首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal variation and topography of the mixed layer in the Sea of Japan are studied by comparison of results from long-term observation data analysis and from numerical simulation with the MHI oceanic model (Shapiro. 1998. Marine Hydrophysical Journal, 6:26~40). The data are retrieved from Oceanographic Atlas of the Bering Sea, Okhotsk Sea, and Japan/East Sea (Rostov, Rostov, Dmitrieva, et al. 2003. Pacific Oceanography, 1 (1):70-72). The simulated and long-term patterns are compared. An impact of surface buoyancy flux, wind, and convergence/divergence of surface currents upon the mixed layer in the Sea of Japan is analyzed.  相似文献   

2.
Differences in ecosystem dynamics between the northern and southern parts of the Japan Sea have been investigated with two nitrogen based ecosystem models forced by climatological mixed layer depth and euphotic layer depth. Models having 4 and 9 compartments with the same biochemical parameters were applied to the northern and southern parts. The spring bloom in the southern part is earlier and smaller than that in the northern part according to both models, which is supported by satellite ocean color images. The difference of the timing is related to the variation of mixed layer depth, and the magnitude of blooming is also related to the concentrations of surface nutrient and herbivorous zooplankton in early spring. The simulated seasonal variations of ecosystem characteristics (standing stock of each compartment, primary production and the ratio of export flux of organic particles to the primary production) are not significantly different between two models. The ratio of export flux of organic particles to the primary production are about 36% and 23% in the northern and southern parts according to the 4-compartment model, while the values are 31% and 18% by 9-compartment model. These results suggest that the biological pump in the northern part is more active than that in the southern part of the Japan Sea. Sensitivity analyses have been carried out to examine the differences of the response to the models.  相似文献   

3.
The spatial and seasonal variability of primary production in the Japan Sea from 1998 to 2002 was estimated using a satellite primary production model. A size-fractionated primary production model was validated by in situ primary production data measured in the Japan Sea. Estimated primary production and in situ primary production showed a good positive correlation. Estimated primary production showed spatial variability. Annual primary production levels were 170, 161, 191 and 222 gC m−2year−1 at the Russian coast, in the middle of the Japan Basin, the southeastern area and the southwestern area, respectively. It was higher to the south around 40°N than to the north, and higher in the western area than in the eastern one. Peaks of primary production appeared twice, in spring and fall, in the southern area, while a single peak appeared in the northern area. Primary production along the Russian coast was higher than in other areas during summer. The spring bloom contributed 42% to the annual primary production in these four areas. Furthermore, estimated primary production showed an interannual variability that was largest in spring. Primary production in fall also showed interannual variability, especially in the middle of the Japan Basin and the southwestern area. This corresponded mainly to the size of the phytoplankton bloom in each year. Winter convection by wind and the depth of nutrient-rich, cold subsurface water underlying the Tsushima Current may contribute to the nutrient supply to upper layer and interannual variations of primary production in spring.  相似文献   

4.
Variability of Sea Surface Circulation in the Japan Sea   总被引:3,自引:0,他引:3  
Composite sea surface dynamic heights (CSSDH) are calculated from both sea surface dynamic heights that are derived from altimetric data of ERS-2 and mean sea surface that is calculated by a numerical model. The CSSDH are consistent with sea surface temperature obtained by satellite and observed water temperature. Assuming the geostrophic balance, sea surface current velocities are calculated. It is found that temporal and spatial variations of sea surface circulation are considerably strong. In order to examine the characteristics of temporal and spatial variation of current pattern, EOF analysis is carried out with use of the CSSDH for 3.5 years. The spatial and temporal variations of mode 1 indicate the strength or weakness of sea surface circulation over the entire Japan Sea associated with seasonal variation of volume transport through the Tsushima Strait. The spatial and temporal variations of mode 2 mostly indicate the temporal variation of the second branch of the Tsushima Warm Current and the East Korean Warm Current. It is suggested that this variation is possibly associated with the seasonal variation of volume transport through the west channel of the Tsushima Strait. Variations of mode 3 indicate the interannual variability in the Yamato Basin.  相似文献   

