首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 829 毫秒
1.
This study examines how uncertainty associated with the spatial scale of climate change scenarios influences estimates of soybean and sorghum yield response in the southeastern United States. We investigated response using coarse (300-km, CSIRO) and fine (50-km, RCM) scale climate change scenarios and considering climate changes alone, climate changes with CO2 fertilization, and climate changes with CO2 fertilization and adaptation. Relative to yields simulatedunder a current, control climate scenario, domain-wide soybean yield decreased by 49% with the coarse-scale climate change scenario alone, and by26% with consideration for CO2 fertilization. By contrast, thefine-scale climate change scenario generally exhibited higher temperatures and lower precipitation in the summer months resulting in greater yield decreases (69% for climate change alone and 54% with CO2fertilization). Changing planting date and shifting cultivars mitigated impacts, but yield still decreased by 8% and 18% respectively for the coarse andfine climate change scenarios. The results were similar for sorghum. Yield decreased by 51%, 42%, and 15% in response to fine-scaleclimate change alone, CO2 fertilization, and adaptation cases, respectively– significantly worse than with the coarse-scale (CSIRO) scenarios. Adaptation strategies tempered the impacts of moisture and temperature stress during pod-fill and grain-fill periods and also differed with respect to the scale of the climate change scenario.  相似文献   

2.
We use the CERES family of crop models to assess the effect of different spatial scales of climate change scenarios on the simulated yield changes of maize (Zea mays L.), winter wheat (Triticum aestivum L.),and rice (Oryza sativa L.) in the Southeastern United States. The climate change scenarios were produced with the control and doubled CO2 runs of a high resolution regional climate model anda coarse resolution general circulation model, which provided the initial and lateral boundary conditions for the regional model. Three different cases were considered for each scenario: climate change alone, climate change plus elevated CO2, and the latter with adaptations. On the state level,for most cases, significant differences in the climate changed yields for corn were found, the coarse scale scenario usually producing larger modeled yield decreases or smaller increases. For wheat, however, which suffered large decreases in yields for all cases, very little contrast in yield based on scale of scenario was found. Scenario scale resulted in significantly different rice yields, but mainly because of low variability in yields. For maize the primary climate variable that explained the contrast in the yields calculated from the two scenarios is the precipitation during grain fill leading to different water stress levels. Temperature during vernalization explains some contrasts in winter wheat yields. With adaptation, the contrasts in the yields of all crops produced by the scenarios were reduced but not entirely removed. Our results indicate that spatial resolution of climate change scenarios can be an important uncertainty in climate change impact assessments, depending on the crop and management conditions.  相似文献   

3.
We investigated the effect of two different spatial scales of climate change scenarios on crop yields simulated by the EPIC crop model for corn, soybean, and wheat, in the central Great Plains of the United States. The effect of climate change alone was investigated in Part I. In Part II (Easterling et al., 2001) we considered the effects ofCO2 fertilization effects and adaptation in addition to climate change. The scenarios were formed from five years of control and 2 ×CO2 runs of a high resolution regional climate model (RegCM) and the same from an Australian coarse resolution general circulation model (GCM), which provided the initial and lateral boundary conditions for the regional model runs. We also investigated the effect of two different spatial resolutions of soil input parameters to the crop models. We found that for corn and soybean in the eastern part of the study area, significantly different mean yield changes were calculated depending on the scenario used. Changes in simulated dryland wheat yields in the western areas were very similar, regardless of the scale of the scenario. The spatial scale of soils had a strong effect on the spatial variance and pattern of yields across the study area, but less effect on the mean aggregated yields. We investigated what aspects of the differences in the scenarios were most important for explaining the different simulated yield responses. For instance, precipitation changes in June were most important for corn and soybean in the eastern CSIRO grid boxes. We establish the spatial scale of climate changescenarios as an important uncertainty for climate change impacts analysis.  相似文献   

