动(APO)具有显著且稳定的联系,前者可能通过调节亚洲和中东太平洋热带外大尺度垂直环流异常影响后者。另外,夏季青藏高原热力异常对高原上空及更大范围上对流层温度的年际变化也有一定贡献,进而通过对上游大尺度环流的调节作用影响到同期西非萨赫勒地区的降水。夏季青藏高原热力异常只是导致其上、下游大气环流年际变化的一个原因,其他影响效应尚需进一步探讨。   相似文献   

11.
青藏高原冬季NDVI与西南地区夏季气温的滞后关系   总被引:1,自引:1,他引:0       下载免费PDF全文
该文利用EOF分解得到的1982—2001年西南地区夏季平均、最高和最低气温的时空特征显示, 西南地区夏季平均、最高气温的时空变化具有很好的一致性, 尤其是川渝地区20世纪80年代为气温负距平, 90年代开始有明显升温。利用GIMMS NDVI和西南4省市96个台站的气温资料进行了相关分析、合成分析以及SVD分析, 得到前期冬季青藏高原植被影响该区夏季气温的滞后关系以及影响较大的区域。结果表明:西南地区夏季平均气温、最高气温对青藏高原冬季植被变化较敏感, 其中青藏高原西部NDVI与西南地区夏季气温的相关强于东部; 青藏高原NDVI异常偏高对应西南地区夏季气温偏高, 其中最高气温升高较明显, 增温最大值出现在7月, 位于西南地区北部; 青藏高原冬季植被变化与西南地区平均气温、最高气温和最低气温的最佳耦合模态中影响程度及关键区域略有差异, 青藏高原冬季NDVI与夏季平均气温关系最密切, 其中青藏高原东北大部分地区和南部 (包括拉萨及林芝东部地区) 的影响最大, 气温对前期青藏高原NDVI变化反应的敏感区主要位于四川盆地及其附近地区。  相似文献   

12.
春季青藏高原感热对中国东部夏季降水的影响和预测作用   总被引:1,自引:0,他引:1  
利用1980-2012年青藏高原中、东部71个站点观测资料、全中国756站的月降水资料、哈得来中心提供的HadISST v1.1海温资料以及ERA-Interim再分析资料,综合青藏高原的感热加热以及全球海温,研究了春季青藏高原感热对中国东部夏季降水的影响,并建立预报方程,探讨了青藏高原春季感热对中国降水的预报作用。结果表明,青藏高原春季感热与中国东部降水关系密切,青藏高原春季感热异常增强伴随着长江流域中下游同期降水增多,后期夏季长江流域整流域降水也持续偏多,华南东部降水偏少。春季青藏高原感热的增强与环北半球中高纬度的罗斯贝波列密切相关,扰动在北太平洋形成的反气旋环流向西南方向延伸至西北太平洋,为长江流域输送大量的水汽,有利于降水的发生。夏季,伴随着前期青藏高原感热的增强,南亚高压位置偏东,西北太平洋副热带高压(西太副高)位置偏西偏南,西太副高北侧为气旋式环流异常。在西太副高的控制下,华南东部降水减少;西太副高西侧的偏南气流为长江流域带来大量水汽,并与来自北部气旋式环流异常西侧的偏北风发生辐合,降水增多。青藏高原春季感热异常是华南和长江流域夏季降水异常的重要前兆信号。加入青藏高原春季感热后,利用海温预报的华南、长江流域夏季降水量与观测值的相关系数有所提高,预报方程对区域降水的解释方差提高约15%。   相似文献   

13.
首先对青藏高原地表热通量再分析资料与自动气象站(AWS)实测资料进行对比, 结果表明: 相对于美国国家环境预报中心和国家大气中心20世纪90年代研制的NCEP/NCAR(Kalnay 等1996)和NCEP/DOE (Kanamitsu 等2002) 再分析资料, ECMWF(Uppala 等2004)资料在高原地区的地表热通量具有较好的代表性。进一步利用奇异值分解(SVD)方法分析了ECMWF资料反映的高原地面热源与我国夏季降水的关系, 发现前期青藏高原主体的冬季地面热源与长江中下游地区夏季降水量呈负相关, 与华北和东南沿海地区的夏季降水量呈正相关。而长江中下游地区夏季降水量还与春季高原南部的地面热源存在负相关、与高原北部的地面热源存在正相关。高原冬、春季地面热源场的变化是影响我国夏季降水的重要因子。  相似文献   