5.
渤、黄、东海悬浮物质量浓度冬、夏季变化的数值模拟   总被引:4,自引:0,他引:4  
采用HAMSOM三维正压水动力模型结合粒子追踪的悬浮颗粒物输运模型模拟了渤、黄、东海悬浮物质量浓度冬、夏季变化。模拟结果显示,潮流和底质对悬浮物质量浓度的分布有决定性的作用,沉积物再悬浮对悬浮物质量浓度分布影响大,冬季尤为显著。莱州湾中西部和渤海湾南部悬浮物终年维持高质量浓度,古黄河口冬季再悬浮物的质量浓度高于其它季节的。长江口附近悬浮物终年维持高质量浓度,夏季长江口东北悬浮物的质量浓度高于冬季的,浙江沿岸冬季悬浮物的质量浓度高于夏季的。  相似文献   

6.
Eddy Field in the Japan Sea Derived from Satellite Altimetric Data   总被引:2,自引:0,他引:2  
The Japan Sea is one of the eddy-rich areas in the world. Many researchers have described the variability of the eddy field and its structure in the Tsushima Warm Current region. On the other hand, since there are few data covering the northern part of the Japan Sea, we are not able to understand the detailed variability of the eddy field there. The variation of the eddy field in the Japan Sea is investigated using the temporal fluctuations of sea surface height measured by altimetric data from TOPEX/POSEIDON and ERS-2. Tidal signals are eliminated from the altimetric data on the basis of the results of Morimoto et al. (2000). Distributions of sea surface dynamic height are produced by using the optimal interpolation method every month. The distributions warm and cold eddies that we obtained coincide well with the observed isotherms at 100 m depth measured by the Japan Sea National Fisheries Research Institute and the sea surface temperature measured by satellite. There are areas with high RMS variability of temporal fluctuation of sea surface dynamic height in the Yamato Basin, the Ulleung Basin, east of North Korea, the eastern part of the Yamato Rise, the Tsushima Strait and west of Hokkaido. The characteristics of eddy propagation in the high RMS variability regions are examined using a lag correlation analysis. Seasonal variations in the number of warm and cold eddies are also examined.  相似文献   

7.
Variability of the Kuroshio in the East China Sea in 1995   总被引:4,自引:0,他引:4  
INTRODUCTIONTherearemanyresearchworksabbottheKUrOShioVTanditSSeaSOnalvacationintheEastChinaho(GUan,1988;Nishizawaetal.,1982;TangandTaShiro,1993;SunandKaneko,1993;Yuanetal.,1990;Yuanetal.,1993;Yuanetal.,1994;Yuanetal.,1995;LiuandYuan,1997a,b).~previou...  相似文献   

8.
针对目前渤海整个海域悬浮泥沙分布全貌的研究不充分。根据2000—2004年渤海表层悬浮泥沙分布特征选取7个典型海区,通过利用长时间序列悬沙质量浓度和风场遥感反演资料,在分析悬沙质量浓度与局地风速、物质来源等关系的基础上,定量研究风浪和潮流共同作用下、随季节显著变化的沉积物再悬浮过程,从而揭示整个渤海海域代表性海区悬沙质量浓度时空分布的动力成因。渤海不同海区表层悬沙质量浓度绝对值差别很大,多年平均最高质量浓度在20~450mg/L变化,高质量浓度集中在近岸河口区及其邻近海域,如黄河口和辽河口地区,低质量浓度区位于渤海中部、渤海海峡以及秦皇岛外海(属于近岸海域却质量浓度常年偏低的特殊海区)。渤海表层悬沙质量浓度具有明显的季节变化特征,风场的季节变化是主要影响因子,各代表性海区悬沙质量浓度与风速之间具有显著正相关关系。悬沙质量浓度与风速之间存在一定时间段的滞后相关。沉积物再悬浮的定量研究表明,除渤海海峡外,渤海其它典型海区表层悬沙质量浓度及其季节变化,均与各自海区风浪和潮流共同作用产生的最大底流速及其季节变化相对应。在渤海,底层沉积物再悬浮的季节变化是影响悬沙质量浓度季节变化最关键的动力过程。  相似文献   