4.
We assert that the simulation of fine-scale crop growth processes and agronomic adaptive management using coarse-scale climate change scenarios lower confidence in regional estimates of agronomic adaptive potential. Specifically, we ask: 1) are simulated yield responses tolow-resolution climate change, after adaptation (without and with increased atmospheric CO2), significantly different from simulated yield responses tohigh-resolution climate change, after adaptation (without and with increased atmospheric CO2)? and 2) does the scale of the soils information, in addition to the scale of the climate change information, affect yields after adaptation? Equilibrium (1 × CO2 versus 2 × CO2)climate changes are simulated at two different spatial resolutions in the Great Plains using the CSIRO general circulation model (low resolution) and the National Center for Atmospheric Research (NCAR) RegCM2 regional climate model (high resolution). The EPIC crop model is used to simulate the effects of these climate changes; adaptations in EPIC include earlier planting and switch to longer-season cultivars. Adapted yields (without and with additional carbon dioxide) are compared at the different spatial resolutions. Our findings with respect to question 1 suggest adaptation is more effective in most cases when simulated with a higher resolution climate change than its more generalized low resolution equivalent. We are not persuaded that the use of high resolution climate change information provides insights into the direct effects of higher atmospheric CO2 levels on crops beyond what can be obtained with low resolution information. However, this last finding may be partly an artifact of the agriculturally benign CSIRO and RegCM2 climate changes. With respect to question 2, we found that high resolution details of soil characteristics are particularly important to include in adaptation simulations in regions typified by soils with poor water holding capacity.  相似文献   

5.
Grain maize yield in the main arable areas of the European Community (E.C.) was calculated with a simulation model, WOFOST, using historical weather data and average soil characteristics. The sensitivity of the model to individual weather variables was determined. Subsequent analyses were made using climate change scenarios with and without the direct effects of increased atmospheric CO2. The impact of crop management (sowing date, irrigation and cultivar type) in a changed climate was also assessed. Scenario climate change generally results in larger grain yields for the northern E.C., similar or slightly smaller yields for the central E.C. and considerably smaller yields for the southern E.C. The various climate change scenarios used appear to give considerably different changes in grain yield, both for each location and for the E.C. as a whole. Management analyses show that for both current and scenario climates the largest grain yield will be attained by varieties with an early start of grain filling, that average irrigation requirements to attain potential grain yield in the E.C. will increase with climate change but will decrease with both increased CO2 and climate change, and that sowing at both current and scenarios climate should occur as early as possible.The U.S. Government right to retain a nonexclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   

6.
Our central goal is to determine the importance of including both mean and variability changes in climate change scenarios in an agricultural context. By adapting and applying a stochastic weather generator, we first tested the sensitivity of the CERES-Wheat model to combinations of mean and variability changes of temperature and precipitation for two locations in Kansas. With a 2°C increase in temperature with daily (and interannual) variance doubled, yields were further reduced compared to the mean only change. In contrast, the negative effects of the mean temperature increase were greatly ameliorated by variance decreased by one-half. Changes for precipitation are more complex, since change in variability naturally attends change in mean, and constraining the stochastic generator to mean change only is highly artificial. The crop model is sensitive to precipitation variance increases with increased mean and variance decreases with decreased mean. With increased mean precipitation and a further increase in variability Topeka (where wheat cropping is not very moisture limited) experiences decrease in yield after an initial increase from the 'mean change only case. At Goodland Kansas, a moisture-limited site where summer fallowing is practiced, yields are decreased with decreased precipitation, but are further decreased when variability is further reduced. The range of mean and variability changes to which the crop model is sensitive are within the range of changes found in regional climate modeling (RegCM) experiments for a CO2 doubling (compared to a control run experiment). We then formed two types of climate change scenarios based on the changes in climate found in the control and doubled CO2 experiments over the conterminous U. S. of RegCM: (1) one using only mean monthly changes in temperature, precipitation, and solar radiation; and (2) another that included these mean changes plus changes in daily (and interannual) variability. The scenarios were then applied to the CERES-Wheat model at four locations (Goodland, Topeka, Des Moines, Spokane) in the United States. Contrasting model responses to the two scenarios were found at three of the four sites. At Goodland, and Des Moines mean climate change increased mean yields and decreased yield variability, but the mean plus variance climate change reduced yields to levels closer to their base (unchanged) condition. At Spokane mean climate change increased yields, which were somewhat further increased with climate variability change. Three key aspects that contribute to crop response are identified: the marginality of the current climate for crop growth, the relative size of the mean and variance changes, and timing of these changes. Indices for quantifying uncertainty in the impact assessment were developed based on the nature of the climate scenario formed, and the magnitude of difference between model and observed values of relevant climate variables.  相似文献   