14.
夏季青藏高原移动性对流系统与中国东部降水的相关关系   总被引:4,自引:1,他引:3  
胡亮  李耀东  付容  何金海 《高原气象》2008,27(2):301-309
利用国际卫星云气候计划提供的1985-2002年共18年的MCSs路径跟踪资料、 NCEP/NCAR逐月再分析资料和中国138个地面常规观测站资料,分析了夏季起源于青藏高原地区的移动性MCSs的主要时空分布特征,探讨了青藏高原MCSs与中国降水的关系.通过对MCSs爆发异常强弱年高度和风差值场的分析,概括出青藏高原MCSs影响中国降水的可能机制.结果表明:夏季青藏高原移动性MCSs主要生成于青藏高原东南部,其爆发时间具有明显的日变化特征,它们能够传播到我国中东部及南亚许多地区;夏季MCSs对我国降水具有重要影响,它们与中国夏季降水的相关系数分布以4条正、负相间的东西向分布带的形势存在,从南到北依次为"- - ",这与我国夏季降水带的变化形势非常一致;南亚高压、西太平洋副热带高压和东北冷涡的强度、位置变化与高原MCSs生成的多少密切相关,并通过它们对我国夏季降水带的分布造成重要影响.  相似文献   

15.
This study investigates the statistical linkage between summer rainfall in China and the preceding spring Eurasian snow water equivalent (SWE), using the datasets of summer rainfall observations from 513 stations, satellite-observed snow water equivalent, and atmospheric circulation variables in the NCEP/NCAR re-analysis during the period from 1979 to 2004. The first two coupled modes are identified by using the singular value decomposition (SVD) method. The leading SVD mode of the spring SWE variability shows a coherent negative anomaly in most of Eurasia with the opposite anomaly in some small areas of the Tibetan Plateau and East Asia. The mode displays strong interannual variability, superposed on an interdecadal variation that occurred in the late 1980s, with persistent negative phases in 1979--1987 and frequent positive phases afterwards. When the leading mode is in its positive phase, it corresponds to less SWE in spring throughout most of Eurasia. Meanwhile, excessive SWE in some small areas of the Tibetan Plateau and East Asia, summer rainfall in South and Southeast China tends to be increased, whereas it would be decreased in the up-reaches of the Yellow River. In recent two decades, the decreased spring SWE in Eurasia may be one of reasons for severe droughts in North and Northeast China and much more significant rainfall events in South and Southeast China. The second SVD mode of the spring SWE variability shows opposite spatial variations in western and eastern Eurasia, while most of the Tibetan Plateau and East Asia are in phase. This mode significantly correlates with the succeeding summer rainfall in North and Northeast China, that is, less spring SWE in western Eurasia and excessive SWE in eastern Eurasia and the Tibetan Plateau tend to be associated with decreased summer rainfall in North and Northeast China.  相似文献   

16.
The relationship between vegetation on the Tibetan Plateau (TP) and summer (June–August) rainfall in China is investigated using the normalized difference vegetation index (NDVI) from the Earth Resources Observation System and observed rainfall data from surface 616 stations in China for the period 1982–2001. The leading mode of empirical orthogonal functions analysis for summer rainfall variability in China shows a negative anomaly in the area from the Yangtze River valley to the Yellow River valley (YYR) and most of western China, and positive anomalies in southern China and North China. This mode is significantly correlated with summer NDVI around the southern TP. This finding indicates that vegetation around the southern TP has a positive correlation with summer rainfall in southern China and North China, but a negative correlation with summer rainfall in YYR and western China. We investigate the physical process by which vegetation change affects summer rainfall in China. Increased vegetation around the southern TP is associated with a descending motion anomaly on the TP and the neighboring area to the east, resulting in reduced surface heating and a lower Bowen ratio, accompanied by weaker divergence in the upper troposphere and convergence in the lower troposphere on the TP. In turn, these changes result in the weakening of and a westward shift in the southern Asian High in the upper troposphere and thereby the weakening of and an eastward withdrawal in the western Pacific subtropical high. These features result in weak circulation in the East Asian summer monsoon. Consequently, enhanced summer rainfall occurs in southern China and North China, but reduced rainfall in YYR.  相似文献   