9.
南海混合层深度的季节和年际变化特征   总被引:1,自引:0,他引:1  
利用1871-2008年SODA资料和月平均的Levitus资料计算了南海混合层深度(MLD)的季节及年际变化特征.资料分析表明:季风通过流场调整对南海MLD的时空分布特征有显著的影响.南海MLD的距平变化总体上呈上升趋势,南海南部MLD的距平变化趋势和北部的有显著差异,特别在1955年后北部整体呈下降趋势而南部呈上升趋势,二者的显著周期北部为2-3年,南部与整个区域平均的基本相似有2-6年的显著周期.SOI指数对滞后的南海各个区域有较好的相关性.EOF分析表明第一模态整体呈单极型最大变率分布在南海南部,由南往北逐渐减小显著周期2-3年变化为主;第二模态呈偶极子型,显著周期以2-5年变化为主.回归分析表明南海南部深水区域呈现增深的趋势,而吕宋海峡至南海北部陆架区呈变浅趋势,滑动t检验表明南海MLD有6个显著的突变年份.  相似文献   

10.
A Box Model of Glacial-Interglacial Variability in the Japan Sea   总被引:2,自引:0,他引:2  
The Japan Sea has experienced drastic changes in the last 60 ka: the surface water was colder than the present value by five degrees and extremely freshened (24 ppt) in the last glacial maximum (15 ka), and then it contained Oyashio water for a few thousand years. It is an open question whether the inflow-outflow pattern was entirely reversed, opposite to the present exchange with an inflow through Tsushima Strait and an outflow through Tsugaru Strait. A box model is employed with two boxes representing the northern and the southern half domains in the upper (300-m-thick) layer. The model is driven by atmospheric forcing and inflow through Tsushima Strait and/or Tsugaru Strait. Here, the net transport through Tsushima to Tsugaru is given in the model. A baroclinic component is added to the net transport through each strait. It is the baroclinic components that allow the upper and the lower portions to flow to the opposite directions in the straits, and hence a reversal flow becomes possible against the net transport, under the condition of an extremely freshened Japan Sea. The fresh surface layer in 1814 ka is attributable to a near-shutoff of the inflow due to the low sea level. Shortly after the near-shutoff, the baroclinic transport through Tsugaru Strait yields intrusion of the Oyashio water into the Japan Sea. Thus, it is implied that Oyashio water existed in the Japan Sea a few thousand years after the reopening of Tsugaru Strait, even though the net transport was one-way, similar to the present state.  相似文献   

11.
Barrier and compensation layers in the East China Sea   总被引:1,自引:0,他引:1  
Climatology of the isothermal layer depth (ILD) and the mixed layer depth (MLD) has been produced from in-situ temperaturesalinity observations in the East China Sea (ECS) since 1925. The methods applied on the global are used to compute the ILD and the MLD in the ECS with a temperature criterion AT=0. 8 ℃ for the ILD, and a density criterion with a threshold △σθ corresponding to fixed △T=0. 8 ℃ for the MLD, respectively. With the derived climatology ILD and MLD, the monthly variations of the barrier layer (BL) and the compensation layer (CL) in the ECS are analyzed. The BL mainly exists in the shallow water region of the ECS during April-June with thickness larger than 15 m. From December to next March, the area along the shelf break from northeast of Taiwan Island to the northeast ECS is characterized by the CL. Two kinds of main temperature - salinity structures of the CL in this area are given.  相似文献   

12.
基于WOD13(World Ocean Database 2013)的温盐观测资料,分析了对马海峡断面和日本海内一断面上温盐分布的季节变化特征,并利用水团组成混合比的方法探讨了对马海峡断面处的水团组成对日本海内断面上温盐分布的影响的季节和年际变化。研究表明:对马海峡断面上水团组成呈现显著的季节变化。冬季,整个水层被高盐水占据;夏季,对马海峡表层出现高温低盐水,底层为高盐水,次表层为表层低盐水和底层高盐水的混合水体;春秋为过渡季节。日本海断面上,秋季温盐分布最为复杂,表层为高温低盐水,次表层为高盐水,其下为低温高密水。两个断面季节变化对比可以看出,夏季对马海峡断面处的水团组成会影响秋季日本海断面上的温盐分布。夏季对马海峡表层和次表层水是秋季日本海断面表层50m以浅出现低盐水的主要原因;对马海峡深层高盐水主要影响秋季日本海断面50~150m水层,混合比可达0.82;其下为日本海固有水。夏季对马海峡处水团组成的年际变化也会影响秋季日本海断面上温盐分布的年际变化。长江流量较大的年份,夏季对马海峡表层和次表层低盐水的核心盐度值偏低,秋季其在日本海断面上的混合比就高于其他年份;对马海峡底层高盐水在日本海断面上混合比的年际变化则决定于其影响水层上的流场结构和温盐分布。  相似文献   