7.
Crop growth models, used in climate change impact assessments to project production on a local scale, can obtain the daily weather information to drive them from models of the Earth's climate. General Circulation Models (GCMs), often used for this purpose, provide weather information for the entire globe but often cannot depict details of regional climates especially where complex topography plays an important role in weather patterns. The U.S. Pacific Northwest is an important wheat growing region where climate patterns are difficult to resolve with a coarse scale GCM. Here, we use the PNNL Regional Climate Model (RCM) which uses a sub-grid parameterization to resolve the complex topography and simulate meteorology to drive the Erosion Productivity Impact Calculator (EPIC) crop model. The climate scenarios were extracted from the PNNL-RCM baseline and 2 × CO2 simulationsfor each of sixteen 90 km2 grid cells of the RCM, with differentiation byelevation and without correction for climate biases. The dominant agricultural soil type and farm management practices were established for each grid cell. Using these climate and management data in EPIC, we simulated winter wheat production in eastern Washington for current climate conditions (baseline) and a 2 × CO2 `greenhouse' scenario of climate change.Dryland wheat yields for the baseline climate averaged 4.52 Mg ha–1 across the study region. Yields were zero at high elevations where temperatures were too low to allow the crops to mature. The highest yields (7.32 Mgha–1) occurred at intermediate elevations with sufficientprecipitation and mild temperatures. Mean yield of dryland winter wheat increased to 5.45 Mg ha–1 for the 2 × CO2 climate, which wasmarkedly warmer and wetter. Simulated yields of irrigated wheat were generally higher than dryland yields and followed the same pattern but were, of course, less sensitive to increases in precipitation. Increases in dryland and irrigated wheat yields were due, principally, to decreases in the frequency of temperature and water stress. This study shows that the elevation of a farm is a more important determinant of yield than farm location in eastern Washington and that climate changes would affect wheat yields at all farms in the study.  相似文献   

8.
The aim of this paper is to report on the development of regional climate change scenarios for Kazakhstan as the result of increasing of CO2 concentration in the global atmosphere. These scenarios are used in the assessment of climate change impacts on the agricultural, forest and water resources of Kazakhstan. Climate change scenarios for Kazakhstan to assess both long-term (2× CO2 in 2075) and short-term (2000, 2010 and 2030) impacts were prepared. The climate conditions under increasing CO2 concentration were estimated from three General Circulation Models (GCM) outputs: the model of the Canadian Climate Center Model (CCCM), the model of the Geophysical Fluid Dynamics Laboratory (GFDL) and the 1% transient version of the GFDL model (GFDL-T). The near-term climate scenarios were obtained using the probabilistic forecast model (PFM) to the year 2010 and the results of GFDL-T for years 2000 and 2030. A baseline scenario representing the current climate conditions based on observations from 1951 to 1980 was developed. The assessment of climate change in Kazakhstan based on the analysis of 100-years observations is given too. As a result of comparisons of the current climate (based on observed climate) the 1× CO2 output from GCMs showed that the GFDL model best matches the observed climate. The GFDL model suggests that the minimum increase in temperature is expected in winter, when most of the territory is expected to have temperatures 2.3–4.5 °C higher. The maximum (4.3 to 8.2 °C) is expected to be in spring. CCCM scenario estimates an extreme worming above 11 °C in spring months. GFDL-T outputs provide an intermediate scenario.  相似文献   

