首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The method for determining the dynamic characteristics of the atmosphere using the data of sounding from geostationary meteorological satellites developed by the authors and based on using inhomogeneities of the conservative admixture concentration field as tracers and on applying the correlation extreme algorithms is described in detail. The accuracies in calculating the horizontal wind velocity vector (V) and coefficient of horizontal mesoscale turbulent diffusion (K d ) are estimated on the basis of processing the data of sounding the atmosphere with a SEVIRI (Spinning Enhanced Visible and Infrared Imager) radiometer on the Meteosat-8 and Meteosat-9 European geostationary meteorological satellites in the water vapor channels centered at 6.2 and 7.3 μm and on comparing the results with the data of independent observations and theoretical models. It is indicated that the accuracy in calculating V using the developed method almost coincides with the accuracy of the commonly used foreign methods. In contrast to the methods applied abroad, the developed method makes it possible to determine not only the wind velocity vector field but also the coefficient of mesoscale turbulent diffusion and vorticity on one scale of air mass motion.  相似文献   

2.
The peculiarities of the vertical fine thermohaline structure of waters in the north-west Tropical Atlantic are considered on the data of STD surveys recorded in winter-spring 1984. The variability of the characteristics of staircase and inversion elements of stratification with depth is analysed over the horizontal as well as related to the mesoscale and large-scale dynamics of waters. The coefficients of horizontal turbulent exchange are estimated within the framework of Joyce's hypothesis on quasi-compensation of vertical and turbulent horizontal transport. The effects of double diffusion are considered to dominate in vertical transport.UDK 551.465.15Translated by Mikhail M. Trufanov.  相似文献   

3.
凌备备 《海洋学报》1981,3(1):165-183
从五十年代起,放射性废液排放入海后的湍流扩散问题,开始具有工程上的实际意义,引起了人们的注意.湍流扩散基本规律以及与之有关的污染预报是两个重要的方面.但由于海洋湍流扩散是一个随机过程,并要受到季节、海区以及水文气象等多种因素的影响,而且这些因素间又互相制约比较复杂;所以虽然至今的理论与实验研究工作很多,但大多与特定条件有关,迄今还没有一个比较满意的普适理论.因此有必要对我国近海海水湍流扩散基本规律以及适用于我国近海的污染预报问题作进一步的研究.  相似文献   

4.
A model for the downward transfer of wind momentum is derived for growing waves. It is shown that waves, which grow due to an uneven pressure distribution on the water surface or a wave-coherent surface shear stress have horizontal velocities out of phase with the surface elevation. Further, if the waves grow in the x-direction, while the motion is perhaps time-periodic at any fixed point, the Reynolds stresses associated with the organized motion are positive. This is in agreement with several field and laboratory measurements which were previously unexplained, and the new theory successfully links measured wave growth rates and measured sub-surface Reynolds stresses. Wave coherent air pressure (and/or surface shear stress) is shown to change the speed of wave propagation as well as inducing growth or decay. From air pressure variations that are in phase with the surface elevation, the influence on the waves is simply a phase speed increase. For pressure variations out of phase with surface elevation, both growth (or decay) and phase speed changes occur. The theory is initially developed for long waves, after which the velocity potential and dispersion relation for linear waves in arbitrary depth are given. The model enables a sounder model for the transfer to storm surges or currents of momentum from breaking waves in that it does not rely entirely on ad-hoc turbulent diffusion. Future models of atmosphere-ocean exchanges should also acknowledge that momentum is transferred partly by the organized wave motion, while other species, like heat and gasses, may rely totally on turbulent diffusion. The fact that growing wind waves do in fact not generally obey the dispersion relation for free waves may need to be considered in future wind wave development models.  相似文献   

5.
The results of simulating the hydrophysical fields of the Black Sea with a resolution of 1.64 × 1.64 km for January–September 2006 with the use of real atmospheric forcing are analyzed. Both vertical turbulent momentum exchange and vertical turbulent heat and salt diffusions are parameterized using the Mellor-Yamada level 2.5 scheme. The results of this numerical experiment are compared with similar data obtained with a horizontal resolution of 5 km. The features of the meso- and submesoscale dynamics of waters in individual sea regions are given. Possible physical mechanisms of forming meso- and submesoscale vortices are studied on the basis of energy analysis. It is shown that, in the absence of significant wind forcing, the main contribution to kinetic energy is made by the buoyancy force and wind-field inhomogeneities result in significant variations in both total vertical viscosity and total vertical diffusion.  相似文献   