13.
In 1995 and 2000, the radiocarbon ratio (Δ14C) of total dissolved inorganic carbon was measured in the Japan Sea where deep and bottom waters are formed within the sea itself. We found that (1) since 1979, the Δ14C in bottom water below about 2000-m depth in the western Japan Basin (WJB) had increased by about 30‰ by 1995, and (2) the bottom Δ14C in the WJB did not change between 1995 and 2000. The former finding was due to penetration of surface bomb-produced radiocarbon into the bottom water owing to bottom ventilation, whereas the latter was caused by stagnation of the bottom ventilation there. In the eastern Japan Basin (EJB), the bottom Δ14C also increased by about 30‰ between 1979 and 2002. Recent stagnation of the bottom ventilation in the EJB is also suggested from analyses of constant bomb-produced tritium between 1984 and 1999. The temporal variations of Δ14C, tritium, and dissolved oxygen in the bottom waters indicate that: (1) new bottom water is formed south of Vladivostok in the WJB only in severe winters; and (2) the new bottom water then follows the path of a cyclonic abyssal circulation of the Japan Sea, which results in the increases in dissolved oxygen and the transient tracers in the bottom waters in the EJB and Yamato Basin with an approximate 3-to 6-year time lag. This process is consistent with the spatial variations of Δ14C, bomb-produced 137Cs, and chlorofluorocarbon-11 in the bottom waters of the Japan Sea.  相似文献   

14.
Analysis of CTD data from four CREAMS expeditions carried out in summers of 1993–1996 produces distinct T-S relationships for the western and eastern Japan Basin, the Ulleung Basin and the Yamato Basin. T-S characteristics are mainly determined by salinity as it changes its horizontal pattern in three layers, which are divided by isotherms of 5°C and 1°C; upper warm water, intermediate water and deep cold water. Upper warm water is most saline in the Ulleung Basin and the Yamato Basin. Salinity of intermediate water is the highest in the eastern Japan Basin. Deep cold water has the highest salinity in the Japan Basin. T-S curves in the western Japan Basin are characterized by a salinity jump around 1.2–1.4°C in the T-S plane, which was previously found off the east coast of Korea associated with the East Sea Intermediate Water (Cho and Kim, 1994). T-S curves for the Japan Basin undergo a large year-to-year variation for water warmer than 0.6°C, which occupies upper 400 m. It is postulated that the year-to-year variation in the Japan Basin is caused by convective overturning in winter. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Observed potential temperatures and concentrations of dissolved oxygen are analyzed to elucidate their variations during the period from 1958 to 1996 at Stn. P (37°43′ N, 134°43′ E) and from 1965 to 1996 at Stn. H (40°30′ N, 137°40′ E) in the Japan Sea. At Stn. P, increases of the potential temperature for the period are found below 800 m depth with the largest value of 0.16 ± 0.09°C per century at 800 m depth. At Stn. H, the potential temperature increased below 500 m depth. The increase rate has the largest value of 0.50 ± 0.18°C per century at 500 m depth and it is 0.30 ± 0.09°C per century at 800 m depth. The concentrations of dissolved oxygen increased around 800 m depth at Stn. P. At Stn. H, they increased above 800 m depth. On the other hand, they decreased below 1200 m depth at both stations. The layer of the dissolved oxygen minimum has deepened in these decades. These features appearing in the distributions of temperature and dissolved oxygen are successively simulated by a vertical one-dimensional advection-diffusion model including consumption of dissolved oxygen and termination of the deep water supply. These results suggest that the supply of the Japan Sea Proper Water into the deep layer, which is cold and rich in dissolved oxygen, has been decreasing for the last four decades. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Seasonal changes of abundance of the main phytoplankton groups of species (diatoms, dinoflagellates, chrysophytes, small flagellates and cryptophytes) and a set of environmental parameters were investigated in coastal and preestuarine waters of Peter the Great Bay (East/Japan Sea) in May-October of 1998 and 1999. Three periods of mass development were revealed: spring, summer and autumn blooms, with successive change of species. The conditions favourable for each group of species were determined. Driving mechanisms of the succession include nutrients transport through seasonal pycnocline by turbulent mixing, terrestrial nutrients supply by monsoon floods, nutrients supply by upwellings, and light control by the thickness of upper mixed layer. Summer succession could be explained by a simple SST-MLD diagram similar to Pingree S-kh diagram with sea surface temperature as indicator of stratification (S) and mixed layer depth as indicator of light availability (kh).  相似文献   