9.
The purpose of the paper is to propose and test a new approach to simulating farmers' agronomic adaptation to climate change based on the pattern of adoption of technological innovation/substitution over time widely described as a S-shaped (or logistic) curve, i.e., slow growth at the beginning followed by accelerating and then decelerating growth, ultimately leading to saturation. The approach we developed is tested using the Erosion Productivity Impact Calculator crop model applied to corn production systems in the southeastern U.S. using a high-resolution climate change scenario. Corn is the most extensively grown crop in the southeastern U.S. The RegCM limited area model nested within the CSIRO general circulation model generated the scenario. We compare corn yield outcomes using this new form of adaptation (logistic) with climatically optimized (clairvoyant) adaptation. The results show logistic adaptation to be less effective than clairvoyant adaptation in ameliorating climate change impacts on yields, although the differences between the two sets of yields are statistically significant in one case only. These results are limited by the reliance on a single scenario of climate change. We conclude that the logistic technique should be tested widely across climate change scenarios, crop species, and geographic areas before a full evaluation of its effect on outcomes is possible.  相似文献   

10.
Summary The crop model CERES-Wheat in combination with the stochastic weather generator were used to quantify the effect of uncertainties in selected climate change scenarios on the yields of winter wheat, which is the most important European cereal crop. Seven experimental sites with the high quality experimental data were selected in order to evaluate the crop model and to carry out the climate change impact analysis. The analysis was based on the multi-year crop model simulations run with the daily weather series prepared by the stochastic weather generator. Seven global circulation models (GCMs) were used to derive the climate change scenarios. In addition, seven GCM-based scenarios were averaged in order to derive the average scenario (AVG). The scenarios were constructed for three time periods (2025, 2050 and 2100) and two SRES emission scenarios (A2 and B1). The simulated results showed that: (1) Wheat yields tend to increase (40 out of 42 applied scenarios) in most locations in the range of 7.5–25.3% in all three time periods. In case of the CCSR scenario that predicts the most severe increase of air temperature, the yields would be reduced by 9.6% in 2050 and by 25.8% in 2100 if the A2 emission scenario would become reality. Differences between individual scenarios are large and statistically significant. Particularly for the time periods 2050 and 2100 there are doubts about the trend of the yield shifts. (2) The site effect was caused by the site-specific soil and climatic conditions. Importance of the site influence increases with increasing severity of imposed climatic changes and culminates for the emission scenario A2 and the time period 2100. The sustained tendency benefiting two warmest sites has been found as well as more positive response to the changed climatic conditions of the sites with deeper soil profiles. (3) Temperature variability proved to be an important factor and influenced both mean and standard deviation of the yields. Change of temperature variability by more than 25% leads to statistically significant changes in yield distribution. The effect of temperature variability decreases with increased values of mean temperature. (4) The study proved that the application of the AVG scenarios – despite possible objections of physical inconsistency – might be justifiable and convenient in some cases. It might bring results comparable to those derived from averaging outputs based on number of scenarios and provide more robust estimate than the application of only one selected GCM scenario.  相似文献   

11.
Summary  It is expected that a change in climatic conditions due to global warming will directly impact agricultural production. Most climate change studies have been applied at very large scales, in which regions were represented by only one or two weather stations, which were mainly located at airports of major cities. The objective of this study was to determine the potential impact of climate change at a local level, taking into account weather data recorded at remote locations. Daily weather data for a 30-year period were obtained for more than 500 sites, representing the southeastern region of the USA. Climate change scenarios, using transient and equilibrium global circulation models (GCM), were defined, created and applied to the daily historical weather data. The modified temperature, precipitation and solar radiation databases corresponding to each of the climate change scenarios were used to run the CERES v.3.5 simulation model for maize and winter wheat and the CROPGRO v.3.5 model for soybean and peanut. The GCM scenarios projected a shorter duration of the crop-growing season. Under the current level of CO2, the GCM scenarios projected a decrease of crop yields in the 2020s. When the direct effects of CO2 were assumed in the study, the scenarios resulted in an increase in soybean and peanut yield. Under equilibrium , the GCM climate change scenarios projected a decrease of maize and winter wheat yield. The indirect effects of climate change also tended to decrease soybean and peanut yield. However, when the direct effects of CO2 were included, most of the scenarios resulted in an increase in legume yields. Possible changes in sowing data, hybrids and cultivar selection, and fertilization were considered as adaptation options to mitigate the potential negative impact of potential warming. Received July 20, 1999/Revised April 18, 2000  相似文献   