6.
一种船载海面通量观测的校正方法   总被引:2,自引:0,他引:2  
设计了一种用滤波法校正船载超声测风测量仪数据、计算海-气通量交换的方法。对1988,1989两年西太平洋海域考察期间超声测风测温仪的实测资料作了订正,订正了船体运动、特别是摇摆运动对风速的影响,用涡旋相关法计算了海面边界层的感热能量、动量通量、阻力系数和稳定度值。分析了海面上能量、阻力系数随大气状况的变化规律。计算结果表明,海面上的通量、阻力系数与水平风速和稳定度之间存在着合理的有规律的关系,证明  相似文献   

7.
8.
We present the results of experimental investigations of mesoscale wave processes in the surface layer based on the data of multiyear synchronous minute-by-minute measurements of atmospheric parameters and admixtures on a network consisting of five stations spaced 1–6 km apart. The concentrations of sulfur dioxide, carbon oxide, nitrogen oxide and dioxide; the mass concentration of aerosol; and the temperature and pressure, wind velocity and direction, and relative humidity were measured synchronously. Polarization relations for all the measured parameters have been obtained for different periods and wavelengths. The azimuth of mesoscale wave propagation is detected to depend on the mean wind velocity. It is shown that the densities of elastic and horizontal energies of mesoscale waves are essentially different on different scales.  相似文献   

9.
A “slip law” connects the excess velocity or “slip” of a wind-blown water surface, relative to the motion in the middle of the mixed layer, to the wind stress, the wind-wave field, and buoyancy flux. An inner layer-outer layer model of the turbulent shear flow in the mixed layer is appropriate, as for a turbulent boundary layer or Ekman layer over a solid surface, allowing, however, for turbulent kinetic energy transfer from the air-side via breaking waves, and for Stokes drift. Asymptotic matching of the velocity distributions in inner and outer portions of the mixed layer yields a slip law of logarithmic form, akin to the drag law of a turbulent boundary layer. The dominant independent variable is the ratio of water-side roughness length to mixed layer depth or turbulent Ekman depth. Convection due to surface cooling is also an important influence, reducing surface slip. Water-side roughness length is a wind-wave property, varying with wind speed similarly to air-side roughness. Slip velocity is typically 20 times water-side friction velocity or 3% of wind speed, varying within a range of about 2 to 4.5%. A linearized model of turbulent kinetic energy distribution shows much higher values near the surface than in a wall layer. Nondimensional dissipation peaks at a value of about eight, a short distance below the surface.  相似文献   

10.
根据Taylor的湍流扩散理论和Hay、Pasquill提出的拉格朗日流和欧拉流的相关函数的相似性,用黄河三角洲埕北海域的实测资料,按四种不同方案计算出该海域的水平扩散系数和谱密度分布。指出:该海区潮流扩散系数主要受潮流的影响,其分布特征与潮流的分布基本一致,所求的水平扩散系数主要是由周期性的潮运动给予潮流扰动所致。方案4是通过富氏变换滤波消去了周期性潮流扰动,本方案计算的水平扩散系数是由周期为6h以下的小尺度涡提供能量。  相似文献   

11.
High-resolution data collected southeast of the Canary Islands during late winter 2006 are analyzed to describe the hydrography and three-dimensional circulation in the coastal transition zone off NW Africa. The data are optimally interpolated over a regular grid, the geostrophic velocity field is calculated and the Q-vector formulation of the omega equation is used to compute the quasi-geostrophic (QG) mesoscale vertical velocity. The coastal transition zone is divided into upwelling, frontal and offshore regions with distinct physical and dynamic characteristics. The upwelling region is characterized by cold and weakly stratified waters flowing towards the equator, with a poleward undercurrent of approximately 0.05 m s−1 over the continental slope. The frontal region exhibits a southwestward baroclinic jet associated with cross-shore raising isopycnals; the jet transport is close to 1 Sv, with maximum velocities of 0.18 m s−1 at surface decreasing to 0.05 m s−1 at 300 db. Vertical sections across the frontal region show the presence of deep eddies probably generated by the topographic blocking of the islands to the southward current, as well as much shallower eddies that likely have arisen as instabilities of the baroclinic upwelling jet. The QG mesoscale vertical velocity field is patchy, estimated to range from −18 to 12 m day−1, with the largest absolute values corresponding to an anticyclonic eddy located south of Fuerteventura Island. These values are significantly larger than estimates for other vertical velocities: diapycnal vertical velocities associated with mixing in the frontal region (a few meters per day), and wind-induced vertical velocities (non-linear Ekman pumping arising from the interaction between the wind stress and the background vorticity, maximum values of a few meters per day; linear Ekman pumping due to the divergence of Ekman transport, a fraction of a meter per day; or the coastal constraint in the upwelling region, about 0.7 m day−1). However, the patchiness in both the QG mesoscale vertical velocity and the non-linear Ekman pumping velocity cause their integrated vertical transports to be one order of magnitude smaller than either coastal Ekman transport (0.08 Sv), integrated linear Ekman pumping (−0.05 Sv) or diapycnal transfer (about 0.1–0.2 Sv). The pattern of the near-surface fluorescence field is a good indicator of these different contributions, with large homogeneous values in the coastal upwelling region and a patchy structure associated with the offshore mesoscale structures.  相似文献   