17.
日本海、鄂霍次克海和白令海的古海洋学研究进展   总被引:2,自引:0,他引:2  
边缘海的存在使大陆和大洋之间的物质和能量交换变得相当复杂。在构造运动和海平面升降的控制下,边缘海和大洋之间时而连通时而隔绝,各种古气候变化信号都在一定程度上被放大。基于近期有关西北太平洋边缘海的古海洋学研究成果,简要概述了日本海、鄂霍次克海、白令海以及北太平洋地区自中新世以来的古气候和古海洋环境演化特征,并认为它们与全球其它地区一样也受控于因地球轨道参数变化引起的太阳辐射率的变化,大尺度的气候变化具有与地球轨道偏心率周期相对应的100ka周期,而41ka的小尺度周期则受地球自转轴斜率变化的控制。一些突发性的气候变化则是由气候不稳定性、海峡的关闭与开启和其它一些地球气候系统的非线性活动所驱动。但同时作为中高纬度边缘海,它们的古海平面、古海水温度、古洋流等古海洋环境因子的变化特征还受到冰盖扩张和退缩、构造运动、冰川性地壳均衡补偿、东亚季风等因素的影响,具有一定的区域特点。  相似文献   

18.
基于南沙群岛海域综合科学考察11个航次的实测资料,研究了南沙群岛海域的混合层深度季节变化特征。研究结果表明,南沙群岛海域混合层深度存在明显的季节变化,并且与季风和海表热通量的变化密切相关。春季,风速较小且风向不稳定,海面得到的净热通量全年最大,上层水体层结稳定,混合层深度较小;夏季,南海西南季风盛行,上层为反气旋式环流,海面得到的净热通量减少,混合层呈加深的趋势;秋季,海面净热通量继续减少,混合层深度达到最大值;冬季,东北季风驱动下形成的上层气旋式环流引起深层冷水的上升,限制了混合层的加深。  相似文献   

19.
During the 1990s many studies on zooplankton in the Japan Sea have been carried out. In this review, I have synthesized the study of horizontal distribution, seasonal and annual variations of zooplankton biomass, and ecological characteristics of major component species in the southern Japan Sea, which area is influenced by the warm Tsushima Current. The zooplankton biomass (annual mean) in the southern Japan Sea was lower than in the subarctic Pacific, including the northern Japan Sea, and similar to biomass levels in Kuroshio waters. Temporal variations in zooplankton biomass showed both seasonal and year-to-year components. Seasonal biomass increases to a maximum in spring with a weak secondary peak in autumn. As for long-term changes, 3–6 year cycles were identified, with the dynamics of the surface warm Tsushima Current and the subsurface cold water playing important roles in determining the yearly zooplankton community structure and biomass. Cold water species in the southern Japan Sea had extensive diel vertical migrations whose range is restricted in summer by the development of a thermocline. Among these species, the herbivores Euphausia pacifica and Metridia pacifica encounter a lower food supply, resulting in lower growth rates. The vertical dispersal of epipelagic carnivorous zooplankton such as Sagitta elegans and Themisto japonica to the deep-sea is probably facilitated by reduced interspecific competition. Their interaction with Japan Sea Proper Water, characterized by near-zero temperatures in the meso- and bathypelagic zones suppresses growth rates of the mesopelagic zooplankton. The lack of micronektonic predators in the mesopelagic zone may allow the persistence of slow growing populations.  相似文献   

20.
东海陆架环流季节变化的模拟与分析   总被引:10,自引:2,他引:10  
在改进POM模式基础上,建立1个中国东部海域斜压准预报模式,利用全球海洋模式结果并结合实测资料以及高精度卫星遥感SST资料,进行了东海陆架海域温盐及环流年循环的数值模拟,并系统分析了东海陆架环流系统及其季节变化、各暖流的路径等广为关注的问题。模式结果表明:黑潮主轴主体沿陆架坡折走向,中段黑潮流幅由南至北增宽,流速变大,流核所达深度变浅。浙闽沿岸流是一典型的季风环流,台湾暖流终年表现出东、北两分支结构,其分支表现出明显的季节性变化特征。在东海东北部陆架海域,冬季黑潮以其分支形式向北入侵,夏季则主要以大陆边缘流的形式向北进入陆架。论文对各暖流的水源也进行了相应的分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号