12.
Rice is the staple food in China, and the country’s enlarging population puts increasing pressure on its rice production as well as on that of the world. In this study, we estimate the impact of climate change, CO2 fertilization, crop adaptation and the interactions of these three factors on the rice yields of China using model simulation with four hypothetical scenarios. According to the results of the model simulation, the rice yields without CO2 fertilization are predicted to decrease by 3.3 % in the 2040s. Considering a constant rice-growing season (GS), the rice yields are predicted to increase by 3.2 %. When the effect of CO2 fertilization is integrated into the Agro-C model, the expected rice yields increase by 20.9 %. When constant GS and CO2 fertilization are both integrated into the model, the predicted rice yield increases by 28.6 %. In summary, the rice yields in China are predicted to decrease in the 2040s by 0.22 t/ha due to climate change, to increase by 0.44 t/ha due to a constant GS and to increase by 1.65 t/ha due to CO2 fertilization. The benefits of crop adaptation would completely offset the negative impact of climate change. In the future, the most of the positive effects of climate change are expected to occur in northeastern and northwestern China, and the expansion of rice cultivation in northeastern China should further enhance the stability of rice production in China.  相似文献   

13.
The appropriate level of spatial resolution for climate scenarios is a key uncertainty in climate impact studies and regional integrated assessments. To the extent that such uncertainty may affect the magnitude of economic estimates of climate change, it has implications for the public policy debates concerning the efficiency of CO2 control options. In this article, we investigate the effects that different climate scenario resolutions have on economic estimates of the impacts of future climate changeon agriculture in the United States. These results are derived via a set of procedures and an analytical model that has been used previously in climate change assessments. The results demonstrate that the spatial scale of climate scenarios affects the estimates of both regional changes in crop yields and the economic impact on the agricultural sector as a whole. An assessment based on the finer scale climatological information consistently yielded a less favorable assessment of the implications of climate change. Regional indicators of economic activity were of opposite sign in some regions, based on the scenario scale. Such differences in economic magnitudes or signs are potentially important in examining whether past climate change assessments may misstate the economic consequences of such changes. The results reported here suggest that refinement of the spatial scale of scenarios should be carefully considered in future impacts research.  相似文献   

14.
Dynamic adaptation of maize and wheat production to climate change   总被引:2,自引:0,他引:2  
  相似文献   

15.
During this century global warming will lead to changes in global weather and climate, affecting many aspects of our environment. Agriculture is the sector of the United States economy most likely to be directly impacted by climatic changes. We have examined potential changes in dryland agriculture (Part 3) and in water resources necessary for crop production (Part 4) in response to a set of climate change scenarios. In this paper we assess to what extent, under these same scenarios, water supplies will be sufficient to meet the irrigation requirement of major grain crops in the US. In addition, we assess the overall impacts of changes in water supply on national grain production. We apply the 12 climate change scenarios described in Part 1 to the water resources and crop growth simulation models described in Part 2 for the conterminous United States. Drawing on data from Parts 3 and 4 we calculate what the aggregate national production would be in those regions in which grain crops are currently produced by applying irrigation where needed and water supplies allow. The total amount of irrigation water applied to crops declines under all climate change scenarios employed in this study. Under certain of the scenarios and in particular regions, precipitation decreases so much that water supplies are too limited; in other regions precipitation becomes so plentiful that little value is derived from irrigation. Nationwide grain crop production is greater when irrigation is applied as needed. Under irrigation, less corn and soybeans are produced under most of the climate change scenarios than is produced under baseline climate conditions. Winter wheat production under irrigation responds significantly to elevated atmospheric carbon dioxide concentrations [CO2] and appears likely to increase under climate change.  相似文献   