12.
A parameterization of subgridscale surface fluxes over the marginal sea ice zone which has been used earlier in several studies is modified and applied to a nonhydrostatic mesoscale model. The new scheme accounts for the form drag of ice floes and is combined with a so-called flux averaging method for the determination of surface fluxes over inhomogeneous terrain. Individual fluxes over ice and water are calculated as a function of the blending height. It is shown by comparison with observations that the drag coefficients calculated with the new parameterization agree well with data. The original scheme strongly overestimates the form drag effect. An improvement is mainly obtained by an inclusion of stratification and by use of a more adequate coefficient of resistance for individual ice floes. The mesoscale model is applied to off-ice flows over the polar marginal sea ice zone. The model results show that under certain meteorological conditions the form drag can have a strong influence on the near-surface wind velocity and on the turbulent fluxes of momentum. Four case studies are carried out. The maximum influence of form drag occurs in the case with strong unstable stratification and with wind oblique to the ice edge. Under these conditions the wind stress on sea ice is modified by at least 100% for ice concentrations less than 50% if form drag is taken into account.  相似文献   

13.
本文根据拉格朗日流与欧拉流自相关系数的相似关系,用渤中8号平台1987年1月和8月的实测资料,分别推算了水平扩散系数。推算结果表明:研究长时间水平扩散时,把潮流看作湍流,所求的扩散系数实际上是潮流扩散系数,其值在10~6cm~2/s范围内;研究短时间水平扩散时,把潮流看作平流,用富里叶变换的长周期合成值从实测值中扣除,所求的扩散系数消除了长周期潮流部分,可认为是湍流扩散,其值在10~4cm~2/s范围内。  相似文献   

14.
The Argo float observations are used to investigate the mesoscale characteristics of the Antarctic Intermediate Water(AAIW) in the South Pacific in this paper. It is shown that a subsurface mesoscale phenomenon is probably touched by an Argo float during the float's ascent-descent cycles and is identified by the horizontal salinity gradient between the vertical temperature-salinity profiles. This shows that the transportation of the AAIW may be accompanied with the rich mesoscale characteristics. To derive the spatial length, time, and propagation characteristics of the mesoscale variability of the AAIW, the gridded temperature-salinity dataset ENACT/ENSEMBLE Version 3 constructed on the in-situ observations in the South Pacific since 2005 is used. The Empirical Mode Decomposition method is applied to decompose the isopycnal-averaged salinity anomaly from26.8 σθ–27.4 σθ, where the AAIW mainly resides, into the basin scale and two mesoscale modes. It is found that the first mesoscale mode with the length scale on the order of 1 000 km explains nearly 50% variability of the mesoscale characteristics of the AAIW. Its westward-propagation speeds are slower in the mid-latitude(around 1cm/s) and faster in the low latitude(around 6 cm/s), but with an increasing in the latitude band on 25°–30°S. The second mesoscale mode is of the length scale on the order of 500 km, explaining about 30% variability of the mesoscale characteristics of the AAIW. Its westward-propagation speed keeps nearly unchanged(around 0.5cm/s). These results presented the stronger turbulent motion of the subsurface ocean on the spatial scale, and also described the significant role of Argo program for the better understanding of the deep ocean.  相似文献   

15.
孟加拉湾内和湾口附近有丰富的中尺度现象,本文利用2.0版可分辨低纬地区中尺度涡的Chelton数据集,通过溯源的方法得到中尺度涡的源地分布。苏门答腊岛西北海域(以5°N,94°E为核心的区域)是中尺度涡重要源区之一。通过拉格朗日方法的涡旋追踪表明,1993—2017年该海域(3°N—6°N、92°E—95°E),分别有57个气旋式和40个反气旋式中尺度涡。频谱分析显示海表面高度异常存在180 d和360 d两个显著周期。地形和风场的共同作用是该海域产生中尺度涡的动力机制:沿5°N西传的罗斯贝波在海岭地形的作用下触发了中尺度涡的生成;赤道风场是源区重要的能量来源,局地风场能诱发中尺度涡的极性。本研究也揭示了以往文献虽刻画了苏门答腊岛西北部海域为高涡动能区,却没有识别出较多中尺度涡的原因。  相似文献   