17.
青藏高原冬春雪深分布与中国夏季降水的关系   总被引:2,自引:0,他引:2  
利用SSMR和SSM/I卫星遥感雪深反演资料,通过与高原测站雪深观测资料的对比分析,揭示了高原雪深的时空分布特征,在此基础上对积雪异常年中国夏季降水异常和大气环流进行了对比分析。结果表明,卫星遥感雪深资料可较真实反映出高原积雪的状况,并可反映出高原西部积雪的变化;高原冬、春季积雪EOF分解第1模态具有相同的空间分布,反映了高原冬、春季积雪分布具有相当的一致性,而春季积雪的第2模态则反映高原积雪的东西差异;冬、春季雪深EOF第1模态的时间序列与中国夏季降水的相关分析表明,大致以长江为界,我国东部地区呈现出南涝北旱的分布模态,春季高原东(西)部多(少)雪与东(西)部少(多)雪年的夏季,我国东部降水表现出长江以南(北)地区为大范围的降水偏多(少)。  相似文献   

18.
左志燕  张人禾 《大气科学》2012,36(1):185-194
利用降水观测资料, 研究了1979~2004年中国春季 (3~5月) 标准化累积降水异常的时空特征及其与前冬、 春热带太平洋海面温度和春季欧亚大陆积雪的关系。中国春季标准化累积降水量EOF第一模态最大变率位于中国东部中纬度地区, 主要反映了中国东部中纬度地区春季降水的变化特征。同时, 中国东部春季降水异常具有南、 北反相变化的特征。当长江以南大部分地区的降水偏少时, 长江以北地区的降水偏多。春季降水异常具有显著的年际变化, 但在1980年代末出现年代际转型, 即年际变化的振幅明显增大变强、 周期变长。从华北到长江流域中纬度地区的春季降水异常特征与前冬热带太平洋海面温度有密切的关系。当前冬、 春热带东太平洋海温偏暖, 西太平洋海温偏冷时, 中国东部从华北到长江流域中纬度地区的春季降水偏多, 反之亦然。虽然当春季欧亚大陆楚科奇半岛和青藏高原积雪偏多, 贝加尔湖到中国东北地区的积雪偏少时, 对应着中国东部从华北到长江流域中纬度地区的降水偏多, 但当去掉ENSO信号后, 这种关系并不显著。说明EOF第一模态所反映的中国东部从华北到长江流域中纬度地区春季降水与欧亚大陆积雪的相关关系可能是前冬热带太平洋海面温度异常的一个体现。  相似文献   

19.
朱丽华  范广洲  华维 《大气科学》2015,39(6):1250-1262
本文利用NCEP/NCAR月平均再分析资料及中国596个测站月降水资料,采用线性倾向估计、经验正交函数分解(EOF)、相关分析、合成分析等方法,对青藏高原夏季对流层气温垂直变化及其与降水和环流的关系进行了分析。气温垂直变化特征分析表明:自1971年以来,青藏高原夏季对流层低层至对流层中上部气温呈现显著增暖趋势,对流层上部气温呈现显著变冷趋势,高原对流层低层至中上部气温及对流层上部气温在年际、年代际尺度上均呈较显著负相关,且均存在2~4 a及8~13 a的周期;夏季青藏高原地区沿27.5°N~40°N平均的气温距平垂直分布的EOF分解第一模态特征向量在对流层表现为"下降温上增温"的反相变化,其时间系数呈显著负趋势,且存在1978年及1994年的突变点。高原夏季气温在对流层的上下反相变化与我国夏季降水的关系在年际、年代际尺度上均显示:当高原对流层低层至对流层中上部升温而对流层上部降温时,我国夏季降水表现为南方型,其中以江南至华南地区降水显著偏多而我国东北地区降水显著偏少为主要分布特征;另外,长江流域的局部地区及我国西北的部分地区降水也明显偏少,而华北东部的局部地区、青藏高原中部及东部地区以及新疆西北部地区降水明显偏多;降水异常分布在年代际尺度上比年际尺度更显著。环流分析显示:当高原对流层低层至对流层中上部升温而对流层上部降温时东亚中高纬度地区为异常高压控制,中低纬度地区受异常低压影响。环流场与降水分布有较好的配置关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号