16.
Agricultural systems models are essential tools to assess potential climate change (CC) impacts on crop production and help guide policy decisions. In this study, impacts of projected CC on dryland crop rotations of wheat-fallow (WF), wheat-corn-fallow (WCF), and wheat-corn-millet (WCM) in the U.S. Central Great Plains (Akron, Colorado) were simulated using the CERES V4.0 crop modules in RZWQM2. The CC scenarios for CO2, temperature and precipitation were based on a synthesis of Intergovernmental Panel on Climate Change (IPCC 2007) projections for Colorado. The CC for years 2025, 2050, 2075, and 2100 (CC projection years) were super-imposed on measured baseline climate data for 15–17 years collected during the long-term WF and WCF (1992–2008), and WCM (1994–2008) experiments at the location to provide inter-annual variability. For all the CC projection years, a decline in simulated wheat yield and an increase in actual transpiration were observed, but compared to the baseline these changes were not significant (p > 0.05) in all cases but one. However, corn and proso millet yields in all rotations and projection years declined significantly (p < 0.05), which resulted in decreased transpiration. Overall, the projected negative effects of rising temperatures on crop production dominated over any positive impacts of atmospheric CO2 increases in these dryland cropping systems. Simulated adaptation via changes in planting dates did not mitigate the yield losses of the crops significantly. However, the no-tillage maintained higher wheat yields than the conventional tillage in the WF rotation to year 2075. Possible effects of historical CO2 increases during the past century (from 300 to 380 ppm) on crop yields were also simulated using 96 years of measured climate data (1912–2008) at the location. On average the CO2 increase enhanced wheat yields by about 30%, and millet yields by about 17%, with no significant changes in corn yields.  相似文献   

17.
Agricultural risk management policies under climate uncertainty   总被引:1,自引:0,他引:1  
Climate change is forecasted to increase the variability of weather conditions and the frequency of extreme events. Due to potential adverse impacts on crop yields it will have implications for demand of agricultural risk management instruments and farmers’ adaptation strategies. Evidence on climate change impacts on crop yield variability and estimates of production risk from farm surveys in Australia, Canada and Spain, are used to analyse the policy choice between three different types of insurance (individual, area-yield and weather index) and ex post payments. The results are found to be subject to strong uncertainties and depend on the risk profile of different farmers and locations; the paper provides several insights on how to analyse these complexities. In general, area yield performs best more often across our countries and scenarios, in particular for the baseline and marginal climate change (without increases in extreme events). However, area yield can be very expensive if farmers have limited information on how climate change affects yields (misalignment in expectations), and particularly so under extreme climate change scenarios. In these more challenging cases, ex post payments perform well to increase low incomes when the risk is systemic like in Australia; Weather index performs well to reduce the welfare costs of risks when the correlation between yields and index is increased by the extreme events. The paper also analyses the robustness of different instruments in the face of limited knowledge of the probabilities of different climate change scenarios; highlighting that this added layer of uncertainty could be overcome to provide sound policy advice under uncertainties introduced by climate change. The role of providing information to farmers on impacts of climate change emerges as a crucial result of this paper as indicated by the significantly higher budgetary expenditures occurring across all instruments when farmers’ expectations are misaligned relative to actual impacts of climate change.  相似文献   

18.
The topography of hilly landscapes modifies crop environment changing the fluxes of water and energy, increasing risk in these vulnerable agriculture systems, which could become more accentuated under climate change (drought, increased variability of rainfall). In order to quantify how wheat production in hilly terrain will be affected by future climate, a newly developed and calibrated micro-meteorological model for hilly terrain was linked to a crop growth simulation model to analyse impact scenarios for different European regions. Distributions of yield and growing length of rainfed winter wheat and durum wheat were generated as probabilistic indices from baseline and low (B2) and high (A2) emission climate scenarios provided from the Hadley Centre Regional Climate Model (HadRM3). We used site-specific terrain parameters for two sample catchments in Europe, ranging from humid temperate (southeast UK) to semi-arid Mediterranean (southern Italy). Results for baseline scenario show that UK winter wheat is mainly affected by annual differences in precipitation and yield distributions do not change with terrain, whilst in the southern Mediterranean climate yield variability is significantly related to a slope × elevation index. For future climate, our simulations confirm earlier predictions of yield increase in the UK, even under the high emission scenario. In the southern Mediterranean, yield reduction is significantly related to slope × elevation index increasing crop failure in drier elevated spots but not in wet years under baseline weather. In scenarios for the future, the likelihood of crop failure rises sharply to more than 60%, and even in wet years, yields are likely to decrease in elevated spots.  相似文献   