16.
Satellite ocean-color imagery and field spectroradiometer observations are used to assess the bio-optical signatures of two mesoscale features, a cyclone C1 and an 18°-water anticyclone A4, in the Sargasso Sea. Field determinations of upper layer bio-optical properties, such as the diffuse attenuation coefficient and remote-sensing reflectance spectra, show little statistically significant variations with distance to the eddy center for either eddy. This contrasts field observations showing many-fold higher phytoplankton pigment biomass at depth (and for A4 higher primary production rates at depth) than is typical for this region. The cyclone C1 does show a significant decrease in the depth of the 1% photosynthetically available radiation (PAR) isolume with increasing distance from eddy center while the anticyclone A4 shows no coherent signal vs. distance. Vertical profiles of bio-optical properties show consistent patterns where subsurface maxima are displaced higher inside the core of the cyclone C1 than in the surrounding waters while the highest values of the diffuse attenuation coefficient at 443 nm are observed within the core of anticyclone A4. Satellite observations of near-surface bio-optical properties show signals consistent with eddy physical characteristics, although the magnitude of these variations is very small, barely detectable by typical field measurement protocols. Mean values of bio-optical properties are higher within the cyclone compared with its periphery but not for the anticyclone. For both eddies, significant inverse correlations are observed between time series of bio-optical properties and eddy center sea-level anomaly. Consistent response to wind speed is also noted: following strong wind events, bio-optical parameters are elevated inside the anticyclone and are reduced inside the cyclone. These observations demonstrate that a combination of physical processes, including vertical eddy uplift, eddy horizontal advection, and eddy-scale Ekman pumping, contribute to the bio-optical imprint of mesoscale eddies. The contributions of these forcing mechanisms change over the period of observation, illustrating the limitations of inferring eddy bio-optical dynamics from short-term, field observations. The present analyses provide insights into the potential as well as the drawbacks of bio-optical techniques for probing the biological and biogeochemical impacts of open-ocean eddies.  相似文献   

17.
Wind-wave tunnel experiments reveal, by use of techniques of the flow visualization, that wind waves are accompanied by the wind drift surface current with large velocity shear and with horizontal variation of velocity relative to the wave profile. The surface current converges from the crest to a little leeward face of the crest, making a downward flow there, even though the wave is not breaking. Namely, wind waves are accompanied by forced convections relative to the crests of the waves. Since the location of the convergence and the downward flow travels on the water surface as the crest of the wave propagates, the motion as a whole is characterized by turbulent structure as well as by the nature of water-surface waves. In this meaning, the term of real wind waves is proposed in contrast with ordinary water waves. The study of real wind waves will be essential in future development of the study of wind waves.  相似文献   

18.
The study verifies the Black Sea wave model using field data obtained from the Katsiveli research platform. The WAM and mesoscale MM5 and WRF atmospheric models, which are used to calculate the wind field for the wave model, were recently adjusted to the Black Sea region at the Marine Hydrophysical Institute. The results of the work are presented as characteristics of the simulation quality used in world practice in other regions. The scatter index for a significant wave height is 70% in summer and 50% in winter. The values of the scatter index of wave parameters and wind speed appear to be at the same level as in semi-enclosed seas on the northern side of the Mediterranean Sea. It is shown that atmospheric simulation correctly reproduces the interaction between synoptic processes and the mountain range extending alongshore. Error sources in wave simulation are discussed. The most significant drawback is the possibility of mesoscale instability in the atmospheric model without assimilation of observation data within the computational domain.  相似文献   

19.
Quasi-3D Numerical Simulation of Tidal Hydrodynamic Field   总被引:2,自引:0,他引:2  
Based on the 2D horizontal plane numerical model,a quasi-3D numerical model is establishedfor coastal regions of shallow water.The characteristics of this model are that the velocity profiles can be ob-tained at the same time when the equations of the value of difference between the horizontal current velocityand its depth-averaged velocity in the vertical direction are solved and the results obtained are consistent withthe results of the 2D model.The circulating flow in the rectangular area induced by wind is simulated and ap-plied to the tidal flow field of the radial sandbanks in the South Yellow Sea.The computational results fromthis quasi-3D model are in good agreement with analytical results and observed data.The solution of the finitedifference equations has been found to be stable,and the model is simple,effective and practical.  相似文献   

20.
A three-dimensional,first order turbulence closure,thermal diffusion model is described inthis paper.The governing equations consist of an equation of continuity,three components of momentum,conservation equations for salt,temperature and subgridscale energy,and an equation of state.In the mod-el,according to the hypothesis of Kolmogorov and Prandtl,the viscosity coefficient of turbulent flow ofhomogeneous fluid is related to the local turbulent energy,and the horizontal and vertical exchangecoefficients of mass,heat and momentum are computed with the introduction of subgridscale turbulenceenergy.The governing equations are solved by finite difference techniques.This model is applied to theJiaozhou bay to predict thermal pollution by the Huangdao power plant.An instantaneous tidal currentfield is computed,then the distribution of temperature increment is predicted,and finally the effect of windstress on thermal discharge is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号