19.
An assessment of regional vulnerability of rice to climate change in India   总被引:1,自引:0,他引:1  
A simulation analysis was carried out using the InfoCrop-rice model to quantify impacts and adaptation gains, as well as to identify vulnerable regions for irrigated and rain fed rice cultivation in future climates in India. Climates in A1b, A2, B1 and B2 emission scenarios as per a global climate model (MIROC3.2.HI) and a regional climate model (PRECIS) were considered for the study. On an aggregated scale, the mean of all emission scenarios indicate that climate change is likely to reduce irrigated rice yields by ~4 % in 2020 (2010–2039), ~7 % in 2050 (2040–2069), and by ~10 % in 2080 (2070–2099) climate scenarios. On the other hand, rainfed rice yields in India are likely to be reduced by ~6 % in the 2020 scenario, but in the 2050 and 2080 scenarios they are projected to decrease only marginally (<2.5 %). However, spatial variations exist for the magnitude of the impact, with some regions likely to be affected more than others. Adaptation strategies comprising agronomical management can offset negative impacts in the near future—particularly in rainfed conditions—but in the longer run, developing suitable varieties coupled with improved and efficient crop husbandry will become essential. For irrigated rice crop, genotypic and agronomic improvements will become crucial; while for rainfed conditions, improved management and additional fertilizers will be needed. Basically climate change is likely to exhibit three types of impacts on rice crop: i) regions that are adversely affected by climate change can gain in net productivity with adaptation; ii) regions that are adversely affected will still remain vulnerable despite adaptation gains; and iii) rainfed regions (with currently low rainfall) that are likely to gain due to increase in rainfall can further benefit by adaptation. Regions falling in the vulnerable category even after suggested adaptation to climate change will require more intensive, specific and innovative adaptation options. The present analysis indicates the possibility of substantial improvement in yields with efficient utilization of inputs and adoption of improved varieties.  相似文献   

20.
Simulated impacts of global and regional climate change, induced by an enhanced greenhouse effect and by Amazonian deforestation, on the phenology and yield of two grain corn cultivars in Venezuela (CENIAP PB-8 and OBREGON) are reported. Three sites were selected:Turén, Barinas andYaritagua, representing two important agricultural regions in the country. The CERES-Maize model, a mechanistic process-based model, in theDecision Support System for Agrotechnology Transfer (DSSAT) was used for the crop simulations. These simulations assume non-limiting nutrients, no pest damage and no damage from excess water; therefore, the results indicate only the difference between baseline and perturbed climatic conditions, when other conditions remain the same. Four greenhouse-induced global climate change scenarios, covering different sensitivity levels, and one deforestation-induced regional climate change scenario were used. The greenhouse scenarios assume increased air temperature, increased rainfall and decreased incoming solar radiation, as derived from atmospheric GCMs for doubled CO2 conditions. The deforestation scenarios assume increased air temperature, increased incoming solar radiation and decreased rainfall, as predicted by coupled atmosphere-biosphere models for extensive deforestation of a portion of the Amazon basin. Two baseline climate years for each site were selected, one year with average precipitation and another with lower than average rainfall. Scenarios associated with the greenhouse effect cause a decrease in yield of both cultivars at all three sites, while the deforestation scenarios produce small changes. Sensitivity tests revealed the reasons for these responses. Increasing temperatures, especially daily maximum temperatures, reduce yield by reducing the duration of the phenological phases of both cultivars, as expected from CERES-Maize. The reduction of the duration of the kernel filling phase has the largest effect on yield. Increases of precipitation associated with greenhouse warming have no effects on yield, because these sites already have adequate precipitation; however, the crop model used here does not simulate potential negative effects of excess water, which could have important consequences in terms of soil erosion and nutrient leaching. Increases in solar radiation increased yields, according to the non-saturating light response of the photosynthesis rate of a C4 plant like corn, compensating for reduced yields from increased temperatures in deforestation scenarios. In the greenhouse scenarios, reduced insolation (due to increased cloud cover) and increased temperatures combine to reduce yields; a combination of temperature increase with a reduction in solar radiation produces fewer and lighter kernels.A report of thePAN-EARTH Project, Venezuela Case Study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号